数学建模 面试最优化问题
数学建模优化类问题例子
数学建模优化类问题例子数学建模是一种解决实际问题的方法,通过数学模型对问题进行描述,运用数学方法进行分析和求解。
在优化类问题中,数学建模的目标是通过最小化或最大化某个指标来找到问题的最优解。
在以下的例子中,我将介绍几个典型的优化问题。
1.生产计划优化假设一个公司生产两种不同的产品,每个产品的成本、销售价格和市场需求都不同。
公司希望通过合理调整两种产品的生产量,以最大化利润。
为了达到这个目标,我们可以建立一个数学模型,考虑到每种产品的成本、销售价格和市场需求,以及公司能够生产的总产量限制。
然后,可以使用线性规划等数学方法,求解出最优的生产计划,使得公司利润最大化。
2.路线规划优化考虑一个物流公司要在不同的城市之间进行货物运输,每个城市之间的距离不同,同时还考虑到交通拥堵情况。
公司希望通过合理规划运输路线,以最小化整体运输成本和时间。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个城市之间的距离、交通拥堵情况以及运输成本。
然后,可以使用图论等数学工具,求解出最优的路线规划,使得运输成本和时间最小化。
3.资源分配优化考虑一个学校要为不同的课程安排教师以及教学资源,每个课程的需求和教学资源的供应不同。
学校希望通过合理分配教师和教学资源,以最大化学生的学习效果。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个课程的需求和教学资源的供应,以及教师的专业能力。
然后,可以使用线性规划等数学方法,求解出最优的资源分配方案,使得学生的学习效果最大化。
4.物资库存优化考虑一个零售商要管理不同种类的商品库存,每个商品的销售量和订货周期不同,同时还考虑到库存成本和仓储空间的限制。
零售商希望通过合理管理库存,以最小化库存成本和避免缺货。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个商品的销售量、订货周期以及库存成本和仓储空间的限制。
然后,可以使用动态规划等数学方法,求解出最优的库存管理方案,使得库存成本最小化同时避免缺货。
数学建模《最优化问题》
2c1 rc2
c2 c2 c3
2c1r Q rT c2
c2 c3 记 c3
不 允 许 缺 货
T T ,
Q
Q
1
T ' T , Q' Q
c3
c3 1
T T , Q Q
允许 缺货 模型
2c1 c2 c3 T rc2 c3
利润 Q=R-C=pw -C 求 t 使Q(t)最大 Q(10)=660 > 640
Q(t ) (8 gt)(80 rt ) 4t
4r 40g 2 t =10 rg
10天后出售,可多得利润20元
敏感性分析
4r 40g 2 t rg
研究 r, g变化时对模型结果的影响 • 设g=0.1不变
其中 c1,c2,c3, t1, ,为已知参数
模型求解
dC 0 dx
求 x使 C(x)最小
b 0
c1t12 2c2t1 x 2c32
dB dt
x
t1
t2 t
结果解释
• / 是火势不继续蔓延的最少队员数
结果 解释
c1t1 2c2t1 x 2c32
允许缺货的存贮模型
当贮存量降到零时仍有需求r, 出现缺货,造成损失.
q Q r
Q rT1
t
原模型假设3:贮存量降到零 T1 B T 时Q件立即生产出来(或立即到 0 货). 现假设3:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足. 一周期 c2 贮存费 一周期 c 3 缺货费
A
T1
0
7.1
存贮模型
数学建模优化问题
6 8 i 1 j 1
约束条件: 每个货栈运往各销售点的货物总量应小于货栈的 可供应量,设货栈i的可供应量为wi,则有
x
j 1
8
ij
wi , (i 1,2, ,6)
每个销售点的需求量必须满足,设销售点j的需 求量为vj,则有
x
i 1
6
ij
v j , ( j 1,2,,8)
优化方法建模
侯为根 安徽工业大学数理学院 Email:wghou@
优化模型和算法的重要意义
最优化: 在一定条件下,寻求使目标最大(小)的决策 最优化是工程技术、经济管理、科学研究、社会 生活中经常遇到的问题, 如: 结构设计 资源分配 生产计划 运输方案 解决优化问题的手段 • 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型,求解最优策略 CUMCM赛题:约有一半为优化问题须用软件求解
分支定界管理程序
ILP IQP
INLP
线性规划求解程序 1、单纯形算法
非线性规划求解程序 1、顺序线性规划法 2、广义既约梯度法
2、内点算法
3、多点搜索
建模时要注意的几个基本问题
1、尽量使用实数优划,减少整数约束和整数变量
2、尽量使用光滑优划,减少非光滑约束个数 如:尽量少使用绝对值、符号函数、多个变量 求最大值/最小值,四舍五入,取整函数等 3、尽量使用线性模型、减少非线性约束和非线性变 量的个数 (如:x/y<5改为x<5y) 4、合理设定变量上下界,尽可能给出变量初始值。 5、模型中使用的参数数量级要适当(如小于103)。
时间增加1单位,利润增长2。 加工能力增长不影响利润。 •35元可买到1桶牛奶,要买吗? 35 <48,应该买!
数学建模学生面试问题(强烈推荐)
学生面试问题摘要本文研究的学生面试问题,是在给定学生数量的前提下,按照每名学生的面试组由四名老师组成,且各个学生的面试组两两不完全相同的要求,研究需要的老师数量,并求出面试分组方案。
为了保证面试的公平性,组织者还提出了四条要求,需要考虑除Y2外使其它三条要求尽量满足的分配方案。
第一问是已知学生数量为N,求任意两个面试组最多只有一名老师相同的最小老师数量,我们将此问题转化成一个0-1规划模型,并设计了优化搜索方法,通过MATLAB编程实现了最少M的近似解。
在第二问的解决中,首先对Y1-Y4四个要求进行了分析,并分别建立了相应的量化指标,在此基础上,建立了一个多目标规划模型。
针对学生数较多,模型求解运算量大的问题,特别设计了优化算法,减少了搜索中的运算量。
同时,通过讨论均衡与公平性的含义,以分目标为基础,建立了综合评价目标,以此为指引,使搜索算法更具有针对性。
计算结果表明,分配方案满足Y1-Y4的情况是非常好的。
第二问中还运用组合数学中区组设计的理论,论证了N=379、M=24时不存在完全满足均衡和公平要求的理想分配方案。
第三问中,将老师组分成文、理两类,首先修改了问题一中的相应模型和算法,给出了求解结果。
在第二问中提出了启发式-混合交叉算法,从模拟结果看,分配方案比原第二问中的方案要差些,但总体上在各个指标上满足的情况也是较好的。
第四问首先分析了均匀性与面试公平性的关系,并提出了公平率的评价指标。
为了解决学生与面试老师有特殊关系,及个别老师打分过于苛刻或宽松的问题,本文提出了规避的解决方法。
关键词:多目标规划算法评价指标1.问题重述某高校采用专家面试的方式进行自主招生录取工作。
经过初选合格进入面试的考生有N人,拟聘请老师M人进行面试。
每位学生要分别接受“面试组”的每一位老师的单独面试。
每个面试组由4名老师组成。
各位老师独立地对考生提问并根据其回答问题的情况给出评分。
为了保证面试工作的公平性,组织者提出如下要求:Y1:每位老师面试的学生数量应尽量均衡;Y2:面试不同考生的“面试组”成员不能完全相同;Y3:两个考生的“面试组”中有两位或三位老师相同的情形尽量的少;Y4:任意两位老师面试的两个学生集合中出现相同学生的人数尽量少。
数模竞赛最优化题目
3考虑到部分县与县交界地带的支局,其邮件由邻县县局负责运送可能会降低全区的运行成本,带来可观的经济效益。若允许在一定程度上打破行政区域的限制,你能否给出更好的邮路规划和邮车调度方案(在此同样不必考虑邮车的运载能力的限制,每条邮路的运行成本为3元/公里)
4县局选址的合理与否对构建经济、快速的邮政运输网络起到决定性的作用。假设图2中县局X1,……,X5均允许迁址到本县内任一支局处,同时原来的县局弱化为普通支局。设想你是该地区网运部门负责人,请你重新为各个县局选址,陈述你的迁址理由并以书面材料形式提交省局网运处。
3如果调度室在列车到达前两小时能够获取列车的相关信息,请利用这些信息制定可行的列车编组调度方案,使每班的中时尽量少,发出的车辆尽量多。
4如果因自然灾害导致S3以南的铁路中断,需要将有关的车辆转向东方向经E4向南绕行,请你们给出相应的调度方案,并计பைடு நூலகம்相应每班的中时。
5假设编组完成的列车都能及时发出,按照你们的编组调度方案分析研究该编组站一天24小时最多能编组完成多少车辆,相应每班的中时是多少即根据所建立模型进一步分析该编组站能否再提高资源的利用率和运行效率。
2008
C
货运列车的编组调度问题
经济类
(规划设计类)
1试设计快速自动实现车辆编组调度方案的优化模型或算法,并给出附件2中车辆可行的编组方案(包括解体程序、轨道编号、车辆数量、集结程序、新列车的组成等),主要使每班的中时尽量地少。
数学建模学生面试问题(值得看)
单目标和多目标规划模型求解学生面式问题摘要随着高校自主招生规模的扩大,学生面试的公平性成为人们关注的焦点。
本文通过建立单目标和多目标规划模型,利用MATLAB软件和搜索算法,进行了有关招生面试问题的研究。
对于问题一,为表示面试学生和老师之间的相应关系,引入0-1变量x,ij 建立以老师数M最小为目标的0-1规划模型。
利用搜索算法,求解出考生数N 确定的情况下,满足其他约束条件的最小M值。
问题二中,将Y1、Y3、Y4看成基本约束条件下的目标函数,Y2作为约束条件,建立多目标规划模型。
运用MATLAB软件对模型进行求解,得到满足约束条件的近似最优分配方案。
问题三,增加每位学生的面试组中各有两位文理科老师的约束条件,假设前M/2个老师为文科老师,通过限制第i位学生“面试组”中前M/2个老师的个数来保证每位学生的文科和理科面试老师人数相等。
在新的约束条件下,分别对问题一、二进行重新求解,得到聘请老师数M以及老师和学生之间的面试分配方案的最优解。
最后,在问题一、二、三分析求解的基础上,本文对考生与面试老师之间分配的均匀性和面试的公平性进行了讨论,认为两者是对立统一的矛盾统一体。
为兼顾分配均匀和面试公平,本文讨论了其他影响因素,并提出了六条切实可行的建议。
另外,考虑将面试老师职称因素引入问题分析,建立新的模型。
关键词:公平师生匹配均匀分配方案1 问题重述高校自主招生是高考改革中的一项新生事物,2006年,全国具有自主招生资格的高校已由最初的22所增加到53所。
学生面试的公平性越来越引起人们和社会的高度重视。
某高校拟在全面衡量考生的高中学习成绩及综合表现后再采用专家面试的方式决定录取与否。
该校在今年自主招生中,经过初选合格进入面试的考生有N 人,拟聘请老师M人。
每位学生要分别接受4位老师的单独面试。
为了保证面试工作的公平性,组织者提出如下要求:Y1:每位老师面试的学生数量应尽量均衡;Y2:面试不同考生的“面试组”成员不能完全相同;Y3:两个考生的“面试组”中有两位或三位老师相同的情形尽量的少;Y4:被任意两位老师面试的两个学生集合中出现相同学生的人数尽量的少。
数学建模优化问题经典练习
1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大,max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3;2*x1+4*x2+8*x3<=500;2*x1+3*x2+4*x3<=300;1*x1+2*x2+3*x3<=100;@bin(y1);@bin(y2);@bin(y3);y1+y2+y3>=1;Global optimal solution found.Objective value: 300.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 100.0000 0.000000X2 0.000000 3.000000X3 0.000000 6.000000Y1 1.000000 100.0000Y2 0.000000 150.0000Y3 0.000000 200.0000Row Slack or Surplus Dual Price1 300.0000 1.0000002 300.0000 0.0000003 100.0000 0.0000004 0.000000 4.0000005 0.000000 0.0000002、安排4个人去做4项不同的工作,每个工人完成各项工作所消耗的时间(单位:(2)如果在(1)中在增加一项工作E,甲、乙、丙、丁四人完成工作E的时间分别为17,20,15,16分钟,那么应指派这四人干哪四项工作,使得这四人总的消耗时间为最少?min=20*x11+19*x12+20*x13+28*x14+18*x21+24*x22+27*x23+20*x24+26*x31+16 *x32+15*x33+18*x34+17*x41+20*x42+24*x43+19*x44;x11+x12+x13+x14=1;x21+x22+x23+x24=1;x31+x32+x33+x34=1;x41+x42+x43+x44=1;x11+x21+x31+x41=1;x12+x22+x32+x42=1;x13+x23+x33+x43=1;x14+x24+x34+x44=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x41);@bin(x42);@bin(x43);@bin(x44);Global optimal solution found.Objective value: 71.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX11 0.000000 20.00000X12 1.000000 19.00000X13 0.000000 20.00000X14 0.000000 28.00000X21 0.000000 18.00000X22 0.000000 24.00000X23 0.000000 27.00000X24 1.000000 20.00000X31 0.000000 26.00000X32 0.000000 16.00000X33 1.000000 15.00000X34 0.000000 18.00000X41 1.000000 17.00000X42 0.000000 20.00000X43 0.000000 24.00000X44 0.000000 19.00000Row Slack or Surplus Dual Price1 71.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.000000min=20*x11+19*x12+20*x13+28*x14+17*x15+18*x21+24*x22+27*x23+20*x24+20 *x25+26*x31+16*x32+15*x33+18*x34+15*x35+17*x41+20*x42+24*x43+19*x44+1 6*x45;x11+x12+x13+x14+x15=1;x21+x22+x23+x24+x25=1;x31+x32+x33+x34+x35=1;x41+x42+x43+x44+x45=1;x11+x21+x31+x41<=1;x12+x22+x32+x42<=1;x13+x23+x33+x43<=1;x14+x24+x34+x44<=1;x15+x25+x35+x45<=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x15);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x25);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x35);@bin(x41);@bin(x42);@bin(x43);@bin(x44);@bin(x45);Objective value: 68.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced Cost X11 0.000000 20.00000 X12 1.000000 19.00000 X13 0.000000 20.00000 X14 0.000000 28.00000 X15 0.000000 17.00000 X21 1.000000 18.00000 X22 0.000000 24.00000 X23 0.000000 27.00000 X24 0.000000 20.00000 X25 0.000000 20.00000X31 0.000000 26.00000X32 0.000000 16.00000X33 1.000000 15.00000X34 0.000000 18.00000X35 0.000000 15.00000X41 0.000000 17.00000X42 0.000000 20.00000X43 0.000000 24.00000X44 0.000000 19.00000X45 1.000000 16.00000Row Slack or Surplus Dual Price1 68.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000003、一个公司考虑到北京、上海、广州和武汉四个城市设立库房,这些库房负责向华北、华中、华南三个地区供货,每个库房每月可处理货物1000件。
数学建模利润最大优化资料
数学建模利润最大优化资料数学建模利润最大优化问题假设你有一个小企业,专门生产某种商品,并以批发为主要销售方式。
你希望确定每个订单的最佳销售量,以最大化利润。
订单的成本是由生产和运输成本构成的。
现在请你使用数学建模方法,解决这个问题。
1.确定目标函数首先,我们需要确定目标函数,即要优化的目标。
在这个问题中,我们希望最大化利润。
因此,我们需要计算利润,其计算方法如下:利润 = 销售收入 - 总成本其中:销售收入 = 销售量 ×销售价格总成本 = 生产成本 + 运输成本根据这个公式,我们可以构建出目标函数,即:Maximize: Profit = Sales Revenue - Total Cost2.确定约束条件其次,我们需要确定约束条件,即问题中的限制条件。
在这个问题中,我们需要考虑以下限制条件:2.1 生产设备的最大容量设备的容量是限制我们生产的最大数量。
如果我们生产的数量超过了设备的容量,我们就需要购买更多的设备或者租赁设备来满足生产的需求。
因此,我们需要将生产量限制在设备的最大容量内。
Production Quantity <= Equipment Capacity2.2 市场需求我们不能生产比市场需求更多的产品。
如果我们生产的产品超过了市场需求,我们就会面临库存积压和损失的问题。
因此,我们需要将生产量限制在市场需求的范围内。
Production Quantity <= Market Demand2.3 运输成本我们需要运输产品到销售点。
运输成本通常是根据距离、数量和货物的体积和重量来计算。
如果我们超过规定的运输成本,我们的利润就会减少。
因此,我们需要限制运输成本。
Transportation Cost <= Max Transportation Budget3.建立数学模型结合以上分析,我们可以建立以下的数学模型:Maximize: Profit = Sales Revenue - Total CostSales Revenue = Selling Price × Production QuantityTotal Cost = Production Cost + Transportation CostProduction Quantity <= Equipment CapacityProduction Quantity <= Market DemandTransportation Cost <= Max Transportation Budget其中:Selling Price 表示每个产品的销售价格;Production Cost 表示每个产品的生产成本;Max Transportation Budget 表示运输成本的最大预算。
研究生数学建模优化问题
研究生数学建模优化问题
研究生数学建模优化问题可以涉及各种不同的学科和领域。
以下是一些常见的研究生数学建模优化问题的例子:
1. 生产优化问题:如何最大化生产效率,同时最小化生产成本和资源使用。
这包括生产线排程问题、物流和供应链管理等。
2. 资源分配问题:如何最优地分配有限的资源,以满足不同需求。
例如,如何在一所学校中分配教师、教室和学生资源,以实现最佳的学习效果。
3. 运输路径问题:如何找到最短路径或最优路径来满足特定的要求。
这包括最短路径问题、旅行商问题等。
4. 网络优化问题:如何设计最优的网络结构,以实现最大的性能和容量。
例如,如何在一个电信网络中设计最佳的数据传输路由。
5. 风险管理问题:如何评估和管理风险,以保护资产和最小化损失。
这包括投资组合优化、保险精算等问题。
6. 环境优化问题:如何最小化对环境的影响,同时最大化资源保护和可持续发展。
例如,如何设计最优的城市公共交通系统,以减少交通拥堵和空气污染。
以上只是一些研究生数学建模优化问题的例子,实际上,优化问题几乎可以应用于任何领域。
研究生在解决这些问题时,通常需要使用数学模型和优化算法,以寻找最优的解决方案。
不确定条件下的最优化问题数学建模方法
不确定条件下的最优化问题数学建模方法说到“不确定条件下的最优化问题”,你可能会觉得这个话题像是从高楼上丢下来的一个复杂的数学公式,砸得你头晕眼花。
但别急,咱们先深吸一口气,稳住,一点点往前走。
这不就是生活中的“抉择问题”嘛!你想想看,每天我们不是都在面对各种选择吗?是吃个炸鸡,还是去健身房?是买彩票,还是存钱养老?这不就是典型的不确定条件下的最优化问题嘛,选择多了,怎么做才能最好?好吧,咱们的生活已经充满了不确定性了,再加上数学的加入,简直是“添油加醋”,让人脑袋转不过弯。
我们说的“不确定性”,就是你做决策时,根本不知道结果是什么。
比方说,你今天去参加一个聚会,不知道会不会碰到老同学,也不知道会不会遇到一个投资机会,甚至连今天的天气都不确定。
这不就相当于你要在一个迷雾中行走,根本不知道前方是光明的草原,还是泥泞的陷阱。
咱们要说的是最优化。
嘿,说白了就是你要做选择时,怎么能做到最好。
就像你去超市买东西,最优化的目标是:在有限的钱包里买到最有价值的商品。
如果钱不够,就得掂量掂量,是选择那袋价值更高的牛肉,还是更多的水果?这就是优化问题的缩影。
关键就是你要做出选择,而选择的背后,恰恰是“怎么做能最好”的思考。
可是,搞定这些可不容易。
你得根据实际情况,抛开那些看似完美但不切实际的理想模型,找到一个能够在不确定的情况下,也能拿到最大收益的答案。
可能有人会想:“哎,这不就是投机取巧嘛。
”嘿,不!你得知道,“投机取巧”和“最优化”可不是一回事。
最优化的精髓在于,我们要用尽可能少的资源,达到最好的效果。
用一个简单的例子来说,你去爬山,山顶的风景是最美的,但你得想好怎么爬上去。
是走小路,绕一绕,还是直接选择一条大路,快速上去?每条路的风险和成本不一样。
可是最优化就是要让你在各种不确定的情况下找到最合适的选择。
关键是,谁能找到最短的路,谁就能登顶,别再东张西望,纠结到底是哪条路才是最好的。
要相信自己能在不断的试错中,找到一条最适合自己的路。
数学建模最优化模型例题
数学建模最优化模型例题好,咱们今天来聊聊数学建模和最优化模型这块儿。
数学建模,这名字听起来就挺高大上的,实际上,咱们日常生活中处处都是它的身影。
想象一下,早上起床,看到窗外阳光明媚,心里琢磨着今天去不去公园,顺便锻炼锻炼。
于是,你心里开始盘算,公园离家有多远,走路要多久,还是骑个单车比较快?这就是在用数学建模,算一算,看看哪个更划算。
再说说最优化模型,这就像是在挑选午饭一样。
你有一大堆选择,米饭、面条、快餐还是外卖,真是眼花缭乱。
你心里想,要是不吃太油腻的,又想吃得饱,还得好吃。
于是开始分析:今天外卖不如自己做,自己做的话,买啥材料比较好,怎么搭配更营养呢?这时候,你的脑子就像一个小计算机,开始进行各种选择。
想想,如果能把所有的选择变成一个数学问题,肯定能算出最优解,嘿,生活简直就像在解题一样,乐趣多多。
再说说商场里打折的那种,真是让人心痒痒的。
假如你打算买新鞋,满心期待。
可是一进商场,各种颜色、各种款式扑面而来,心里顿时就犯了选择困难症。
想要买的那双鞋打折了,可是另外一双颜色也不错,怎么办呢?这时候,最优化模型就可以帮你了。
想一想,你最看重什么,舒适、样式还是价格?用数学的眼光来审视,看看哪双鞋的性价比最高,没准儿就能找到那个最适合自己的了。
有些小伙伴可能会问了,数学建模到底有什么用呢?你知道吗,很多企业在决策的时候都离不开这些模型。
就拿快递公司来说,他们每天都要处理成千上万的包裹,怎么能保证包裹及时送到呢?他们需要用到最优化模型来安排路线,减少运输成本。
想象一下,如果没有这些模型,快递员可能跑了一大圈,最后才发现原来只需要直走就到了。
那可真是得不偿失,没准儿包裹还会晚到,这可就麻烦了。
数学建模的魅力就在于它能把复杂的问题简单化。
我们生活中遇到的各种难题,最终都可以转化为一个个数学问题。
你说这是不是挺神奇的?比如你要规划一次旅行,想去多少个地方,怎么安排最合适,住哪儿能便宜又舒服,这些全都可以用建模来解决。
几个优化问题的数学建模
⼏个优化问题的数学建模⼏个优化问题的数学建模⼀、⼀个开放式基⾦投资问题6、模型的评价模型的主要优点是采⽤较为成熟的数学理论建⽴模型,利⽤数学软件计算,可信度⽐较⾼,便于推⼴。
主要缺点是建⽴的模型是确定的⽽不是更符合实际情况的随机型模型。
⼆、结合⼈员分配的⽣产规划问题1、问题某公司要对四种产品(P1,P2,P3,P4)在五条⽣产线(L1到L5)上的⽣产进⾏规划。
产品P1和P4的单位纯利润为7元,产品P2的单位纯利润为8元,产品P3的单位纯利润为9元。
在规划期内这五条⽣产线各⾃可以进⾏⽣产的时间长度各不相同。
L1到L5的最⼤可⽤⽣产时间分别为4500⼩时,5000⼩时,4500⼩时,1500⼩时和2500⼩时。
表1列出了在每条⽣产线上⽣产每种产品⼀个单位所需要的时间。
(1)、假设⽣产是流⽔线作业,产品P1到P4各应⽣产多少才能使总利润最⼤?(2)、如果在⽣产过程中允许在⽣产线之间进⾏⼈员转移(从⽽使⼯时也相应转移),如表2所⽰,则最⼤利润是多少?应转移多少个⼯时,如何转移?(3)、如果⽣产不是流⽔线作业,模型应如何修改?表1 单位⽣产时间表2 可以进⾏的⼈员转移2、假设(1)每条⽣产线可⽣产各种产品;(2)每个⽣产⼈员的⼯作效率相同,且熟练各条⽣产线的操作,可在各条⽣产线之间转移。
3、建模3.1、问题(1) 设每种产品必须经过5条⽣产线才能⽣产出来,产品P i 的产量为x i ,单位纯利润为r i ,在⽣产线L j 上的单位⽣产时间为d ij 。
⽣产线L j 的可⽤总⼯时数为c j ,则可得模型1:max 41i =∑r i x is.t.41i =∑d ij x i ≤c j ,j=1,2,3,4,5x i ≥0,i=1,2,3,43.2、问题(2) 设y jk 为从⽣产线L j 转移到⽣产线L k 的⼯时数,⽣产线L j 的最⼤可转移总⼯时数为b j ,j,k=1,2,3,4,5,j ≠k ,则可得模型2:max 4s.t.3.3、问题(3) 设每种产品只需在任意⼀条⽣产线上即可⽣产出来,产品P i在⽣产线L j 上的产量为x ij , i=1,2,3,4;j=1,2,3,4,5,则只需在上述两个模型中,将⽬标函数修改为max 41i =∑51j =∑r i x ij ,将41i =∑d ij x i 修改为41i =∑d ij x ij ,其余不变。
数学建模优化类问题例子
数学建模优化类问题例子
1.最佳生产计划:有一家汽车零部件制造公司,需要决定该如何安排生产计划以最大化利润。
该公司需要考虑每个零部件的生产成本、供应链的延迟和运输成本等因素,以确定最佳的生产数量和交付时间。
2.最优投资组合:一位投资者有一定资金,希望通过合理的资产配置来最大化投资回报。
该投资者需要考虑不同资产类别的风险和回报率,并使用数学建模优化方法来确定最佳的资产配置比例。
3.旅行销售员问题:一位旅行销售员需要在多个城市之间进行访问,并希望以最小的总行驶距离完成所有访问任务。
通过使用数学建模和优化算法,销售员可以确定最佳的访问顺序,从而减少总行驶距离和时间。
4.最佳路径规划:在一个迷宫中,有一只小老鼠需要找到从起点到终点的最短路径。
通过将迷宫与数学模型相关联,可以使用图论和最短路径算法来确定小老鼠应该采取的最佳行动策略。
以上只是一些例子中的几个,实际上数学建模和优化方法可以应用于各种不同的问题领域,包括金融、物流、能源管理、医疗决策等。
通过数学建模和优化,可以帮助人们做出更明智的决策,提高效率和效果。
数学建模中的优化问题与约束条件的求解
数学建模中的优化问题与约束条件的求解在数学建模的广阔领域中,优化问题与约束条件的求解是至关重要的组成部分。
优化问题旨在寻找某种最佳的解决方案,而约束条件则限制了可行解的范围。
理解和解决这些问题对于解决实际生活中的各种复杂情况具有深远的意义。
首先,让我们明确什么是优化问题。
简单来说,优化问题就是在给定的一组条件下,寻找能够使某个目标函数达到最大值或最小值的变量取值。
例如,一家工厂在生产多种产品时,需要决定每种产品的产量,以在有限的资源和市场需求的限制下,实现利润最大化。
这里,每种产品的产量就是变量,利润就是目标函数,而资源和市场需求则构成了约束条件。
优化问题的类型多种多样。
常见的有线性规划、非线性规划、整数规划等。
线性规划是指目标函数和约束条件都是线性的问题。
非线性规划则涉及到目标函数或约束条件中至少有一个是非线性的。
整数规划要求变量取整数值。
每种类型的优化问题都有其特定的求解方法和特点。
接下来谈谈约束条件。
约束条件可以分为等式约束和不等式约束。
等式约束表示某些变量之间必须满足精确的相等关系,比如在一个物理系统中,能量守恒定律就可以表示为一个等式约束。
不等式约束则限制了变量的取值范围,比如资源的有限性可能导致生产过程中对某些投入的使用不能超过一定的上限。
在实际问题中,约束条件往往是复杂且多样化的。
它们可能来自于物理规律、经济规律、技术限制、政策法规等多个方面。
例如,在交通运输规划中,道路的容量限制、车辆的速度限制等都是约束条件;在投资决策中,资金预算、风险承受能力等也是约束条件。
求解优化问题与约束条件的方法有很多。
经典的方法如单纯形法,适用于线性规划问题。
对于非线性规划问题,常用的方法有梯度下降法、牛顿法等。
此外,还有一些智能算法,如遗传算法、模拟退火算法等,它们在处理复杂的优化问题时表现出了强大的能力。
单纯形法是一种通过在可行域的顶点上进行搜索来找到最优解的方法。
它的基本思想是从一个可行解开始,通过不断地移动到相邻的顶点,逐步改进目标函数的值,直到找到最优解。
数学建模中的优化问题
奥运会临时超市网点设计
(找关键性语句)
2008年北京奥运会的建设工作已经进入全面设计 和实施阶段。奥运会期间,在比赛主场馆的周边 地区需要建设由小型商亭构建的临时商业网点, 称为迷你超市(Mini Supermarket, 以下记做MS) 网,以满足观众、游客、工作人员等在奥运会期 间的购物需求,主要经营食品、奥运纪念品、旅 游用品、文体用品和小日用品等。在比赛主场馆 周边地区设置的这种MS,在地点、大小类型和总 量方面有三个基本要求:满足奥运会期间的购物 需求、分布基本均衡和商业上赢利。
1998年 A题:投资的收益和风险
全国赛二十年竞
2000年 B题:钢管的定购与运输
赛的40个赛题中
2004年 A题:奥运会临时超市网点设计 涉及优化模型的
2003年 B题:露天矿生产的车辆安排 问题有27个,占
2005年 B题:DVD在线租赁
67.5%
2006年 A题:出版社的资源配置
2006年 B题: 艾滋病疗法的评价及疗效的预测
30
奥运会临时超市网点设计
(找关键性语句)
请你按以下步骤对图2的20个商区设计MS网点: 1.根据附录中给出的问卷调查数据,找出观众在
出行、用餐和购物等方面所反映的规律。 2.假定奥运会期间(指某一天)每位观众平均出
行两次,一次为进出场馆,一次为餐饮,并且 出行均采取最短路径。依据1的结果,测算图2 中20个商区的人流量分布(用百分比表示)。 3.如果有两种大小不同规模的MS类型供选择,给 出图2中20个商区内MS网点的设计方案(即每 个商区内不同类型MS的个数),以满足上述三 个基本要求。 4.阐明你的方法的科学性,并说明你的结果是贴 近实际的。
20
奥运会临时超市网点设计
数学建模-优化题目[精华]
c ij x ij
总运价
i1 j1
n
x ij a i , j1
s .t . m x ij b j i1 x ij 0
i 1,..., m
j 1,..., n i 1,..., m ; j 1,..., n
产量限制 需量限制 运量非负
线性规划模型
假设产销平衡:
m
n
ai bj
线性规划模型
m f 0 . 1 x 1 0 i . 3 x 2 n 0 . 9 x 3 0 x 4 1 . 1 x 5 0 . 2 x 6 0 . 8 x 7 1 . 4 x 8
2x1 x2 x3 x4 100
s.t.x12xx2333xx3432xx5623xx67x47x8101000 不同方法
Ⅰ
Ⅱ
现有原 材料
A1
21 8
A2
10 3
A3
01 4
线性规划模型
解:设生 ,产 两 种产品 x1,x分 2吨 ,别为
max f= 5x1 +2x2
求最大利润
2x1 + x2 8
s.t .
x1 3
x2 4
x1,x2 0
三种材料量的限制 生产量非负
线性规划模型
运输问题
有两个粮 A1,库 A2向三个粮 B1,站 B2,B3调运大, 米 两个粮库现存大为米 4吨分 ,8吨 别,三个粮站至少需要 大米分别 2,4为 ,5吨,两个粮库到三个距粮离 (站 单的 位 :公里 )如下 ,问如何调运使运。费最低
约 束 条 件
30
矩阵形式
线性规划模型
记 c(c1,c2, cn)A ,aijm n,xx1,x2, xnT,
bb 1,b2, bnT,矩 阵 形 式 为
数学建模《最优化问题》共101页文档
数学建模《最优化问题》
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的ห้องสมุดไป่ตู้对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C题面试时间问题有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。
由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟):这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司?面试时间最优化问题摘要:面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。
因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于n 位面试者的面试顺序的所有排列数根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。
关键词:排列排序0-1非线性规划模型线性优化(1)(一)问题的提出根据题意,本文应解决的问题有:1、这4名同学约定他们全部面试完以后一起离开公司。
假定现在的时间是早晨8:00,求他们最早离开公司的时间;2、试着给出此类问题的一般描述,并试着分析问题的一般解法。
(二)问题的分析问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行 )。
对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况:(一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。
这一段等待时间必将延长最终的总时间。
(二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。
同样的,这个也会延长面试的总时间。
以上两种情况,必然都会延长整个面试过程。
所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。
他们就能以最短的时间完成面试一起离开公司。
这也是我们想要的结果。
(三)模型的假设1.我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关;2.面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0;3.参加面试的求职者事先没有约定他们面试的先后顺序;4.假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。
即:没有中途退出面试者;5.面试者及各考官都能在8:00准时到达面试地点。
(四)名词及符号约束1. aij (i=1,2,3,4;j=1,2,3)为求职者i在j阶段参加面试所需的时间甲乙丙丁分别对应序号i=1,2,3,42. xij (i=1,2,3,4;j=1,2,3) 表示第i名同学参加j阶段面试的开始时间(不妨把早上8:00记为面试的0时刻)(2)3. T为完成全部面试所花费的最少时间(五)模型的建立设{s1,s2,s3,s4}为4位面试者的一个面试顺序,面试者si参加第j个阶段面试所需时间为aij 根据问题的2个约束条件,可作出n位面试者在{s1,s2,s3,s4)面试顺序下参加3个面试阶段的进展过程表,4位面试者按序 {s1,s2,s3,s4} 参加 3个阶段的面试进展过程表示面试者s1在第3个面试场,s2在第2个面试场,s3,在第1个面试场、其余人员在等待的那一个时间段.根据顺序性可知整个面试过程的时间段数为3+4-1=6模式:以各面试者结束全部面试阶段的时间为基础(以表的行为基础)目标函数 minT =max{xi3+ai3}约束条件(1)面试阶段约束,即必须先完成上一阶段面试才能进人下一阶段面试。
xij + aij ≤ xi,j+1 i = l,2,3, 4; j = 1,2,3)(2) 同一阶段只能有一个面试者xij +aij-xki ≤Tyikxkj +akj-xij≤T(1-yik)(i,k = l,2, 3, 4, i<k ; j = l,2,3 )yik = {O,l}(3)整个面试总和时间大于等于各面试者结束全部阶段面试的时间T≥xi3+ai3; i = l,2,3,4其中y是O-1变量.表示第k个面试者是否排在第i个面试者的前面,O表示否,l表示是.由此,就将问题中的约束条件“同一面试阶段只能有一个面试者”改用“面试者的先后次序”来表示解决了问题中难于表达的约束条件,反应的关系清楚,而且在模型求解的,T值就是最小总面试时间,根据全部y值就可以排出所有面试者使T最小的面试顺序。
(3)(六)模型的求解编写的lingo程序如下:model:title面试问题;sets:!person=被面试者集合,stage=面试阶段集合;person/1,2,3,4/;stage/1,2,3/;!a=面试所需时间,x面试开始时间;pxs(person,stage):a,x;!y(i,k)=1:k排在i前,0:否则;pxp(person,person)|&1 #l t# &2:y;endsetsdata:a=13 15 2010 20 1820 16 108 10 15;enddatamin=max a;!max a是面试最后结束时间;max a>=@max(pxs(i,j)|j#eq#@size(stage):x(i,j)+a(i,j));!完成前一段才能进入下一段;@for(pxs(i,j)|j#lt#@size(stage):x(i,j)+a(i,j)<x(i,j+1));!同一时间只能面试一位同学;@for(stage(j):@for(pxp(i,k):x(i,j)+a(i,j)-x(k,j)<max a*y(i,k));@for (pxp(i,k):x(k,j)+a(k,j)-x(i,j)<max a*(1-y(i,k))););@for(pxp(i,k):@bin(y(i,k)));endLingo结果如下:Local optimal solution found.Objective value: 84.00000Extended solver steps: 43Total solver iterations: 1681Model Title: 面试问题Variable Value Reduced CostMAXA 84.00000 0.000000 A( 1, 1) 13.00000 0.000000(4)A( 1, 2) 15.00000 0.000000A( 1, 3) 20.00000 0.000000A( 2, 2) 20.00000 0.000000 A( 2, 3) 18.00000 0.000000 A( 3, 1) 20.00000 0.000000 A( 3, 2) 16.00000 0.000000 A( 3, 3) 10.00000 0.000000 A( 4, 1) 8.000000 0.000000 A( 4, 2) 10.00000 0.000000 A( 4, 3) 15.00000 0.000000 X( 1, 1) 8.000000 0.000000 X( 1, 2) 21.00000 0.000000 X( 1, 3) 36.00000 0.000000 X( 2, 1) 26.00000 0.000000 X( 2, 2) 36.00000 0.000000 X( 2, 3) 56.00000 0.000000 X( 3, 1) 38.00000 0.000000 X( 3, 2) 58.00000 0.000000 X( 3, 3) 74.00000 0.000000 X( 4, 1) 0.000000 0.9999970 X( 4, 2) 11.00000 0.000000 X( 4, 3) 21.00000 0.000000 Y( 1, 2) 0.000000 -83.99950 Y( 1, 3) 0.000000 0.000000 Y( 1, 4) 1.000000 83.99950 Y( 2, 3) 0.000000 -83.99950 Y( 2, 4) 1.000000 0.000000 Y( 3, 4) 1.000000 0.000000Row Slack or Surplus Dual Price1 84.00000 -1.0000002 0.000000 -0.99999703 0.000000 0.99999704 0.000000 0.99999705 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 3.000000 0.00000010 0.000000 0.00000011 5.000000 0.00000012 17.00000 0.000000(5)14 2.000000 0.00000015 48.00000 0.00000016 26.00000 0.00000017 56.00000 0.00000018 34.00000 0.00000019 0.000000 0.999997020 52.00000 0.00000021 18.00000 0.00000022 30.00000 0.00000023 0.000000 0.00000024 22.00000 0.00000025 59.00000 0.00000026 2.000000 0.00000027 39.00000 0.00000028 21.00000 0.00000029 49.00000 0.00000030 31.00000 0.00000031 0.000000 0.00000032 46.00000 0.00000033 15.00000 0.00000034 37.00000 0.00000035 0.000000 0.999997036 18.00000 0.00000037 49.00000 0.00000038 0.000000 0.999997039 31.00000 0.00000040 21.00000 0.00000041 46.00000 0.00000042 36.00000 0.00000043 0.000000 0.00000044 56.00000 0.00000045 20.00000 0.00000046 38.00000 0.000000计算结果为:所有面试完成至少需要84min。