高等代数第3章线性方程组

高等代数第3章线性方程组
高等代数第3章线性方程组

第三章 线性方程组

第三章 线性方程组 §3.1 线性方程组的矩阵消元解法 例3.1 求解线性方程组 ??? ??=+-=+-=-+4 5342622321 321321x x x x x x x x x 解方程组通常采用消元法,比如将第2个方程乘2-加到第1个方程,可消去1x 得到09632=-x x ,将此方程两边除以3,约简可得03232=-x x 。 除了消元和约简,有时还要交换两个方程的位置。这些变形运算实际上仅在变量的系数之间进行,所以只需将所有的系数和常数项列成一个矩阵,做初等行变换即可。显然消元、约简和交换方程位置分别相当于矩阵的消去变换、倍缩变换和换行变换。比如上面对本例的两个具体变形相当于以下矩阵初等行变换: ????? ??---411534216122→????? ??---411534210960→???? ? ??---411534210320 其中第一个变换是第2行乘2-加到第1行,第二个变换是以31乘第1行。矩阵的初等变换可以使解方程组的过程显得紧凑、快捷、简洁。 下面我们运用初等变换的标准程序(参看§2.4)来解例3.1的线性方程组: ????? ??---4115342]1[6122 →? ?? ?? ??----111990342 109]6[0 ?→?* ????? ??---11]5.5[0005 .110310 1→? ???? ? ?210030101001 其中,主元都用“[ ]”号作了标记。消元与换行可同步进行(如带“*”号的第二 步),换行的目的是为了使主元呈左上到右下排列。最后一个矩阵对应方程组 ?? ? ??=++=++=++2 003001 00321x x x 实际上已得到方程组的解是11=x ,32=x ,23=x 。写成列向量 ()T x 2,3,1=,叫做解向量。显然解向量可以从最后一个矩阵右侧的常数列 直接读出,无需写出对应的方程组。 第二章曾经把一般的线性方程组(2.2)写成矩阵形式b Ax =,比如例 3.1 的线性方程组,写成矩阵形式是??? ? ? ??=????? ??---436115421122x 。

数学系《高等代数》课程教学大纲

数学系《高等代数》课程教学大纲 学时:153学时学分:9 适用专业:数学与应用数学 执笔人:储茂权审定人:殷晓斌 说明: 1、课程的性质、地位和任务 本课程是高等师范院校以及综合性大学数学和应用数学专业的一门重要基础课程,它的任务是使学生初步掌握基本的、系统的代数知识和抽象的、严格的代数方法,以加深对初等数学的理解,并为进一步学习打下基础,要求学生掌握数域上一元多项式的因式分解理论以及多元多项式和对称多项式的基本知识;掌握行列式,矩阵和线性方程组中的基本理论和方法,掌握实二次型、线性空间、线性变换的基本理论和常用的数学方法。 2、课程教学的基本要求 (1)掌握数域和一元多项式的概念、整除的概念。对数域上一元多项式的因式分解及唯一定理及证明的思想有较深刻的认识。熟练掌握一元多项 式的带余除法和辗转相除法;多项式函数和重因式的基本知识;掌握有 关复数域、实数域和有理数域上的一元多项式的基本结果和基本方法; 掌握多元多项式的基本知识并能将对称多项式表为初等对称多项式的多 项式。 (2)掌握行列式的基本性质和计算;线性方程组的基本理论;矩阵的概念、运算、分块矩阵的初等变换和初等矩阵;二次型和标准形、规范形和正定性,掌握 -矩阵的基本知识,矩阵相似的条件,矩阵的Jordan标准形的基本知识;线性空间中向量的线性相关性,线性空间的维数、基和向量的坐标,基变换和坐标变换,线性子空间的基本知识;掌握欧氏空间的基本知识;熟练掌握线性变换的定义、运算和线性变换的矩阵;掌握线性变换的特征值和特征向量,值域和核、不变子空间等基本知识。 3、课程教学改革 (1)注重能力的培养 本课程教学中,在讲授有关内容的基本概念、基本理论和基本方法的同时,应注重培养学生的运算能力,运用获取的基本知识和基本技能去分析问题和解决问题的能力,同时注意培养抽象思维能力和逻辑推理能力,逐步提高自学和创新能力。 (2)注重本课程与其它课程的联系 《高等代数》是数学系的重要基础课程之一,它的基础地位不仅表现在它

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组 1.线性方程组的基本概念 (1)线性方程组的一般形式为: 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0). 即[] n a a ,,a 21ΛΛ??? ?? ? ??????n x x x M 21=β 全部按列分块,其中β,,21n a a a ΛΛ 如下 ????????????= 121111m a a a M α ,????????????=222122m a a a M α,………,????????????=mn n n n a a a M 21α, ? ? ??? ???????=m b b b M 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21ΛΛ线性表示。 矩阵式 AX =β,(齐次方程组AX =0). ? ? ???? ? ?????=mn m m n n a a a a a a a a a A Λ M O M M Λ Λ 2 122221 11211 ,????????????=n x x x X M 2 1 ???? ? ???????=m b b b M 21β 其中A 为m n ?矩阵,则: ① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。 矩阵A 称为方程组的系数矩阵,A =(n ααα,,21ΛΛ,β),称矩阵A 为方 程组的增广矩阵。 2. 线性方程组解的性质 (1) 齐次方程组AX =0 如果η1, η2,…,ηs 是齐次方程组AX =0的一组解,则它们的任何线性组合 c 1η1+ c 2η2+? + c s ηs 也都是解. (2) 非齐次方程组AX =β 性质1:非齐次线性方程组的两个解之差是它的导出组的解。 性质2:非齐次线性方程组的一个解和其导出组的一个解的和仍然是非齐次线 性方程组的一个解。 3.线性方程组解的情况的判别 (1)对于齐次方程组AX =0,判别解的情况用两个数: n,r(A ). 若有非零解? r(A )

第四章 线性方程组习题及答案

第四章 线性方程组 1.设齐次方程组12312312 30030 x ax x ax x x x x x ++=?? ++=??-+=? 有非零解,求a 及其通解. 解:因为此方程组有非零解,故系数矩阵的行列式为零. 2211 ||1 131******** a a a a a a ==-+--+=-=-A 所以,2 1a =,即1a =± (1)当1a =时,对此方程组的系数矩阵进行行变换 111111120111000011113022000?????? ? ? ?=→→- ? ? ? ? ? ?--?????? A 原方程组等价于1223200x x x x +=??-=?, 即 12322x x x x =-??=?. 取21x =,得1211-?? ? = ? ? ?? ξ为方程组的基 础解系. 则方程组的通解为1(2,1,1),k k k ==-∈X ξT R . (2)当1a =-时, 111111110111001001113000000---?????? ? ? ?=-→→ ? ? ? ? ? ?-??????A 原方程组等价于123 0x x x -=??=? 取21x =,得()T 21,1,0=ξ为方程组的基础解系. 故通解为2(1,1,0), T R k k k ==∈X ξ. 2.解齐次方程组 (1)1234123412 3420222020x x x x x x x x x x x x ++-=??+++=??++-=? (2)12341234 12 3412342350 327043602470 x x x x x x x x x x x x x x x x +-+=??++-=??+-+=??-+-=?

高等代数北大版教案-第3章线性方程组

------------------------------------------------------------------------------------------------------------第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵

高等代数教案第四章线性方程组

第四章 线性方程组 一 综述 线性方程组是线性代数的主要内容之一.本章完满解决了关于线性方程组的三方面的问题,即何时有解、有解时如何求解、有解时解的个数,这在理论上是完美的. 作为本章的核心问题是线性方程组有解判定定理(相容性定理),为解决这个问题,从中学熟知的消元法入手,分析了解线性方程组的过程的实质是利用同解变换,即将方程的增广矩阵作行变换和列的换法变换化为阶梯形(相应得同解方程组),由此相应的简化形式可得出有无解及求其解.为表述由此得到的结果,引入了矩阵的秩的概念,用它来表述相容性定理.其中实质上也看到了一般线性方程组有解时,也可用克莱姆法则来求解(由此得所谓的公式解——用原方程组的系数及常数项表示解).内容紧凑,方法具体.其中矩阵的秩的概念及求法也比较重要,也体现了线性代数的重要思想(标准化方法). 线性方程组内容的处理方式很多,由于有至少五种表示形式,其中重要的是矩阵形式和线性形式,因而解线性方程组的问题与矩阵及所谓线性相关性关系密切;本教材用前者(矩阵)的有关问题讨论了有解判定定理,用后者讨论了(有无穷解时)解的结构.实际上线性相关性问题是线性代数非常重要的问题,在以后各章都与此有关.另外,从教材内容处理上来讲,不如先讲矩阵及线性相关性,这样关于线性方程组的四个问题便可同时讨论. 二 要求 掌握消元法、矩阵的初等变换、秩、线性方程组有解判定定理、齐次线性方程组的有关理论. 重点:线性方程组有解判别法,矩阵的秩的概念及求法. 4.1 消元法 一 教学思考 本节通过具体例子分析解线性方程组的方法——消元法,实质是作方程组的允许变换(同解变换)化为标准形,由此得有无解及有解时的所有解.其理论基础是线性方程组的允许变换(换法、倍法、消法)是方程组的同解变换.而从形式上看,施行变换的过程仅有方程组的系数与常数项参与,因而可用矩阵(线性方程组的增广矩阵)表述,也就是对(增广)矩阵作矩阵的行(或列换法)初等变换化为阶梯形,进而化为标准阶梯形,其体现了线性代数的一种重要的思想方法——标准化的方法. 二 内容要求 主要分析消元法解线性方程组的过程与实质,以及由同解方程组讨论解的情况(存在性与个数),为下节作准备,同时指出引入矩阵的有关问题(初等变换等)的必要性,矩阵的初等变换和方程组的同解变换间的关系. 三 教学过程 1.引例:解方程组???? ?????=++=++=++2534233351 3121321321321x x x x x x x x x (1) 定义:我们把上述三种变换叫做方程组的初等变换,且依次叫换法变换、倍法变换、消法变换. 2.消元法的理论依据 3.转引 在上面的讨论中,我们看到在对方程组作初等变换时,只是对方程组的系数与常数项进行了运算,而未知数没有参加运算,也就是说线性方程组有没有解以及有什么样的解完全决定于它的系数和常数项,因此在讨论线性方程组时,主要是研究它的系数和常数项.因而消元法的过程即用初等变换把方程组化为阶梯形方程组,来解决求解问题,此可转用另一种形式表述.为此引入:

高等代数教学改革研究

龙源期刊网 https://www.360docs.net/doc/ac15482457.html, 高等代数教学改革研究 作者:陈林 来源:《科技视界》2012年第26期 【摘要】高等代数是高等院校数学专业的主干课程,该门课程的教学改革对整个数学专业学生的教学质量的提高以及培养目标的完成都起着主导作用。本文在分析目前高等代数课程教与学的基础上,为高等代数的课程内容、教学方法、指导思想和教育观念进行改革。 【关键词】高等代数;教学内容;教学方法;改革 0 引言 高等代数这门课程是各高等院校数学专业学生的必修课,它不仅仅是中学数学理论的延续,而且还是整个现代数学大厦的基石。通过对这门课程的系统的学习,有助于学生养成严谨的处事习惯,增强学生逻辑推理能力,培养学生的数学抽象思维能力。绝大多数大中专院校将高等代数课程列为研究生入学考试的必考科目之一。 但是,目前高等代数的主要内容,在文革之前就已经确定了,还基本上是沿用前苏联的高等代数内容体系。近年来,国内许多学者对高代的内容进行大量的革新尝试,但其中几道丝线基本内容变动不大,仍然难以适应日新月异的科学技术发展的趋势,难以发挥高等代数作为自然科学原动力的作用,不能适应目前教学、科研的诸多需求。况且,近30年来,数学的理论分支发展迅猛,新思想、新知识、新研究方法不断涌现,更加强调理论的适应性,即如何提高生产力和更多的创造经济价值。但现行的高等代数教材的内容过分强调数学的纯理论性,往往是直接突兀的给出一个定义或一个定理,而没有关于这个定义或定理形成过程的介绍,同时缺乏讨论这些数学理论的发展和应用。在传统的高等代数课程教学中,往往只注重向学生灌输知识,课堂教学基本上还是“教材+粉笔+黑板”模式。从而难以提高学生的学习积极性,学生很难在认识上有所突破。 总之,为了应对数学理论日益迅猛的发展形势,为了紧跟时代发展的脚步,为了遵循我国教育发展的规律,为了提高办学质量、培养新时代的创新型人才,必须对高等代数课程的指导思想、内容以及教学方法进行改革。 1 指导原则 1.1 突出师范特色 大部分师范院校学生毕业后是进中学和小学参加教书。许多师范院校的毕业生工作以后感到大学里学到的东西在中学里用不到。因此,作为师范院校高等代数课程的内容要坚持师范性与学术性的统一,重点要突出师范性。必须将该课程的教学内容由学术型向教育学术型转化,

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

常微分方程学习活动6-第三章一阶线性方程组、第四章n阶线性方程的综合练习WORD版

常微分方程学习活动6-第三章一阶线性方程组、第四章n阶线性方程的综合练习WORD版

常微分方程学习活动6 第三章一阶线性方程组、第四章n 阶线性方程的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握. 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。 一、填空题 1.若A (x )在(-∞,+∞)上连续,那么线性齐次 方程组Y A Y )(d d x x =,n R Y ∈的任一非零解在1 +n R 空间 不能 与x 轴相交. 2.方程组n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的

图象是 n+1 维空间中的一条积分曲线. 3.向量函数组Y 1(x ), Y 2(x ),…,Y n (x )线性相关的 必要 条件是它们的朗斯期行列式W (x )=0. 4.线性齐次微分方程组n x x x R Y R Y A Y ∈∈=,,)(d d ,的一个基本解组的个数不能多于 n+1 个. 5.若函数组)()(2 1 x x ??,在区间),(b a 上线性相关, 则它们的朗斯基行列式)(x W 在区间),(b a 上 恒等于 . 6.函数组? ? ?==x y x y cos sin 2 1的朗斯基行列式)(x W 是 x x x x x W sin cos cos sin )(-= 7.二阶方程 2=+'+''y x y x y 的等价方程组是 ?????--='='y x xy y y y 2111 . 8.若)(1 x y ?=和) (2 x y ? =是二阶线性齐次方程的 基本解组,则它们 没有 共同零点. 9.二阶线性齐次微分方程的两个解 ) (1x y ?=, ) (2x y ?=成为其基本解组的充要条件是 线性无关 . 10.n 阶线性齐次微分方程线性无关解的个

高等代数北大版课程教案-第3章线性方程组

第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵 ?????? ? ??s sn s s n n b b b a a a a a a a a a ΛΛΛΛΛΛΛΛ21212222111211 来表示. 在中学代数里,我们学习过用加减消元法和代入消元法解二元,三元

线性方程组的矩阵求法.

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++ = 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

第四章 线性方程组

第四章 线性方程组 一、本章知识串讲 线性方程组是线性代数的基础内容之一,首先应当会解方程组,主要方法是高斯消元法,特殊情况可考虑用克莱姆法则.特别地,当方程组中有参数时,讨论解的各种情况时不要遗漏;其次,齐次方程组0A x =总是有解的,我们关心的问题是它何时有非零解?有多少非零解?如何表示每个解?这就有解空间,解空间的基(即基础解系)等概念,要掌握基础解系的求法;再其次,对于非齐次线性方程组,Ax b =要理解解的结构,有解的判定等问题;最后应注意方程组与向量组线性表示及秩之间的联系,要了解方程组与空间平面的关系. 二、大纲考查要点诠释 1.线性方程组的各种表达形式 1111 22112112 222211 22,,n n n n m m m n n m a x a x a x b a x a x a x b a x a x a x b +++=?? +++=??? ?+++=? (4.1) 可用矩阵乘法表示为:.A x b = (4.2) 如果对系数矩阵A 按列分块,方程组有向量形式 1122 .n n x x x b ααα+++= (4.3) 2.齐次方程组0A x =恒有解(必有零解) 当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此0A x =的全体解向量构成一个向量空间,称为该方程组的解空间.解空间的维数是(),n r A -解空间的一组基称为齐次方程组的基础解系. 3.如12,,,t ηηη 是0A x =的基础解系,即12,,,t ηηη 是0A x =的解,12,,,t ηηη 线性无关,且 ().t n r A =- (4.4) 1122t t k k k ηηη+++ 是0A x =的通解. 基础解系中解向量的个数是(),()n r A n r A --也是方程组自由变量的个数. 求基础解系时,可对A 作初等行变换化为阶梯形矩阵,称每个非零行中第一个非0系数所代表的未知数是主元(共有()r A 个主元),那么剩余的其它未知数就是自由变量(共有()n r A -个),对自由变量按阶梯形适当赋值后,再代入求解就可得到基础解系. 【例4.1】若某齐次方程组经高斯消元,化为 1 2131 542 3-?? ?→ - ? ?-? ? 则()532,n r A -=-=基础解系由2个向量组成.此时134,,x x x 是主元,25,x x 是自变量,因而可赋值为 12(, 1 ,,,0), (, 0,,,2).T T ηη==

第三章 矩阵的初等变换与线性方程组习题 含答案.

第三章矩阵的初等变换与线性方程组 3.4.1 基础练习 1.已知,求. 2.已知,求. 3.若矩阵满足,则(). (A (B (C (D 4.设矩阵满足关系,其中,求. 5.设矩阵,求. 6.是矩阵,齐次线性方程组有非零解的充要条件是 . 7.若非齐次线性方程组中方程个数少于未知数个数,那么( . (A 必有无穷多解; (B 必有非零解; (C 仅有零解; (D 一定无解. 8.求解线性方程组

(1),(2) (3) 9.若方程组 有无穷多解,则 . 10.若都是线性方程组的解,则( . (A (B (C (D 3.4.2 提高练习 1.设为5阶方阵,且,则= . 2.设矩阵,以下结论正确的是( . (A时, (B 时, (C时, (D 时, 3.设是矩阵,且,而,则 .

4.设,为3阶非零矩阵,且,则 . 5.设, 问为何值,可使 (1)(2)(3). 6.设矩阵,且,则 . 7.设,试将表示为初等矩阵的乘积. 8.设阶方阵的个行元素之和均为零,且,则线性方程组的通解为 . 9.设,, ,其中可逆,则 . 10.设阶矩阵与等价,则必有().

(A)当时,(B)当时, (C)当时,(D)当时, 11.设,若,则必有(). (A)或(B)或 (C)或(D)或 12.齐次线性方程组的系数矩阵记为,若存在三阶矩阵,使得,则(). (A)且(B)且 (C)且(D)且 13.设是三阶方阵,将的第一列与第二列交换得到,再把的第二列加到第三列得到,则满足的可逆矩阵为(). (A)(B)(C)(D) 14.已知,为三阶非零矩阵,且,则().

(A)时,(B)时, (C)时,(D)时, 15.若线性方程组有解,则常数应满足条件. 16.设方程组有无穷多个解,则. 17.设阶矩阵与维列向量,若,则线性方程组(). (A)必有无穷多解(B)必有唯一解 (C)仅有零解(D)必有非零解. 18.设为矩阵,为矩阵,则线性方程组(). (A)当时仅有零解(B)当时必有非零解 (C)当时仅有零解(D)当时必有非零解 19.求的值,使齐次线性方程组 有非零解,并求出通解.

对教师的建议_关于高等代数课程教学改革的几点建议

对教师的建议_关于高等代数课程教学改革的几点建议 摘要:《高等代数》是数学专业最重要的专业基础课之一,很多后续课程都与之有着密切的联系。而现阶段,该课程的教学存在一系列的问题:教学课时太少;教师的教和学生的学很大程度上是以考试为目的;教学模式与大众教育相冲突等。为了解决这些问题,使《高等代数》的教学适应现代社会的需要,我们必须要在课程教学上做一些必要的改革,具体建议如下:调整、优化教学内容;因材施教;开展多层次的教学模式;努力提高学生的应用知识的能力和创新能力。关键词:高等代数;课程教学改革;因材施教;教学模式中图分类号:G642.0 文献标识码:A 文章编号:1674-9324(2012)05-0241-02 一、《高等代数》的地位和教学改革的必要性当前,《高等代数》是我国很多师范院校数学与应用数学专业和信息计算专业的基础课,其地位不言而喻。作为师范类的数学与应用数学专业基础课,是学生从高中进入大学后的数学逻辑、数学思维的一个重要提升,以便将来站在高处为中学教学服务;该课作为信息计算专业的基础课,是为后续的信息计算类课程打下坚实的理论基础,是算法实现的前期必要条件;该课程中的线性代数部分又是理工科所有专业的必修课,因此该课程是最重要的专业基础课之一。通过本门课程的教学,使学生了解代数理论的基本体系,理解代数学的基本概念、基本理论,掌握基本技能和基本方法,初步形成运用向量空间理论分析、解决线性变换中的综合问题的能力。该课程的建设为后续课程的学习提供重要的理论支撑,能为从事中学教育实践活动提供理论指导。二、《高等代数》教学中存在的问题坦率地说,中国的高校教育目前还没有到特别完美的地步,还存在一定的缺陷和不足。高等代数的教学中也存在着不少的问题,当然了,导致这些问题的因素是很复杂的,我们这里仅仅分析一些最常见的问题。具体说来,当前的高等代数教学存在如下的缺点和不足: 1.课时太少,教师“上课=赶课”。笔者通过调查相关院校发现,课时少是高等代数教学中存在的一个通病。教师在安排教学内容时,一方面要遵守大纲,大纲上的东西必须要讲到;另一方面要受教学进度表的束缚,

常微分方程学习活动6 第三章一阶线性方程组、第四章n阶线性方程的综合练习

常微分方程学习活动6 第三章一阶线性方程组、第四章n 阶线性方程的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握. 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。 一、填空题 1.若A (x )在(-∞,+∞)上连续,那么线性齐次方程组Y A Y )(d d x x =,n R Y ∈的任一非零解在1 +n R 空间 不能 与x 轴相交. 2.方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线. 3.向量函数组Y 1(x ), Y 2(x ),…,Y n (x )线性相关的 必要 条件是它们的朗斯期行列式W (x )=0. 4.线性齐次微分方程组n x x x R Y R Y A Y ∈∈=,,)(d d ,的一个基本解组的个数不能多于 n+1 个. 5.若函数组)()(21x x ??,在区间),(b a 上线性相关,则它们的朗斯基行列式)(x W 在区间),(b a 上 恒等于 . 6.函数组?? ?==x y x y cos sin 2 1的朗斯基行列式)(x W 是 x x x x x W sin cos cos sin )(-= 7.二阶方程02 =+'+''y x y x y 的等价方程组是 ?????--='='y x xy y y y 2 11 1 . 8.若)(1x y ?=和)(2x y ?=是二阶线性齐次方程的基本解组,则它们 没有 共同零点. 9.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 线性无关 . 10.n 阶线性齐次微分方程线性无关解的个数最多为 n 个. 11.在方程y″+ p (x )y′+q (x )y = 0中,p (x ), q (x )在(-∞,+∞)上连续,则它的任一非零解在xOy 平面上 可以 与x 轴横截相交.

关于高等代数课程教学改革的几点建议

关于高等代数课程教学改革的几点建议 摘要:《高等代数》是数学专业最重要的专业基础课之一,很多后续课程都与之有着密切的联系。而现阶段,该课程的教学存在一系列的问题:教学课时太少;教师的教和学生的学很大程度上是以考试为目的;教学模式与大众教育相冲突等。为了解决这些问题,使《高等代数》的教学适应现代社会的需要,我们必须要在课程教学上做一些必要的改革,具体建议如下:调整、优化教学内容;因材施教;开展多层次的教学模式;努力提高学生的应用知识的能力和创新能力。 关键词:高等代数;课程教学改革;因材施教;教学模式 一、《高等代数》的地位和教学改革的必要性 当前,《高等代数》是我国很多师范院校数学与应用数学专业和信息计算专业的基础课,其地位不言而喻。作为师范类的数学与应用数学专业基础课,是学生从高中进入大学后的数学逻辑、数学思维的一个重要提升,以便将来站在高处为中学教学服务;该课作为信息计算专业的基础课,是为后续的信息计算类课程打下坚实的理论基础,是算法实现的前期必要条件;该课程中的线性代数部分又是理工科所有专业的必修课,因此该课程是最重要的专业基础课之一。通过本门课程的教学,使学生了解代数理论的基本体系,理解代数学的基本概念、基本理论,掌握基本技能和基本方法,初步形成运用向量空间理论分析、解决线性变换中的综合问题的能力。该

课程的建设为后续课程的学习提供重要的理论支撑,能为从事中学教育实践活动提供理论指导。 二、《高等代数》教学中存在的问题 坦率地说,中国的高校教育目前还没有到特别完美的地步,还存在一定的缺陷和不足。高等代数的教学中也存在着不少的问题,当然了,导致这些问题的因素是很复杂的,我们这里仅仅分析一些最常见的问题。具体说来,当前的高等代数教学存在如下的缺点和不足: 1.课时太少,教师“上课=赶课”。笔者通过调查相关院校发现,课时少是高等代数教学中存在的一个通病。教师在安排教学内容时,一方面要遵守大纲,大纲上的东西必须要讲到;另一方面要受教学进度表的束缚,否则内容讲不完。这样做的后果就是上课完全是填鸭式的一言堂,必要的提问和习题课全没了,从第一节课到最后一节课,除了讲课就是板书,教师一分钟不敢耽误。而学生呢,50%以上拼命记笔记;30%压根儿就不听了,因为听不懂;仅有不到10%的学生基础好些,平时有预习复习的习惯,能跟上教师的进度。显然,长此以往,很多学生会丧失对高等代数学习的积极性,学习效果可想而知了。 2.以“考试为中心”的教与学。众所周知,数学粗略地可以分为代数,几何和分析三大类。而高等代数是代数学的最最基础的课程之一,是一切代数分支的基础。通过对该课程的学习,可以培养学

第三章习题与复习题(线性方程组)---高等代数

习题3.1 1.用消元法解下列线性方程组 (1)123131 232312 264257x x x x x x x x -+=??+=??++=? (2)???????=+--=+-=+-=+-115361424 5241 32321321 3 21321x x x x x x x x x x x x (3)?????=-++=-+-=--+82226353634321 43214321x x x x x x x x x x x x (4)?? ?????=-+++=+++=-+++=++++2 3345362203231 5432154325432154321x x x x x x x x x x x x x x x x x x x 2.设线性方程组 123212312 3424 x x tx x tx x t x x x ++=??-++=??-+=-? t 为何值时方程组无解? t 为何值时方程组有解?有解时,求其解. 3.设线性方程组 12341234 12341234231 363315351012x x x x x x x x x x ax x x x x x b +++=??+++=?? --+=??--+=? (1) a , b 为何值时方程组有唯一解? (2) a,b 为何值时方程组无解? (3) a ,b 为何值时方程组有无穷多解?并求其一般解. 习题3.2 1.设()()()1231,1,1,22,1,0,11,2,0,2ααα=--=-=--,,,求 (1)321ααα++(2)321532ααα+- 1211222. (1,0,,0) (0,1,,0)(0,0,,1),. n n n n a a a εεεεεε===+++ 设 维向量 , , , 求 ()()3. 2 02,1 3 1,124αβγαγβ=-=-+=设2,,,4,2, ,,,求向量 ,使. 4.设()()122,0,13,1,1αα==-,满足12234βαβα+=+,求β .

相关文档
最新文档