全等三角形边角边判定的基本练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形边角边判定的基本练习

1、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO 和△CDO是否能完全重合呢?

猜想:

如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形。

3、边角边公理.

(简称“边角边”或“SAS”)

一、例题与练习

1、填空:

(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?)。

(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD ≌ACE,需要满足的三个条件中,已具有两个条件:一是___________,二是____________还需要一个条件________________(这个条件可以证得吗?)。

2、例1 、已知:AD∥BC,AD=CB(图3)。求证:△ADC≌△CBA.

问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌△CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF=CE或AE =CF)?怎样证明呢?

例2 、已知:AB=AC、AD=AE、∠1=∠2(图4)。求证:△ABD≌△ACE。

练习:

1、已知:如图,AB=AC,F、E分别是AB、AC的中点。求证:△ABE≌△ACF。

2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.

求证:△ABE≌△CDF.

4、如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD。

A

B

D

C

5、已知:如图,AD ∥BC ,CB AD =。求证:CBA ADC ∆≅∆。

6、已知:如图,AD ∥BC ,CB AD =,CF AE =。求证:CEB AFD ∆≅∆。

7、如图,△ABC 中,D 是BC 边的中点,AB=AC ,求证:∠B=∠C 。

8、已知:如图,AB=DC ,AD=BC ,求证:∠A=∠C 。

D C B D C B

相关文档
最新文档