导数与函数隐性零点问题教师版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数隐性零点问题
近年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。
函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 1.不含参函数的隐性零点问题
已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则:①有关系式0)('0=x f 成立,②注意确定0x 的合适范围. 2.含参函数的隐性零点问题
已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则:①有关系式0)('0=x f 成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关. 题型一 求参数的最值或取值范围
例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2.
(1)求f (x )的单调区间;
(2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增;
若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k <
1
1
-+x
e x +x (x >0)(*), 令g (x )=1
1
-+x e x +x ,则g′(x )=2
)1()2(---x x x e x e e ,而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0,所以f (x )在(0,+∞)存在唯一的零点.故g ′(x ) 在(0,+∞)存在唯一的零点.设此零点为a ,则a①(1,2).当x∈(0,a )时,
g ′(x )<0;当x∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a )又由g′(a )=0,可得e a =a+2,
①所以g (a )=a+1①(2,3).由于(*)式等价于k <g (a ),故整数k 的最大值为2.
点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。
题型二 不等式的证明
例2.(湖南部分重点高中联考试题)已知函数f (x )=
2
)
(ln a x x
,其中a 为常数. (1)若a=0,求函数f (x )的极值;
(2)若函数f (x )在(0,﹣a )上单调递增,求实数a 的取值范围;
(3)若a=﹣1,设函数f (x )在(0,1)上的极值点为x 0,求证:f (x 0)<﹣2. 解析(1)f (x )=
的定义域是(0,+∞),f′(x )=
, 令f′(x )>0,解得0<x <,令f′(x )<0,解得:x >
,
则f (x )在(0,)递增,在(,+∞)递减,故f (x )极大值=f (
)=
,无极小
值;
(2)函数f (x )的定义域为{x|x >0且x≠﹣a}.=
,
要使函数f (x )在(0,﹣a )上单调递增,则a <0,又x∈(0,﹣a )时,a <x+a <0, 只需1+﹣2lnx≤0在(0,﹣a )上恒成立,即a≤2xlnx ﹣x 在(0,﹣a )上恒成立,
由y=2xlnx ﹣x 的导数为y′=2(1+lnx )﹣1=1+2lnx ,.........................可得a≤﹣
e
2
;
(3)证明:a=﹣1,则f (x )=
,
导数为f′(x )=,
设函数f (x )在(0,1)上的极值点为x 0,可得1﹣2lnx 0﹣=0,即有2lnx 0=1﹣,
要证f (x 0)<﹣2,即+2<0,
由于+2=+2==,
由于x 0∈(0,1),且x 0=,2lnx 0=1﹣不成立,则+2<0,
故f (x 0)<﹣2成立.
题型三 对极值的估算
例3.(2017年全国课标1)已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0.
(1)求a ;
(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣
2<f (x 0)<2﹣
2.
解析(1)因为f (x )=ax 2﹣ax ﹣xlnx=x (ax ﹣a ﹣lnx )(x >0),则f (x )≥0等价于h (x )=ax ﹣a ﹣lnx≥0,求导可知h ′(x )=a ﹣
x
1
.则当a≤0时h ′(x )<0,即y=h (x )在(0,+∞)上单调递减,所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0.
因为当0<x <
a 1时h ′(x )<0,当x >a 1时h ′(x )>0,所以h (x )min =h (a
1), 又因为h (1)=a ﹣a ﹣ln1=0,所以
a
1
=1,解得a=1; (另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1),所以等价于f (x )在x=1处是极小值,所以解得a=1;)
(2)证明:由(1)可知f (x )=x 2﹣x ﹣xlnx ,f′(x )=2x ﹣2﹣lnx ,令f′(x )=0,可得2x ﹣2﹣lnx=0,记t (x )=2x ﹣2﹣lnx ,则t′(x )=2﹣
x
1
,令t′(x )=0,解得:x=21,
所以t (x )在区间(0,
21)上单调递减,在(2
1
,+∞)上单调递增,所以t (x )min =t