苏教版数学高一数学必修一练习3.3幂函数

合集下载

苏教版高中学案数学必修第一册 第6章 幂函数、指数函数和对数函数 幂函数、指数函数与对数函数的综合

苏教版高中学案数学必修第一册 第6章 幂函数、指数函数和对数函数 幂函数、指数函数与对数函数的综合

函数,且 = ( − )在(, +∞)上是增函数,所以()在(, +∞)上是增函数.
∣ + ∣> ,
由( + ) < ()得(| + |) < (||),所以ቐ∣ ∣> ,
所以
∣ + ∣<∣ ∣,
( + ) > ,
第6章 幂函数、指数函数和对数函数
午练23 幂函数、指数函数与对数函数的综合
1
1.当0 < ≤ 时,4 < log ,则实数的取值范围是() B
2
A.(0,
2
2
)B.( , 1)C.(1,
2
2
2)D.( 2, 2)
[解析]易知 < < ,则函数 = 与 = 的图象大致如图所示,只需满足
C.()在定义域内是偶函数D.()的图象关于直线 = 1对称
[解析]由| − | > ,得函数 = | − |的定义域为{| ≠ }.设
− , > ,
() =∣ − ∣= ቊ
则()在(−∞, )上单调递减,在(, +∞)上单调递
或 = .当 = 时,得 = ,解得 = .当 = 时,得 = ,即 = .
所以函数的定义域为[, ]( ≤ ),
所以当 = , = 时, + 最大为3.
9.已知()是定义在[−2,2]上的奇函数,当 ∈ (0,2]时,() = 2 − 1,函数
1
2
1
4
因为() = log 2 (2 − 4 ) = log 2 [−(2 )2 + 2 ] = log 2 [−(2 − )2 + ],所以当

高一数学人必修件第三章幂函数

高一数学人必修件第三章幂函数

分式型幂函数
要点一
函数形式
$y = x^a/b$ 或 $y = a/(x^b)$,其 中 $b neq 0$
要点二
图像特点
根据 $a$ 和 $b$ 的取值不同,图像 可能呈现出不同的形状和特点
要点三
性质
分式型幂函数的性质比较复杂,与 $a$ 和 $b$ 的取值密切相关。一般 来说,当 $b > 0$ 时,函数图像在 $x > 0$ 和 $x < 0$ 的区域内分别单 调递增或递减;当 $b < 0$ 时,函数 图像在 $x > 0$ 和 $x < 0$ 的区域内 分别单调递减或递增。此外,分式型 幂函数可能具有渐近线、拐点等特性 。

易错点二
混淆幂的运算性质。在运用幂的 运算性质时,需特别注意底数和 指数的变化规律,避免出现混淆

避免逐步推导求解。同时,多 做相关练习题,加深对知识点的
理解和记忆。
拓展延伸:多元幂函数初步了解
多元幂函数的定义
形如$z=x^ay^b$($a,b$为常数) 的函数称为二元幂函数。类似地,可 以定义三元及更多元的幂函数。
三次幂函数
函数形式
$y = ax^3$,其中 $a neq 0$
图像特点
一个关于原点对称的曲线
性质
比例系数 $a$ 决定了曲线的形状和走向,当 $a > 0$ 时,函数在整个定义域内单调递增;当 $a < 0$ 时 ,函数在整个定义域内单调递减。此外,三次幂函数具有拐点,即函数图像从凹到凸或从凸到凹的点。
指数型幂函数与对数的关系体现在:当且仅当a>1时,函数y=a^x在定 义域内单调增加;当0<a<1时,函数y=a^x在定义域内单调减少。

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。

高中数学苏教版必修一 第3章 指数函数、对数函数和幂函数 单元测试 Word版含解析

高中数学苏教版必修一 第3章 指数函数、对数函数和幂函数 单元测试 Word版含解析

(时间:120分钟;总分值:160分)一、填空题(本大题共14小题 ,每题5分 ,共70分 ,请把答案填在题中横线上)1.log 22的值为________.解析:log 22=log 2212=12log 22=12. 答案:122.a 12=49(a >0) ,那么log 23a =________. 解析:由a 12=49得a =(49)2=(23)4 , ∴log 23a =log 23(23)4=4. 答案:43.x -1+x =2 2 ,且x >1 ,那么x -x -1的值为________.解析:由x -1+x =22平方得x -2+2+x 2=8 ,那么x -2-2+x 2=4 ,∴(x -1-x )2=4 ,又∵x >1 ,∴x -x -1=2.答案:24.函数y =lg(x +5)+ln (5-x )+x -1x -3的定义域为________. 解析:由⎩⎪⎨⎪⎧x +5>05-x >0x -1≥0x -3≠0得定义域为:[1 ,3)∪(3 ,5). 答案:[1 ,3)∪(3 ,5) 5.函数y =(12)x 2-2x +3的值域为________. 解析:设y =(12)u ,u =x 2-2x +3≥2 ,所以结合函数图象知 ,函数y 的值域为(0 ,14]. 答案:(0 ,14] 6.方程2-x +x 2=3的实数解的个数为________.解析:画出函数y =2-x 与y =3-x 2图象(图略) ,它们有两个交点 ,故方程2-x +x 2=3的实数解的个数为2.答案:27.假设a =log 3π ,b =log 76 ,c =log 2 ,那么a ,b ,c 由大到小的顺序为________.解析:利用中间值0和1来比拟:a =log 3π>1 ,0<b =log 76<1 ,c =log 20.8<0 ,故a >b >c . 答案:a >b >c .8.设方程2x +x =4的根为x 0 ,假设x 0∈(k -12 ,k +12) ,那么整数k =________.解析:设y 1=2x ,y 2=4-x ,结合图象分析可知 ,仅有一个根x 0∈(12 ,32) ,故k =1. 答案:1 9.某市出租车收费标准如下:起步价为8元 ,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时 ,超过局部按每千米2.15元收费;超过8 km 时 , , ,那么此次出租车行驶了________ , .解析:出租车行驶不超过3 km ,付费9元;出租车行驶8 km ,×(8-3) ,故出租车行驶里程超过8 km , ,所以此次出租车行驶了8+1=9 km.答案:910.0<a <1 ,x =log a 2+log a 3 ,y =12log a 5 ,z =log a 21-log a 3 ,那么x ,y ,z 由大到小的顺序为________.解析:由对数运算法那么知x =log a 6 ,y =log a 5 ,z =log a 7 ,又由0<a <1知y =log a x 在(0 ,+∞)上为减函数 ,∴y >x >z .答案:y >x >z11.函数f (x )满足:x ≥4 ,那么f (x )=(12)x ;当x <4时 ,f (x )=f (x +1) ,那么f (2+log 23)=________.解析:∵3<2+log 23<4 ,所以f (2+log 23)=f (3+log 23) ,且3+log 23>4 ,∴f (2+log 23)=f (3+log 23)=(12)3+log 23=18×(12)log 23=18×(12)log 1213=18×13=124. 答案:12412.给定函数①y =x 12,②y =log 12(x +1) ,③y =|x -1| ,④y =2x +1 ,其中在区间(0 ,1)上单调递减的函数序号是________.解析:①是幂函数 ,由图象知其在(0 ,+∞)第|一象限内为增函数 ,故此项不符合要求 ,②中的函数是由函数y =log 12x 向左平移一个单位而得到的 ,因原函数在(0 ,+∞)内为减函数 ,故此项符合要求 ,③中的函数图象是由函数y =x -1的图象保存x 轴上方 ,下方图象翻折到x 轴上方而得到的 ,故由其图象可知该图象符合要求 ,④中的函数为指数型函数 ,因其底数大于1 ,故其在R 上单调递增 ,不符合题意 ,所以②③正确.答案:②③13.幂函数y =x α,当α取不同的正数时 ,在区间[0 ,1]上它们的图象是一族美丽的曲线(如图).设点A (1 ,0) ,B (0 ,1) ,连接AB ,线段AB 恰好被其中的两个幂函数y =x α ,y =x β的图象三等分 ,即有BM =M N =N A .那么 ,αβ=________. 解析:因为M ,N 为A ,B 的三等分点 ,所以M (13 ,23) ,N(23 ,13) ,∴23=(13)α ,∴α=log 1323 , 同理β=log 2313 ,∴αβ=1. 答案:114.某地区居民生活用电分为顶峰和低谷两个时间段进行分时计价 ,该地区的电网销售,那么按这种计费方式该家庭本月应付的电费为________元(用数字作答).解析:由题意知:顶峰时间段用电时 ,f (x )=错误! ,低谷时间段用时 ,g (x )=错误! ,W =f (x )+g (x )=f (200)+g (100)(元).答案:二、解答题(本大题共6小题 ,共90分 ,解答时应写出文字说明、证明过程或演算步骤)15.(本小题总分值14分)定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数. (1)求b 的值;(2)判断函数f (x )的单调性;(3)假设对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立 ,求k 的取值范围.解:(1)因为f (x )是奇函数 ,所以f (0)=0 ,即b -12+2=0⇒b =1 , ∴f (x )=1-2x 2+2x +1. (2)由(1)知f (x )=1-2x2+2x +1=-12+12x +1 , 设x 1<x 2 ,那么f (x 1)-f (x 2)=12x 1+1-12x 2+1=2x 2-2x 1(2x 1+1 ) (2x 2+1 ). 因为函数y =2x 在R 上是增函数且x 1<x 2 ,∴2x 2-2x 1>0.又(2x 1+1)(2x 2+1)>0 ,∴f (x 1)-f (x 2)>0 ,即f (x 1)>f (x 2).∴f (x )在(-∞ ,+∞)上为减函数.(3)因f (x )是奇函数 ,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2) ,因f (x )为减函数 ,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0 ,从而判别式Δ=4+12k <0⇒k <-13. 或k <(3t 2-2t )min ⇒k <-13. 16.(本小题总分值14分)(1) ,;(2)比拟f (x )=log a (1-x ) ,g (x )=log a (1+x )(其中a >1)在公共定义域下的函数值的大小. 解:(1)因为指数函数y x 在R 上是减函数 ,,又幂函数y =x 在(0 ,+∞)是增函数 ,,.(2)函数f (x )=log a (1-x ) ,g (x )=log a (1+x )的公共定义域是(-1 ,1) ,因为f (x )-g (x )=log a 1-x 1+x(a >1) , 所以当-1<x <0时 ,1-x 1+x>1 ,此时f (x )>g (x ); 当x =0时 ,1-x 1+x=1 ,此时f (x )=g (x ); 当0<x <1时 ,0<1-x 1+x<1 ,此时f (x )<g (x ). 综上 ,当-1<x <0时 ,f (x )>g (x );当x =0时 ,f (x )=g (x );当0<x <1时 ,f (x )<g (x ).17.(本小题总分值14分)假设奇函数f (x )在定义域(-1 ,1)上是减函数 ,(1)求满足f (1-a )+f (-a )<0的a 的取值集合M ;(2)对于(1)中的a ,求函数F (x )=log a [1-(1a)2-x ]的定义域. 解:(1)不等式f (1-a )+f (-a )<0可化为f (1-a )<-f (-a ) ,而f (x )为奇函数 ,∴f (1-a )<f (a ) ,又f (x )在定义域(-1 ,1)上是减函数 ,∴⎩⎨⎧-1<1-a <1-1<-a <1 1-a >a解得0<a <12 , ∴M ={a |0<a <12}. (2)为使F (x )=log a [1-(1a)2-x ]有意义 , 必须1-(1a )2-x >0 ,即(1a)2-x <1. 由0<a <12得1a>2 , ∴2-x <0 ,∴x >2.∴函数的定义域为{x |x >2}.18.(本小题总分值16分)经市场调查 ,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数 ,且销售量近似满足g (t )=80-2t (件) ,价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最|大值与最|小值.解:(1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|) =(40-t )(40-|t -10|) =⎩⎪⎨⎪⎧ (30+t ) (40-t )(0≤t <10 ) (40-t ) (50-t ) (10≤t ≤20 ).(2)当0≤t <10时 ,y 的取值范围是[1 200 ,1 225] ,在t =5时 ,y 取得最|大值为1 225; 当10≤t ≤20时 ,y 的取值范围是[600 ,1 200] ,在t =20时 ,y 取得最|小值为600. ∴第5天 ,日销售额y 取得最|大值 ,为1 225元;第20天 ,日销售额y 取得最|小值 ,为600元.所以 ,日销售额y 最|大为1 225元 ,最|小为600元.19.(本小题总分值16分)函数f (x -3)=log a x 6-x(a >0 ,a ≠1). (1)判断f (x )的奇偶性 ,并且说明理由;(2)当0<a <1时 ,求函数f (x )的单调区间.解:令x -3=u ,那么x =u +3 ,于是f (u )=log a 3+u 3-u(a >0 ,a ≠1 ,-3<u <3) , 所以f (x )=log a 3+x 3-x(a >0 ,a ≠1 ,-3<x <3). (1)因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x 3-x=log a 1=0 ,所以f (-x )=-f (x ) , 所以f (x )是奇函数.(2)令t =3+x 3-x =-1-6x -3在(-3 ,3)上是增函数 , 当0<a <1时 ,函数y =log a t 是减函数 ,所以f (x )=log a 3+x 3-x(0<a <1)在(-3 ,3)上是减函数 ,即其单调递减区间是(-3 ,3). 20.(本小题总分值16分)函数f (x )=log 2(2x +1).(1)求证:函数f (x )在(-∞ ,+∞)内单调递增;(2)假设g (x )=log 2(2x -1)(x >0) ,且关于x 的方程g (x )=m +f (x )在[1 ,2]上有解 ,求m 的取值范围.解:(1)证明:任取x 1<x 2 ,那么f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x 1+12x 2+1, ∵x 1<x 2 ,∴0<2x 1+1<2x 2+1 ,∴0<2x 1+12x 2+1<1 , ∴log 22x 1+12x 2+1<0 , ∴f (x 1)<f (x 2) ,即函数f (x )在(-∞ ,+∞)内单调递增.(2)法一:由g (x )=m +f (x )得m =g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 22x -12x +1=log 2(1-22x +1) , 当1≤x ≤2时 ,25≤22x +1≤23, ∴13≤1-22x +1≤35, ∴m 的取值范围是[log 213 ,log 235]. 法二:解方程log 2(2x -1)=m +log 2(2x +1) ,得x =log 2(2m +11-2m) , ∵1≤x ≤2 ,∴1≤log 2(2m +11-2m)≤2 , 解得log 213≤m ≤log 235. ∴m 的取值范围是[log 213 ,log 235].。

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题1、下列函数一定是指数函数的是 ( ) A、12+=x y B 、3x y = C 、x y -=3 D 、x y 23⋅=2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .33、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )A .23 B .45 C .0 D .21 4、已知m >0时10x =lg (10m )+lg m 1,则x 的值为 ( ) A .2 B .1 C .0 D .-15、下列图像正确的是 ( )A B C D6、若log a b ·log 3a =5,则b 等于 ( )A .a 3B .a 5C .35D .537、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 8、若函数)1,0(1≠>-+=a a m a y x 的图象在第一、三、四象限内,则 ( )A 、1>aB 、1>a 且0<mC 、010><<m a 且D 、10<<a9、函数x y -=1)21(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(10、 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<< 11、下列函数中既是偶函数又是( ) A . B . C . D .12、 函数R x x x y ∈=|,|,满足 ( )A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数13、若01<<-x ,则下列不等式中成立的是 ( )A 、 x x x 5.055<<-B 、 x x x -<<55.05C 、x x x 5.055<<-D 、 x x x 555.0<<-14、下列命题中正确的是( ) A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限15、若2<x ,则|3|442x x x --+-的值是_____ _____.16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。

高中数学幂函数练习题(附答案)

高中数学幂函数练习题(附答案)

高中数学幂函数练习题(附答案)
高中数学幂函数练习题(附答案)数学必修1(苏教版)
2.4 幂函数
我们已经学习了指数函数,它是底数为常数,指数为自变量的函数,这与我们初中学习过的一些函数(如y=x,y=x2,y=x-1等)“底数为自变量,指数为常数”是否为同一类型,性质是否有区别?”
基础巩固
1.下列函数中,既是偶函数,又在区间(0,+)上单调递减的函数是()
A.y=x-2 B.y=x-1
C.y=x2 D.y=
答案:A
2.
右图所示的是函数y= (m,nN*且m,n互质)的图象,则() A.m,n是奇数且mn1
B.m是偶数,n是奇数,且mn1
C.m是偶数,n是奇数,且mn1
D.m,n是偶数,且mn1
解析:由图象知y=为偶函数,且m、n互质,m是偶数,n 是奇数,又由y=与y=x图象的位置知mn1.
答案:C。

单元复习 幂函数、指数函数与对数函数-高一数学(苏教版2019必修第一册)

单元复习  幂函数、指数函数与对数函数-高一数学(苏教版2019必修第一册)

故 f(x)=lg
+1
(2)由(1)知,f(x)=lg 1- (-1<x<1),
-+1
1-
1+ -1
1+
所以 f(-x)=lg1-(-)=lg1+=lg 1- =-lg 1- =-f(x),
所以 f(x)为奇函数.
+1
(3)原不等式可化为 lg 1- ≥lg(3x+1)(-1<x<1),
改进数学模型.
题型探究
一、直观想象
在本章中,函数图象的识别及应用均突出体现了直观想象的核心素养.
图象的识别
[例 1]
m
n
(1)已知函数 y=x (m,n∈N *,且互质)的图象如图所示,
那么下面说法正确的是
(
)
m
A.m,n 是奇数, n <1
m
B.m 是偶数,n 是奇数, n >1
m
C.m 是偶数,n 是奇数, n <1
m
n
是奇数.根据函数图象,当 x∈(1,+∞)时,y=x 的图象在 y=x 图象的下方,
m
n
m
所以 n <1.故选 C.
(2)当 0<a<1 时,函数 y=ax 的图象过定点(0,1),在 R 上单调递减,
1
于是函数 y=ax的图象过定点(0,1),在 R 上单调递增,函数ຫໍສະໝຸດ 1 1

1
y=logax+2的图象过定点2,0,在-2,+∞上单调递减.
是由函数 f(x)=ax 的图象向下平移一个单位长度,再将 x 轴下方的图象翻折到 x 轴上
方得到,分 a>1 和 0<a<1 两种情况作图,如图.当 a>1 时,直线 g(x)=2a 与函数 f(x)

3.3幂函数11题型分类(学生版) 2024-2025学年高一数学同步知识题型讲义(人教必修第一册)

3.3幂函数11题型分类(学生版) 2024-2025学年高一数学同步知识题型讲义(人教必修第一册)

3.3幂函数11题型分类一、幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.注意:幂函数的特征(1)xα的系数是1;(2)xα的底数x是自变量;(3)xα的指数α为常数.只有满足这三个条件,才是幂函数.对于形如y=(2x)α,y=2x5,y=xα+6等的函数都不是幂函数.二、一些常用幂函数的图象同一坐标系中,幂函数y=x,y=x2,y=x3,y=x-1,y=x的图象(如图).三、一些常用幂函数的性质函数特征性质y=x y=x2y=x3y =x y=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数在[0,+∞)上单调递增在(0,+∞)上单调递减单调性在(-∞,+∞)上单调递增在(-∞,0]上单调递减在(-∞,+∞)上单调递增在[0,+∞)上单调递增在(-∞,0)上单调递减注意:幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)如果α>0,那么幂函数的图象过原点,并且在区间[0,+∞)上单调递增;(3)如果α<0,那么幂函数的图象在区间(0,+∞)上单调递减,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限接近y轴,当x从原点趋向于+∞时,图象在x轴上方无限接近x轴;(4)在(1,+∞)上,随幂指数的逐渐增大,图象越来越靠近y轴.(一)幂函数的概念判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.C .3D .132-4.(2024·浙江·模拟预测)已知()f x 是幂函数,且满足:①()()f x f x -=;②()f x 在()0,+¥上单调递增,请写出符合上述条件的一个函数()f x =.2-5.(2024高一上·安徽合肥·期末)已知幂函数()f x x a = (α是常数)的图象经过点()2,4,那么f (−2)=( )A .4B .-4C .14D .-14题型3:根据幂函数求参数3-1.(24-25高一上·上海·单元测试)函数()12122m y m m x -=+-是幂函数,则m =.3-2.(2024高一上·湖北孝感·阶段练习)函数()2227y k k x =--是幂函数,则实数k 的值是( )A .4k =B .2k =-C .4k =或2k =-D .4k ¹且2k ¹-3-3.(2024高一下·上海杨浦·开学考试)已知幂函数()()22325m m f x m m x--=+-×的图像不经过原点,则实数m =.(二)幂函数的图象及应用依据图象高低判断幂指数大小,相关结论为:在(0,1]上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);在[1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).题型4:幂函数过定点问题4-1.(2024高一上·广东东莞·期中)函数()2y x a a =-为常数的图象过定点.4-2.(2024高一上·上海浦东新·阶段练习)幂函数a y x =的图象不可能在第四象限,但所有图象过定点,定点坐标为.题型5:幂函数的图象及应用5-1.(2024·新疆阿勒泰·三模)已知函数则函数2,0,()()()1,0,x xf xg x f xxxì³ï==-í<ïî,则函数()g x的图象大致是()A.B.C.D.5-2.(2024·全国·模拟预测)函数()11 3x xf xx --=的图象大致为()A.B.C.D.5-3.(2024高三·全国·对口高考)已知幂函数p qy x=(,p q ZÎ且p与q互质)的图像如图所示,则()A .p 、q 均为奇数且0p q<B .p 为奇数,q 为偶数且0p q <C .p 为奇数,q 为偶数且0p q>D .p 为偶数,q 为奇数且0p q<5-4.(2024高一上·福建泉州·期中)已知幂函数()()2231mm f x m m x+-=--,其图像与坐标轴无交点,则实数m的值为 .5-5.(2024高一上·黑龙江哈尔滨·期末)若点()4,2P 在幂函数()f x 的图象上,则()f x 的图象大致是( )A .B .C .D .5-6.(2024高三·全国·对口高考)给定一组函数解析式:①34y x =;②23y x =;③32y x -=;④23y x -=;⑤32y x =;⑥13y x -=;⑦13y x =.如图所示一组函数图象.图象对应的解析式号码顺序正确的是( )A .⑥③④②⑦①⑤B .⑥④②③⑦①⑤C .⑥④③②⑦①⑤D .⑥④③②⑦⑤①(三)求幂函数的定义域和值域幂函数的定义域和值域要根据解析式来确定,要保证解析式有意义,值域要在定义域范围内求解.幂函数的定义域由幂指数a 确定:①当幂指数取正整数时,定义域为R ;②当幂指数取零或负整数时,定义域为(一∞,0) U (0,+∞);③当幂指数取分数时,可以先化成根式(在第四章会学到),再根据根式的要求求定义域.题型6:求幂函数的定义域6-1.(2024高一·全国·课后作业)若幂函数()f x 的图象经过点(25,5),求()f x 的定义域.6-2.(2024·上海杨浦·一模)函数()12f x x -=的定义域为.6-3.(2024高一上·浙江·期末)已知幂函数3y x a a =-,则此函数的定义域为.题型7:求幂函数的值域(四)利用幂函数的性质比较大小(1)比较幂大小的三种常用方法:(2)利用幂函数单调性比较大小时要注意的问题:比较大小的两个实数必须在同一函数的同一个单调区间内,否则无法比较大小.(五)幂函数的性质综合应用利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式(组)求参数范围,注意分类讨论思想的应用.题型10:利用幂函数解不等式10-1.(2024高三上·四川遂宁·阶段练习)若12()f x x =,则不等式()(816)f x f x >-的解集是( )A .162,7éö÷êëøB .(]0,2C .16(,)7-¥D .[2,+∞)10-2.(2024高一上·安徽·期中)已知幂函数()f x 的图象经过点1,93æöç÷èø,且()()12f a f +<,则a 的取值范围为( )A .(),1-¥B .()1,+¥C .()3,1-D .()(),31,-¥-+¥U 10-3.(2024高三上·四川绵阳·阶段练习)“1122(1)(32)a a +<-”是“223a -<<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10-4.(2024高一上·上海浦东新·期中)不等式()()3355252x x --+<-的解集为 .10-5.(2024高一上·江苏盐城·阶段练习)函数12()f x x -=,则不等式(21)(1)f x f x ->+的解集为.题型11:利用幂函数的单调性、奇偶性及其应用11-1.(2024高一下·黑龙江齐齐哈尔·开学考试)已知幂函数()()22322mm f x x m ,m --+=-<<ÎΖ在区间()0,¥+上单调递增.请从如下2个条件:①对任意的x ÎR ,都有()()f x f x -=;②对任意的x ÎR ,都有()()0f x f x -+=中任选1个作为已知条件,求解下列问题.(1)求()f x 的解析式;(2)在(1)问的条件下,当[]3,3x Î-时,求()f x 的值域.(注:如果选择多个条件分别解答,按第一个解答计分.)11-2.(2024高一·全国·课后作业)已知函数:①2y x -=,②43y x =,③35y x =,④45y x -=,既是偶函数,又在(,0)-¥上为增函数的是.11-3.(2024高一上·上海杨浦·期末)已知112,1,,,1,2,322a ìüÎ---íýîþ,若幂函数()f x x a =奇函数,且在()0,¥+上为严格减函数,则a =.11-4.(2024高一上·安徽马鞍山·期中)已知幂函数()()()2157R m f x m m xm --=-+Î为奇函数.(1)求12f æöç÷èø的值;(2)若()()21f a f a +>,求实数a 的取值范围.一、单选题1.(2024高一上·四川成都·期末)函数()f x )A .B .C .D .2.(2024高一上·青海西宁·期末)已知点()3,2a 在幂函数()()1b f x a x =-的图象上,则( )A .()1f x x-=B .()122f x x =C .()3f x x=D .()13f x x =3.(2024高一上·内蒙古包头·期末)已知幂函数()f x 的图象过点(,则12f æöç÷èø等于( )A B C D .144.(2024·海南·模拟预测)已知()()25mf x m m x =+-为幂函数,则( ).A .()f x 在(),0-¥上单调递增B .()f x 在(),0-¥上单调递减C .()f x 在()0,¥+上单调递增D .()f x 在()0,¥+上单调递减5.(2024高三下·上海浦东新·阶段练习)设R m Î,若幂函数221m m y x -+=定义域为R ,且其图像关于y 轴成轴对称,则m 的值可以为( )A .1B .4C .7D .106.(2024高二下·陕西咸阳·期末)现有下列函数:①3y x =;②12xy æö=ç÷èø;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( )A .1B .2C .3D .47.(2024高一·全国·课后作业)已知幂函数()2133m y m m x +=-+的图像关于y 轴对称,则m 等于( )A .1B .2C .1或2D .38.(2024高三上·上海浦东新·阶段练习)如图所示是函数mn y x =(,m n 均为正整数且,m n 互质)的图象,则( )A .,m n 是奇数且1mn<B .m 是偶数,n 是奇数,且1m n<C .m 是偶数,n 是奇数,且1m n>D .,m n 是奇数,且1m n>9.(24-25高二下·福建莆田·期中)如图所示,图中的曲线是幂函数n y x =在第一象限的图象,已知n 取2±,12±四个值,则相应于1C ,2C ,3C ,4C 的n 依次为( )A .2-,12-,12,2B .2,12,12-,2-C .12-,2-,2,12D .2,12,2-,12-10.(2024高一上·安徽·期末)若幂函数()()224122m m f x m m x-+=--在区间()0,¥+上单调递减,则m =( )A .3B .1C .1-或3D .1或3-11.(2024高一上·重庆九龙坡·期末)已知111333332,,555a b c -æöæöæö===ç÷ç÷ç÷èøèøèø,则,,a b c 的大小关系为( )A .a b c <<B .b c a <<C .c a b <<D .a c b<<12.(2024高一·全国·课后作业)已知()21f x x =,若01a b <<<,则下列各式中正确的是( )A .()()11f a f b f f a b æöæö<<<ç÷ç÷èøèøB .()()11f f f b f a a b æöæö<<<ç÷ç÷èøèøC .()()11f a f b f f b a æöæö<<<ç÷ç÷èøèøD .()()11f f a f f b a b æöæö<<<ç÷ç÷èøèø13.(2024高一下·辽宁本溪·阶段练习)若幂函数()()224122m m f x m m x-+=--在区间()0,¥+上单调递增,则m =( )A .1-B .3C .1-或3D .1或3-14.(2024高一上·浙江杭州·期末)已知幂函数()()22222n nf x n n x-=+-×在()0,¥+上是减函数,则n 的值为( )A .3-B .1C .3D .1或3-15.(2024高一上·江西萍乡·期末)已知幂函数()f x 的图像过点()64,4,则()8f 的值为( )A .2B .3C .4D .516.(2024高一上·云南德宏·期末)下列函数既是幂函数又是奇函数的是( )A .y =B .21y x =C .22y x =D .1y x x=+17.(2024高一上·全国·课后作业)如图,下列3个幂函数的图象,则其图象对应的函数可能是( )A .①1y x -=,②12y x =,③13y x =B .①1y x -=,②13y x =,③12y x =C .①13y x =,②12y x =,③1y x-=D .①13y x =,②1y x -=,③12y x =18.(2024高一下·内蒙古呼和浩特·开学考试)已知幂函数()y f x =的图象过()4,32点,则()2f =( ).A .B .4C .D .8二、多选题19.(2024高一下·山西忻州·开学考试)已知幂函数()()23m x m x f =-的图象过点12,4æöç÷èø,则( )A .()f x 是偶函数B .()f x 是奇函数C .()f x 在(),0-¥上为减函数D .()f x 在()0,¥+上为减函数20.(2024高一上·宁夏银川·期末)幂函数()()211m f x m m x --=+-,m ∈N ∗,则下列结论正确的是( )A .1m =B .函数()f x 是偶函数C .()()23f f -<D .函数()f x 的值域为()0,¥+21.(2024高一上·重庆长寿·期末)下列函数既是幂函数,又在(),0-¥上单调递减的是( )A .y x =-B .2y x -=C .1y x -=D .2y x =22.(2024高一上·云南红河·期末)已知幂函数()f x 的图象经过点(8,,则下列说法正确的是( )A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ³时,()2f x ³D .当120x x <<时,()()121222f x f x x x f ++æö<ç÷èø三、填空题23.(2024高一·全国·课后作业)幂函数()()2732351t t f x t t x+-=-+是偶函数,且在(0,)+¥上为增函数,则函数解析式为 .24.(2024高一上·宁夏吴忠·期中)若()f x 是幂函数,且()124f =,则13f æö=ç÷èø25.(2024高一下·江苏南京·阶段练习)请写出一个满足条件①和②的幂函数()f x ,条件:①()f x 是偶函数;②()f x 为()0,¥+上的减函数.则()f x =.26.(2024高一上·广东肇庆·期中)已知幂函数()f x 的图象过点()3,3和()m,2,则实数m = .27.(2024高一·全国·课后作业)幂函数()21N nn y x n ++=Î的图像一定经过第象限28.(2024高一上·江苏徐州·阶段练习)若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是.29.(2024高一上·陕西咸阳·期末)已知幂函数()()222m f x m m x =--满足()()23f f <,则m = .30.(2024·宁夏银川·二模)已知函数()()22221m m f x m m x--=--是幂函数,且为偶函数,则实数m = .31.(2024高一上·辽宁·期末)已知幂函数()()231m f x m m x =++在第一象限单调递减,则()f m = .32.(2024高三上·河南许昌·期末)已知函数()()21m f x m m x =+-是幂函数,且在()0,¥+上是增函数,则实数m 的值为 .33.(2024高三下·上海杨浦·阶段练习)已知幂函数()y f x =的图像过点(9,3),则(2)f 的值为.34.(2024高一上·江西赣州·期中)幂函数f (x )=(m 2−2m−2)x 2m−1在()0,¥+上为减函数,则m 的值为 .35.(2024高三下·上海·阶段练习)已知函数()13f x x =,则关于t 的表达式()()222210f t t f t -+-<的解集为 .36.(2024高一上·全国·课后作业)已知幂函数1101 ()f x x æö=ç÷èø,若f (a−1)<f (8−2a ),则a 的取值范围是.37.(2024高一上·浙江宁波·期中)已知幂函数()f x 过点,则满足(2)(1)f a f a ->-的实数a 的取值范围是 .38.(2024高二下·陕西宝鸡·期末)幂函数()()226633m m f x m m x-+=-+在()0,¥+上单调递减,则m 的值为 .四、解答题39.(2024高一上·四川眉山·期末)已知幂函数()y f x =的图象经过点1,22æöç÷èø.(1)求()f x 的解析式,并指明函数()f x 的定义域;(2)设函数()()g x x f x =+,用单调性的定义证明()g x 在()1,+¥单调递增.40.(2024高一·全国·课后作业)比较下列各组数的大小:(1)()32--,()32.5--;(2)788--,7819æö-ç÷èø;(3)3412æöç÷èø,3415æöç÷èø,1412æöç÷èø.41.(2024高一·全国·课后作业)求不等式()()2233131x x ->+的解.42.(2024高三·全国·课后作业)已知幂函数()223mm f x x --=(m 为正整数)的图像关于y 轴对称,且在()0,¥+上是严格减函数,求满足()()33132mma a --+>-的实数a 的取值范围.43.(2024高一上·福建龙岩·期末)已知幂函数()21()2910m f x m m x -=-+为偶函数,()()(R)kg x f x k x =+Î.(1)若(2)5g =,求k ;(2)已知2k £,若关于x 的不等式21()02g x k ->在[1,)+¥上恒成立,求k 的取值范围.44.(2024高一下·四川广安·阶段练习)已知幂函数()()()215R m f x m m x m +=+-Î在()0,¥+上单调递增.(1)求m 的值及函数()f x 的解析式;(2)若函数()21g x ax a =+-在[]0,2上的最大值为3,求实数a 的值.45.(2024高一上·辽宁辽阳·期末)已知幂函数()()25af x a a x =+-为奇函数.(1)求()f x 的解析式;(2)若正数,m n 满足31250m n a ++=,若不等式91b m n+³恒成立.求b 的最大值.46.(2024高一上·山东枣庄·期末)已知幂函数()()215m f x m m x -=--的图像关于y 轴对称.(1)求m 的值;(2)若函数()()g x f x =-()g x 的单调递增区间.。

高一数学幂函数习题及答案

高一数学幂函数习题及答案

高一数学幂函数习题及答案高一数学幂函数习题及答案在高一数学课程中,幂函数是一个非常重要的概念。

幂函数是指形如f(x) =ax^b的函数,其中a和b是常数,x是自变量。

在本文中,我们将探讨一些关于幂函数的习题,并提供相应的答案。

1. 习题一:已知函数f(x) = 2x^3,求f(2)的值。

解答:将x替换为2,得到f(2) = 2(2)^3 = 2(8) = 16。

因此,f(2)的值为16。

2. 习题二:已知函数g(x) = 4x^2,求g(0)的值。

解答:将x替换为0,得到g(0) = 4(0)^2 = 4(0) = 0。

因此,g(0)的值为0。

3. 习题三:已知函数h(x) = 5x^-2,求h(1)的值。

解答:将x替换为1,得到h(1) = 5(1)^-2 = 5(1/1^2) = 5(1/1) = 5。

因此,h(1)的值为5。

4. 习题四:已知函数k(x) = x^4 + 2x^3 - 3x^2 + x - 1,求k(-1)的值。

解答:将x替换为-1,得到k(-1) = (-1)^4 + 2(-1)^3 - 3(-1)^2 + (-1) - 1 = 1 - 2 - 3 - 1 - 1 = -5。

因此,k(-1)的值为-5。

5. 习题五:已知函数m(x) = (1/2)x^2 - 3x + 2,求m(3)的值。

解答:将x替换为3,得到m(3) = (1/2)(3)^2 - 3(3) + 2 = (1/2)(9) - 9 + 2 = 4.5 - 9 + 2 = -2.5。

因此,m(3)的值为-2.5。

通过以上习题,我们可以看到幂函数的计算方法。

对于给定的函数,我们只需将自变量替换为相应的值,然后按照幂函数的定义进行计算即可。

在实际应用中,幂函数常常用于描述各种变化规律,如物体的增长、衰减等。

除了计算习题,我们还可以通过绘制幂函数的图像来更好地理解其特点。

下面是几个常见的幂函数图像:1. 当b>0时,函数f(x) = ax^b的图像呈现出从左下方向右上方递增的趋势。

2020-2021学年苏教版必修1 3.3 幂函数 学案

2020-2021学年苏教版必修1 3.3 幂函数 学案

3.3 幂函数1.了解幂函数的概念.2.掌握y =x 、y =x 2、y =x 3、y =x -1、y =x -2、y=x 12的图象和性质.3.会运用幂函数的图象和性质解决问题.[学生用书P58]1.幂函数的概念函数y =x α叫做幂函数,其中x 是自变量,α是常数. 2.幂函数的图象与性质 (1)五种常见幂函数的图象(2)五类幂函数的性质 幂函数 y =x y =x 2 y =x 3 y =x 12y =x -1 定义域RRR[0,+∞)(-∞,0)∪ (0,+∞) 值 域 R [0,+∞) R [0,+∞){y |y ∈R 且y ≠0}奇偶性奇 偶 奇 非奇非偶 奇 单调性 增 x ∈[0,+∞),增x ∈(-∞,0],减增 增 x ∈(0,+∞),减x ∈(-∞,0),减公共点 都经过点(1,1)1.判断(正确的打“√”,错误的打“×”) (1)函数y =x 0(x ≠0)是幂函数.( )(2)幂函数的图象必过点(0,0)和(1,1).( ) (3)幂函数的图象都不过第二、四象限.( ) 答案:(1)√ (2)× (3)×2.下列函数中不是幂函数的是( ) A .y =x B .y =x 3 C .y =2x D .y =x -1答案:C3.若y =mx α+(2n -4)是幂函数,则m +n =________. 答案:34.若幂函数f (x )=x α的图象经过点(3,9),那么函数f (x )的单调增区间是________. 答案:[0,+∞)幂函数的概念[学生用书P58](1)下列函数为幂函数的序号是________. ①y =-x 2;②y =2x ; ③y =x π;④y =(x -1)3; ⑤y =1x 2;⑥y =x 2+1x.(2)若幂函数f (x )的图象经过点(2,22),则f (9)=________.【解析】 (1)①y =-x 2的系数是-1而不是1,故不是幂函数;②y =2x 是指数函数;④y =(x -1)3的底数是x -1而不是x ,故不是幂函数;⑥y =x 2+1x 是两个幂函数和的形式,也不是幂函数.很明显③⑤是幂函数.(2)设f (x )=x α,则2α=22,所以α=32,所以f (x )=x 32.所以f (9)=932=33=27.【答案】 (1)③⑤ (2)27幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.1.已知函数f (x )=(m 2+2m -2)·xm 2-m -1是幂函数,则m =( )A .1B .-3C .1或-3D .1或3解析:选C.由题意知,若f (x )为幂函数, 则m 2+2m -2=1.即m 2+2m -3=0,解得m =1或m =-3.幂函数的图象[学生用书P59]已知幂函数y =x m -2(m ∈N )的图象与x ,y 轴都无交点,且关于y 轴对称,求m的值,并画出它的图象.【解】 因为图象与x ,y 轴都无交点, 所以m -2≤0,即m ≤2. 又m ∈N ,所以m =0,1,2.因为幂函数图象关于y 轴对称,所以m =0,或m =2. 当m =0时,函数为y =x -2,图象如图1; 当m =2时,函数为y =x 0=1(x ≠0),图象如图2.(1)幂函数y =x α的图象恒过定点(1,1),且不过第四象限.(2)解决幂函数图象问题,需把握两个原则:①幂指数α的正负决定函数图象在第一象限的升降;②依据图象确定幂指数α与0,1的大小关系,在第一象限内,直线x =1的右侧,图象由上到下,相应的指数由大变小.2.已知当n 取±2,±12四个值时,幂函数y =x n 在第一象限内的图象如图所示,则相应的曲线C 1,C 2,C 3,C 4的n 值依次为________.解析:抓住幂函数图象的特征,在第一象限内当0<α<1时,图象平缓上升;当α>1时,图象陡峭上升;当α<0时,图象下降,且在(1,+∞)上,指数大的图象在上方.由题图,知C 1的指数n >1,C 2的指数0<n <1,即C 1的指数n 取2,C 2的指数n 取12.再取x =2,由2-12>2-2知C 3的指数n 取-12,C 4的指数n 取-2.答案:2,12,-12,-2幂值的大小比较问题[学生用书P59]比较下列各组数的大小: (1)1.332,1.432,(-2)13;(2)1.712,0.712,0.72.【解】 (1)考察幂函数y =x 32,因为32>0,所以y =x 32在区间[0,+∞)上是单调增函数,由于0<1.3<1.4,所以0<1.332<1.432, 又因为(-2)13<0,所以1.432>1.332>(-2)13.(2)考察幂函数y =x 12.因为12>0,所以y =x 12在区间[0,+∞)上是单调增函数.由于0.7<1.7,所以0.712<1.712,再考察指数函数y =0.7x ,因为0<0.7<1,所以y =0.7x 是R 上的单调减函数.由于0<12<2,所以0.712>0.72,综上1.712>0.712>0.72.当两个值的底数是同一个正数时,用指数函数模型比较两个值的大小;当两个值的指数是同一个实数时,用幂函数模型比较两个值的大小,特别地,当底数是负数时,先利用幂函数的性质,将底数是负数的幂化为底数是正数的幂,再利用指数函数模型或幂函数模型比较两个值的大小.3.比较下列各组数的大小:(1)2.112,2.212,0.213;(2)3.535,0.535,0.545.解:(1)考察幂函数y =x 12,因为12>0,所以y =x 12在区间[0,+∞)上是单调增函数,由于1<2.1<2.2,所以1<2.112<2.212,又因为0.213<1,所以2.212>2.112>0.213.(2)考察幂函数y =x 35.因为35>0,所以y =x 35在区间[0,+∞)上是单调增函数,由于0.5<3.5,所以0.535<3.535,再考察指数函数y =0.5x ,因为0<0.5<1,所以y =0.5x 是R 上的单调减函数,由于0<35<45,所以0.535>0.545,综上3.535>0.535>0.545.1.指数函数与幂函数的区别 函数名称 解析式 解析式特征指数函数 y =a x (a >0, 且a ≠1) 底数是常数,自变量在指数位置上 幂函数y =x α(α∈R )指数是常数,自变量在底数位置上2.幂函数的性质归纳(1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数. 特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸.(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为________.[解析] 当α=1,3时,函数y =x α的定义域为R ,且为奇函数,当α=-1时,y =1x 的定义域是{x |x ≠0,x ∈R }.当α=12时,y =x 12=x 的定义域是{x |x ≥0}. [答案] 1,3(1)y =x-1易忽视定义域的限制,其定义域应为{x |x ≠0}.(2)在幂函数的有关问题中,要理解幂函数的概念,掌握好五种幂函数的图象和性质,当α为正奇数时幂函数f (x )=x α的定义域为R 且为奇函数,解决此类问题,要特别注意α的取值范围.1.下列所给出的函数中,是幂函数的是( ) A .y =-x 3 B .y =x -3 C .y =2x 3 D .y =x 3-1答案:B2.下列函数中值域为(-∞,+∞)的函数是( )A .y =⎝⎛⎭⎫12xB .y =x 2C .y =1x 2D .y =x 3答案:D 3.函数y =x-3在区间[-4,-2]上的最小值是________.解析:因为函数y =x -3=1x 3在(-∞,0)上单调递减,所以当x =-2时,y min =(-2)-3=1(-2)3=-18. 答案:-184.当α∈⎩⎨⎧⎭⎬⎫-1,12,1,3时,幂函数y =x α的图象不可能经过第________象限.解析:因为y =x-1图象在第一、三象限,y =x 与y =x 3图象都经过第一、三象限,y =x 12图象仅经过第一象限,故α∈⎩⎨⎧⎭⎬⎫-1,12,1,3时,图象不可能经过第二、四象限. 答案:二、四[学生用书P116(单独成册)])[A 基础达标]1.在下列函数中,定义域和值域不同的是( ) A .y =x 13B .y =x 12C .y =x 53D .y =x 23解析:选D.A 、C 的定义域和值域都是R ;B 的定义域和值域都是[0,+∞);D 的定义域是R ,值域是[0,+∞).故选D.2.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图象过点⎝⎛⎭⎫12,2,则k +α=( ) A.12 B .1 C.32D .2解析:选A.因为幂函数f (x )=kx α(k ∈R ,α∈R )的图象过点⎝⎛⎭⎫12,2,所以k =1,f ⎝⎛⎭⎫12=⎝⎛⎭⎫12α=2,即α=-12,所以k +α=12.3.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( )A .y =x -2 B .y =x -1 C .y =x 2D .y =x 13解析:选A.所给选项都是幂函数,其中y =x-2和y =x 2是偶函数,y =x-1和y =x 13不是偶函数,故排除选项B 、D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意,故选A.4.已知m =(a 2+3)-1(a ≠0),n =3-1,则( ) A .m >n B .m <n C .m =nD .m 与n 的大小不确定解析:选B.设f (x )=x -1,已知a ≠0, 则a 2+3>3>0,f (x )在(0,+∞)上是减函数, 则f (a 2+3)<f (3), 即(a 2+3)-1<3-1, 故m <n .5.函数y =x |x |的图象大致是( )解析:选A.由题可得,y =x |x |=⎩⎪⎨⎪⎧x 2, x ≥0,-x 2, x <0,从而可知A 为正确选项,另外,易知函数y =x |x |为奇函数.6.如图,曲线C 1与C 2分别是函数y =x m 和y =x n 在第一象限内的图象,则m ,n 与0的大小关系是________.解析:由图象可知,两函数在第一象限内递减, 故m <0,n <0. 取x =2,则有2m >2n , 故n <m <0. 答案:n <m <07.当x ∈(1,+∞)时,幂函数y =x α的图象在直线y =x 的下方,则α的取值范围是________.解析:幂函数y =x 12,y =x -1,y =x 0在区间(1,+∞)上时图象在直线y =x 的下方,一般地,当α<0,α=0,0<α<1时f (x )=x α在(1,+∞)上的图象都在直线y =x 下方,故α的取值范围是(-∞,1).答案:(-∞,1)8.已知2.4α>2.5α,则α的取值范围是________. 解析:因为0<2.4<2.5,而2.4α>2.5α, 所以y =x α在(0,+∞)上为减函数,故α<0. 答案:α<0 9.已知函数f (x )=x -m +3(m ∈N *)是偶函数,且f (3)<f (5),求m 的值,并确定f (x )的函数解析式.解:由f (3)<f (5),得3-m +3<5-m +3,所以⎝⎛⎭⎫35-m +3<1=⎝⎛⎭⎫350.因为y =⎝⎛⎭⎫35x是减函数, 所以-m +3>0. 解得m <3. 又因为m ∈N *, 所以m =1或2; 当m =2时,f (x )=x -m +3=x 为奇函数,所以m =2舍去. 当m =1时,f (x )=x -m +3=x 2为偶函数,所以m =1, 此时f (x )=x 2.10.已知f (x )=x ,g (x )=x 13,设F (x )=f (x )+g (x ),试判断F (x )的奇偶性与单调性. 解:因为f (x ),g (x )的定义域均为R , 所以F (x )=f (x )+g (x )=x +x 13的定义域为R .又F (-x )=-x +(-x )13=-(x +x 13)=-F (x ), 所以F (x )是奇函数.因为f (x )与g (x )在R 上均为增函数, 所以F (x )在R 上也为增函数.[B 能力提升]1.如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n <0<m <1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析:选B.在(0,1)内取x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.2.给出下列四个函数:①y =x 13;②y =x -13;③y =x -1;④y =x 23,其中定义域和值域相同的是________.(写出所有满足条件的函数的序号) 解析:函数y =x 13的定义域和值域都为R ;函数y =x -13与y =x-1的定义域和值域都为(-∞,0)∪(0,+∞);函数y =x 23的定义域为R ,值域为[0,+∞).答案:①②③ 3.已知幂函数y =x m2+2m -3(m ∈Z )在(0,+∞)上是减函数,求幂函数的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m 2+2m -3<0⇒(m -1)(m +3)<0⇒-3<m <1, 又因为m ∈Z , 所以m =-2,-1,0.当m =0或m =-2时,y =x -3, 定义域是(-∞,0)∪(0,+∞). 因为-3<0, 所以y =x-3在(-∞,0)和(0,+∞)上都是减函数,又因为f (-x )=(-x )-3=-x -3=-f (x ), 所以y =x-3是奇函数.当m =-1时,y =x -4,定义域是(-∞,0)∪(0,+∞). 因为f (-x )=(-x )-4=1(-x )4=1x 4=x -4=f (x ), 所以函数y =x-4是偶函数.因为-4<0, 所以y =x-4在(0,+∞)上是减函数.又因为y =x -4是偶函数,所以y =x-4在(-∞,0)上是增函数.4.(选做题)已知函数f (x )=2x -x m ,且f (4)=-72.(1)求m 的值;(2)判断f (x )在(0,+∞)上的单调性,并给予证明; (3)试在(-∞,0)上解不等式f (x )<f (2x +1). 解:(1)因为f (4)=-72,所以24-4m =-72,m =1.(2)f (x )=2x -x 在(0,+∞)上是减函数.证明如下:任取x 1、x 2∈(0,+∞)且x 1<x 2,则x 1-x 2<0, 所以f (x 2)-f (x 1)=⎝⎛⎭⎫2x 2-x 2-⎝⎛⎭⎫2x 1-x 1 =(x 1-x 2)+⎝⎛⎭⎫2x 2-2x 1=(x 1-x 2)+2x 1x 2(x 1-x 2)=(x 1-x 2)⎝⎛⎭⎫2x 1x 2+1. 因为x 1-x 2<0,x 1x 2>0,所以f (x 2)-f (x 1)<0,即f (x 2)<f (x 1). 所以f (x )=2x -x 在(0,+∞)上是减函数.(3)因为f (x )的定义域关于原点对称,f (-x )=2-x+x =-⎝⎛⎭⎫2x -x =-f (x ), 所以f (x )是奇函数.所以f (x )在(-∞,0)上是减函数.所以f (x )<f (2x +1)的解满足⎩⎪⎨⎪⎧x <0,2x +1<0,x >2x +1.解得x <-1.所以f (x )<f (2x +1)的解集为{x |x <-1}.。

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )2(3x +1)的定义域为()A.-13,+∞B.-∞,C.-13D.-13,12.设a =log 42.4,b =log 32.9,c =log 32.4,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.c >b >aD.a >c >b3.已知0<m <n <1,则指数函数①y =m x 和②y =n x 的图象为()A.B. C. D.4.已知函数f (x )=log 3(x -1),若f (a )=2,则实数a 的值为()A.3B.8C.9D.105.函数y 2+2的增区间为()A.(-∞,0)B.(-∞,-1]C.[-1,+∞)D.[-2,+∞)6.不论a 为何值,函数y =(a -1)2x-2恒过一定点,则这个定点为()A.1,B.1C.-1,D.-17.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致是()A. B. C. D.8.春末夏初,南京玄武湖公园荷花池中的荷花枝繁叶茂,已知每天新长出的荷叶覆盖水面的面积是前一天的两倍,若荷叶20天可以完全长满荷花池水面,则当荷叶刚好覆盖水面面积18时,荷叶已生长了()A.4天B.15天C.17天D.18天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列函数中定义域和值域相同的是()A.y = 23B.y = 15C.y =-xD.y =3x10.已知函数f (x )=log 3( -2), >2,3 -1, ≤2,则下列各式正确的是()A.f (5)=1B.f (f (5))=1C.f (3)=9D.f (f (3))=1311.设函数f (x )=(3-2 ) -1, ≤1,, >1,其中a >0且a ≠1,下列关于函数f (x )的说法正确的是()A.若a =2,则f (log 23)=3B.若f (x )在R 上是增函数,则1<a <32C.若f (0)=-1,则a =32D.函数f (x )为R 上的奇函数12.已知函数f (x )=lo g 12x ,下列四个命题正确的是()A.函数f (|x |)为偶函数B.若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C.函数f (-x 2+2x )在(1,3)上为增函数D.若0<a <1,则|f (1+a )|<|f (1-a )|三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13.若幂函数y =f (x 2,则f .14.设函数f (x )=lg x ,若f (2x )<f (2),则实数x 的取值范围是.15.函数f (x )=a 2-x-1(a >0,a ≠1)恒过定点,当0<a <1时,f (x 2)的增区间为.16.已知函数f (x )=x 2+log 2|x |,则不等式f (x -1)-f (1)<0的解集为.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)比较下列各组数的大小:(1)1.8,2.2;(2)0.70.8,0.80.7.18.(12分)已知关于x 的方程5x=15- 有负根,求实数a 的取值范围.19.(12分)已知函数f (x )=log a (-x 2+2x +3)(其中a >0且a ≠1)的值域为[-2,+∞).(1)求实数a 的值;(2)求函数f (x )的单调区间.20.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数.(1)求实数a 的值;(2)求函数g (x )=f (x )+1-2 ( )在0.21.(12分)设函数f (x )=lg (ax )·lg2.(1)当a =0.1时,求f (1000)的值;(2)若f (10)=10,求实数a 的值;(3)若对一切正实数x 恒有f (x )≤98,求实数a 的取值范围.22.(12分)为了预防流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y (单位:mg )与t 时间(单位:h )成正比,药物释放完毕后,y 与t之间的函数关系式为y 2+0.9 +(a 为常数),其图象如图所示,根据图中提供的信息回答下列问题:(1)从药物释放开始,求每立方米空气中的含药量y 与时间t 之间的函数关系式.(2)据测定,当空气中每立方米的含药量降低到116mg 以下时,学生方可进入教室,那么从药物释放开始至少需要经过多少小时,学生才可以回到教室?(第22题)参考答案1.D2.A3.C4.D5.B6.C7.A8.C9.BC 10.ABD 11.AB 12.ABD 13.-214.(0,1)15.(2,0)[0,+∞)16.(0,1)∪(1,2)17.(1)1.82.2(2)0.70.8<0.80.718.方程5x=15- 有负根,即0<15-<1,解得a <4,即a ∈(-∞,4)19.(1)a =12(2)函数f (x )的减区间为(-1,1],增区间为[1,3)20.(1)a =0(2)g (x )=x +1-2 ,x ∈0t =1-2 ,t ∈[0,1],则g (t )=t +1- 22=-12(t -1)2+1,所以12≤g (t )≤121.(1)f (1000)=-14(2)f (10)=lg (10a )·lg 100=(1+lg a )(lg a -2)=(lg a )2-lg a -2=10,即(lg a )2-lg a -12=0,解得lg a =4或-3,即a =104或10-3(3)因为对一切正实数x 恒有f (x )≤98,所以lg (ax )·lg 2≤98在(0,+∞)上恒成立,即(lg a +lg x )(lg a -2lg x )≤98,即2(lg x )2+lg a ·lg x -(lg a )2+98≥0在(0,+∞)上恒成立.因为x >0,所以lg x ∈R .由二次函数的性质可知,Δ=(lg a )2-8-(lg )2+,所以(lg a )2≤1,则-1≤lg a ≤1,所以110≤a ≤1022.(1)当0≤t ≤1时,设y =kt ,将点(0.1,1)代入得k =10,所以y =10t ,再将点(0.1,1)代入y 2+0.9 +,得a =-0.1,所以y 0≤ ≤1,2+0.9 -0.1, >1(2)2+0.9 -0.1≤116,所以( 2+0.9 -0.1),所以5(t 2+0.9t -0.1)≥4,所以10t 2+9t -9≥0,所以t ≥35或t ≤-32(舍去),所以学生要在0.6h 后才可以进入教室。

高一数学必修一:幂函数的图像与性质(作业35)

高一数学必修一:幂函数的图像与性质(作业35)

高一(上)数学作业 35 班级_______ 姓名 ____________1.幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫4,12,则f ⎝ ⎛⎭⎪⎫14的值为( )A .1B .2C .3D .42.已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝ ⎛⎭⎪⎫12,2,则k +α=( )A.12 B .1 C.32D .23.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( )A .y =x -2B .y =x -1C .y =x 2D .y =31x 4.已知m =(a 2+3)-1(a ≠0),n =3-1,则( )A .m >nB .m <nC .m =nD .m 与n 的大小不确定 5.如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n <0<m <1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1 6.函数y =21x 与函数y =x -1的图象交点坐标为________.7.已知幂函数f (x )=x α的部分对应值如表:则f (x )的单调递增区间是________.8.已知2.4α>2.5α,则α的取值范围是________.9.设a =⎝ ⎛⎭⎪⎫1234,b =⎝ ⎛⎭⎪⎫1534,c =⎝ ⎛⎭⎪⎫1212,则a ,b ,c 的大小关系为________.10.若(a +1) <(3-2a),求a 的取值范围.11.已知点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有:①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).(选作)12.已知函数f 1(x )=a x ,f 2(x )=x a ,f 3(x )=lo g a x (其中a >0,且a ≠1),在同一直角坐标系中画出其中两个函数在第一象限内的图象,下列正确的是()答案1.幂函数f (x )的图象经过点⎝⎛⎭⎫4,12,则f ⎝⎛⎭⎫14的值为( ) A .1 B .2 C .3 D .4解析:选B .设f (x )=x n ,因为f (4)=12,所以4n =12,f ⎝⎛⎭⎫14=⎝⎛⎭⎫14n=4-n=2,故选B . 2.已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝⎛⎭⎫12,2,则k +α=( ) A.12 B .1 C.32D .2 解析:选A.因为幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝⎛⎭⎫12,2,所以k =1,f ⎝⎛⎭⎫12=⎝⎛⎭⎫12α=2,即α=-12,所以k +α=12.3.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .y =x -2B .y =x -1C .y =x 2D .y =31x 解析:选A.所给选项都是幂函数,其中y =x-2和y =x 2是偶函数,y =x-1和y =31x 不是偶函数,故排除选项B 、D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意,故选A.4.已知m =(a 2+3)-1(a ≠0),n =3-1,则( )A .m >nB .m <nC .m =nD .m 与n 的大小不确定 解析:选B .设f (x )=x -1,已知a ≠0,则a 2+3>3>0,f (x )在(0,+∞)上是减函数, 则f (a 2+3)<f (3), 即(a 2+3)-1<3-1,故m <n .5.如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n <0<m <1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析:选B .在(0,1)内取x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.6.函数y =21x 与函数y =x-1的图象交点坐标为________.解析:y =21x 与y =x -1=1x 有交点,则21x =x -1,x =1,代入y =x-1得y =1.答案:(1,1)7.已知幂函数f (x )=x α的部分对应值如表:则f (x )的单调递增区间是________.解析:因为f ⎝⎛⎭⎫12=22, 所以⎝⎛⎭⎫12α=22, 即α=12,所以f (x )=的单调递增区间是[0,+∞).答案:[0,+∞)8.已知2.4α>2.5α,则α的取值范围是________. 解析:因为0<2.4<2.5,而2.4α>2.5α, 所以y =x α在(0,+∞)上为减函数.故α<0. 答案:α<09.设a =⎝⎛⎫1234,b =⎝⎛⎫1534,c =⎝⎛⎭⎫1212,则a ,b ,c 的大小关系为________. 解析:构造幂函数y =x(x ∈(0,+∞)),由该函数在定义域内单调递增,知a >b ;构造指数函数y =⎝⎛⎭⎫12x,由该函数在定义域内单调递减,所以a <c ,故c >a >B .答案:c >a >b 10.若(a +1)<(3-2a),求a 的取值范围. 解:(a +1) <(3-2a) ⇔⎝⎛⎭⎫1a +112<⎝⎛⎭⎫13-2a 12,函数y =在[0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a +1>0,3-2a >0,a +1>3-2a ,解得23<a <32,故a 的取值范围为⎝⎛⎭⎫23,32.11.已知点(2,2)与点⎝⎛⎭⎫-2,-12分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有: ①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).解:设f (x )=x α,g (x )=x β. 因为(2)α=2,(-2)β=-12,所以α=2,β=-1. 所以f (x )=x 2,g (x )=x -1.分别作出它们的图象,如图所示.由图象知,当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x ); 当x =1时,f (x )=g (x ); 当x ∈(0,1)时,f (x )<g (x ).12.已知函数f 1(x )=a x ,f 2(x )=x a ,f 3(x )=lo g a x (其中a >0,且a ≠1),在同一直角坐标系中画出其中两个函数在第一象限内的图象,下列正确的是( )解析:选B.分a>1和0<a<1两种情况讨论,根据三种函数的性质易知选项B正确.。

3.3 幂函数(重难点突破)解析版 2023-2024学年高一数学重难点突破

3.3 幂函数(重难点突破)解析版 2023-2024学年高一数学重难点突破

3.3 幂函数重难点幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.重难点题型突破1 求幂函数的解析式幂函数的解析式是一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.例1.(1)、(2022·江苏·无锡市教育科学研究院高二期末)已知幂函数()y f x =的图像过点⎛ ⎝,则(16)f =( )A .14-B .14C .4-D .4【变式训练1-1】、(2022·江苏·扬州中学高二阶段练习)若幂函数()a f x x =的图象经过点(,则函数()f x 的解析式是( )A .()43f x x =B .()13f x x =C.()43f x x-=D.()2 3f x x=重难点题型突破2 幂函数的图像及其性质的应用幂函数的图像及其性质的应用1.幂函数y=xα的图象与性质,由于α值的不同而比较复杂,一般从两个方面考查:①α的正负:当α>0时,图象过原点,在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.②幂函数的指数与图象特征的关系当α≠0,1时,幂函数y=xα在第一象限的图象特征如下:A .①1y x -=,②12y x =,③13y x =C .①13y x =,②12y x =,③1y x -=【答案】AA.⑥③④②⑦①⑤B.⑥④②③⑦①⑤C.⑥④③②⑦①⑤D.⑥④③②⑦⑤①【答案】C【分析】根据幂函数的图象的性质判断各图象对应解析式的形式,即可得答案【详解】图象(1)关于原点对称,为奇函数,且不过原点、第一象限递减,故2.利用幂函数的单调性比较幂值大小的技巧:结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较.例3.(1)、(2023·全国·高一专题练习)已知幂函数()f x 的图象过点()2,32,若()()110f a f ++->,则a 的取值范围为( )A .()2,+∞B .()1,+∞C .()0,∞+D .()1,-+∞【答案】C【分析】利用待定系数法求出幂函数的解析式,可得其为奇函数,且在R 上单调递增,()()110f a f ++->可转化为()()11f a f +>,根据单调性即可求解.【详解】设幂函数()y f x x α==,其图象过点()2,32,所以232α=,解得5α=,所以()5f x x =.因为()()()5f x x f x -=-=-,所以()5f x x =为奇函数,且在R 上单调递增,所以()()110f a f ++->可化为()()()111f a f f +>--=,可得11a +>,解得0a >,所以a 的取值范围为()0,∞+.故选:C.(2).(2020·全国高一专题练习)下列关系中正确的是A .221333111252⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】D 【分析】利用指数函数的单调性和幂函数的单调性比较即可.【详解】因为12xy ⎛⎫= ⎪⎝⎭是单调递减函数,1233<,所以12331122⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, 因为幂函数23y x =在()0,∞+上递增,1152<;所以22331152⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即223323111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选D.【点睛】同底指数幂比较大小常用的方法是利用指数函数的单调性,不同底数指数幂比较大小一般应用幂函数的单调性.【变式训练3-1】、(2019·江西九江·高二期末(理))设e e a =,e πb =,πe c =,则,,a b c 大小关系是A .a c b >>B .b c a >>C .c b a >>D .c a b>>【答案】C 【分析】由幂函数的单调性可以判断出,a b 的大小关系,通过指数函数的单调性可以判断出,a c 的大小关系,比较,b c 的大小可以转化为比较eln π与π的大小,设()eln f x x x =-求导,判断函数的单调性,利用函数的单调性可以判断出eln π与π的大小关系,最后确定,,a b c 三个数的大小关系.【详解】解:由幂函数和指数函数知识可得e e πe >,πe e e >,即b a >,c a >.下面比较,b c 的大小,即比较eln π与π的大小.设()eln f x x x =-,则e ()xf x x-'=,()f x 在(0,e)上单调递增,在(e,)+∞上单调递减,(e)(π)f f ∴>,即eln e e eln ππ->-,即eln ππ<,e ππe ∴<,即c b >,即c b a >>,故选C.【点睛】本题考查了幂函数和指数函数的单调性,通过变形、转化、构造函数判断函数值大小是解题的关键.重难点题型突破3 幂函数型复合函数(2)答案见解析【分析】(1)根据题意,由幂函数的性质列出方程即可求得m ,从而得到函数()f x 的解析式;(2)根据题意,由幂函数的值域即可求得结果.【详解】(1)∵()223mm f x x --+=,其中22m -<<,m ∈Z当1m =-时()2f x x =,当0m =时()3f x x =,当1m =时()01f x x ==,(0x ≠),∵()f x 在区间()0,∞+上单调递增,∴1m =-,或0m =选①时,可知函数()f x 为偶函数,则()f x 的解析式为()2f x x =,选②时,可知函数()f x 为奇函数,则()f x 的解析式为()3f x x =.(2)若函数()[]233f x x ,x ,=∈-易知()2f x x =在[]3,0-上单调递减,在[]0,3上单调递增当0x =时,()min 0f x =,当3x =±时,()max 9f x =,∴()f x 的值域为[]0,9.若()[]333f x x ,x ,=∈-,易知()3f x x =在[]3,3-上是增函数当3x =-时,()min 27f x =-,当3x =时,()max 27f x =,∴()f x 的值域为[]2727,-.。

高一数学幂函数与指数练习

高一数学幂函数与指数练习

幂函数与指数练习题题型一:幂函数的定义1.(2022·全国·高一单元测试)现有下列函数:①y=x3;②y=(12)x;③24y x=;④y=x5+1;⑤y=(x−1)2;⑥y=x;⑦y=a x(a>1),其中幂函数的个数为()A.1 B.2 C.3 D.4题型二:幂函数的值域问题2.(2022·全国·高一课时练习)已知幂函数f(x)=x a的图象过点(9,3),则函数1()()1f xyf x−=+在区间[1,9]上的值域为()A.[-1,0] B.[−12,0]C.[0,2] D.[−32,1]3.已知点(n,8)在幂函数f(x)=(m−2)x m的图象上,则函数g(x)=√m−x−2√x−n的值域为()A.[0,1]B.[−2,0]C.[−1,2]D.[2,1]−题型三:幂函数的定点和图像问题4.(2022·全国·高一单元测试)下列命题正确的是()A.幂函数的图象都经过(0,0),(1,1)两点B.函数y=x−1的图象经过第二象限C.如果两个幂函数的图象有三个公共点,那么这两个函数一定相同D.如果幂函数为偶函数,则图象一定经过点(−1,1)5.(2020·凉山·高一期末)若函数y=f(x)与y=g(x)图象关于y=x对称,且f(x+2)=x a+3,则y=g(x)必过定点()A.(4,0)B.(4,1)C.(4,2)D.(4,3)6.(2021秋•西岗区校级月考)幂函数y=x−1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),则幂函数y=x12的图象经过的“卦限”是()A.①,⑦B.④,⑧C.③,⑦D.①,⑤7.幂函数y=x m,y=x n,y=x p,y=x q的图象如图,则将m,n,p,q的大小关系用“<”连接起来结果是8.(2021秋•大连期末)已知幂函数y=x a与y=x b的部分图象如图所示,直线x=m2,x=m(0<m<1)与y=x a,y=x b分别交于A,B,C,D四点,且|AB|=|CD|,则m a+m b=()A.12B.1 C.√2D.29.幂函数y=x m(m≠0),当m取不同的正数时,在区间[0,1]上它们的图象是一簇美丽的曲线(如图).设点A(1,0),B(0,1),连结AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图象三等分,即有BM=MN=NA,则αβ=()A.4B.3C.2D.1题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2022春•丽江期末)若a=(12)23,b=(15)23,c=(12)13,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c11.已知幂函数f(x)=x m2−2m−3(m∈N∗)的图象关于 y 轴对称,且在(0,+∞)上单调递减,求满足(a+1)−2m3<(1−2a)−2m3的a的取值范围.【练习】已知幂函数 y=x3m−9(m∈N∗)的图象关于 y 轴对称且在(0,+∞)上单调递减,求满足(a+1)−m3<(3−2a)−m3的a的取值范围.题型五:幂函数的奇偶性问题12.(2021秋•渝中区校级期末)“m2+4m=0”是“幂函数f(x)=(m3−m2−20m+1)x m−23为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件题型六:幂函数的综合性问题13.已知函数f(x)=3x5+x3+5x+2,若f(a)+f(2a−1)>4,则实数a的取值范围是()A.(13,+∞)B.(−∞,13)C.(),3−∞D.(3,+∞)14.(2021秋•徐汇区校级期末)已知函数f(x)=(m2−5m+1)x m+1(m∈Z)为幂函数,且为奇函数.(1)求m的值,并确定f(x)的解析式;(2)令g(x)=f(x)+√2x+1,求y=g(x)在x∈[−12,1]的值域.15.(2021春•韶关期末)已知幂函数f(x)=(p2−3p+3)x p2−32p−12,满足f(2)<f(4).(1)求函数f(x)的解析式;(2)若函数g(x)=[f(x)]2+mf(x),x∈[1,9],且g(x)的最小值为0,求实数m的取值范围. (3)若函数ℎ(x)=n−f(x+3),是否存在实数a,b(a<b),使函数ℎ(x)在[a,b]上的值域为[a,b]?若存在,求出实数n的取值范围;若不存在,说明理由.【练习】(2022·全国·高一课时练习)已知幂函数f(x)=(a2−3a+3)x a为偶函数,(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)+(2m−1)x−3在[−1,3]上的最大值为1,求实数m的值..16.已知______,且函数g(x)=x+b2x2+a①函数f(x)=x2+(2−a)x+4在定义域[b−1,b+1]上为偶函数;②函数f(x)=ax+b(a>0)在[1,2]上的值域为[2,4].在①,②两个条件中,选择一个条件,将上面的题目补充完整,求出a,b的值,并解答本题.(1)判断g(x)的奇偶性,并证明你的结论;(2)设ℎ(x)=−x−2c,对任意的1x R,总存在x2∈[−2,2],使得g(x1)=ℎ(x2)成立,求实数c的取值范围.题型七:对勾函数的运用17. 已知函数f (x )=x +9x (x ≠0).(1)当x ∈(3,+∞)时,判断并证明f (x )的单调性; (2)求不等式f (3x 2)+f (3x )≤0的解集.18. 已知函数f (x +1)=x 2+3x+1x+1.(1)求f (x )的解析式;(2)若对任意x ∈[12,2],a ∈[0,1],不等式f (x )<ma +m 2+12恒成立,求m 的取值范围.题型八:幂的运算 1.根式⑴ 如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N ∗),则x 叫做a 的n 次方根. ⑵ 当√a n有意义的时候,√a n叫做根式,n 叫做根指数.⑶ 根式的性质:① (√a n )n =a ,(n >1,且*n ∈N )a n a n ⎧⎪=⎨⎪⎩,当为奇数,当为偶数 2.分数指数⑴ 规定正数的正分数指数幂的意义:a mn=√a m n(a >0 , m , n ∈N ∗ , 且n >1) ⑵ 规定正数的负分数指数幂的意义:a −m n =1a m n(a >0 , m , n ∈N ∗ , 且n >1)3.实数指数幂的运算法则a αa β=a α+β;(a α)β=a αβ ;(ab)α=a αb α (其中a >0,b >0,对任意实数α,β).1. 求下列各式的值:(1)√(−8)33= ,(2)√(−8)2= ,(3)√(3−π)44= ,(4)√(a −b)2=2. 化简:①a 2⋅√a 53⋅a −52⋅a 56=_______;②(√x 13x −23)−85=_______;③(xaa−b)1c−a⋅(xb b−c)1a−b ⋅(xcc−a)1b−c (x >0)=_______.3. ⑴化简求值:①12513+271324315+1;②8112−(18)−1+30.⑵若2x =132,则x =________;若1√223=2x ,则x =_______.4. ⑴计算下列各式(式中每个字母均为正数)①(2x 14y −23)⋅(−3x 14y 13)34xy −23; ②2a 14b−13÷(−18a −14b −23);③13131142422223234x x x x x −⎛⎫⎛⎫⎛⎫+−−− ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;④(目标班专用)√23−6√10−4√3+2√2; ⑤(目标班专用)a 2+b 2−a −2−b −2a 2b 2−a −2b −2+(a−a −1)(b−b −1)ab+a −1b −1.5. ⑵(目标班专用)已知a 23+b 23=4,x =a +3a 13b 23,y =b +3a 23b 13,求(x +y )23+(x −y )23的值.【练习】(1)已知,32121=+−xx 求3212323++++−−x x x x 的值.(2)化简:a 43−8a 13b4b 23+2√ab 3+a 23÷(a−23−2√b 3a)×√a⋅√a 23√√a⋅√a5。

高一数学幂函数(能力提升)高一数学

高一数学幂函数(能力提升)高一数学

专题3.3 幂函数(能力提升)一、选择题。

1.(2022•黑龙江开学)下列关于幂函数y=xα的命题中正确的有()A.幂函数图象都通过点(0,0),(1,1)B.当幂指数α=1,3,﹣1时,幂函数y=xα的图象都经过第一、三象限C.当幂指数α=1,3,﹣1时,幂函数y=xα是增函数D.若α<0,则函数图象不通过点(0,0),(1,1)2.(2021秋•广东期末)“m=1”是“幂函数f(x)=(m2﹣3m+3)x m在(0,+∞)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021秋•渝中区校级期末)“m2+4m=0”是“幂函数为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2021秋•成都期末)对于函数f(x)定义域中任意的x1,x2,当时,总有①;②都成立,则满足条件的函数y=f(x)可以是()A.y=10x B.y=lgx C.y=x2D.y=cos2x 5.(2021秋•巫山县校级期末)幂函数y=f(x)的图象经过点,则f(x)()A.是偶函数,在(0,+∞)上单调递增B.是偶函数,在(0,+∞)上单调递减C.是奇函数,在(0,+∞)上单调递减D.是非奇非偶偶函数,在(0,+∞)上单调递增6.(2022•芦溪县校级开学)已知幂函数f(x)的图象过点,则f(3)=()A.9B.3C.D.7.(2021秋•西岗区校级月考)幂函数y=x﹣1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),则幂函数的图象经过的“卦限”是()A.①,⑦B.④,⑧C.③,⑦D.①,⑤8.(2021秋•张掖期末)已知幂函数f(x)=(m2﹣4m﹣4)•x m在(0,+∞)上单调递减,则m=()A.﹣5B.5C.﹣1D.19.(2021秋•大连期末)已知幂函数y=x a与y=x b的部分图象如图所示,直线x=m2,x =m(0<m<1)与y=x a,y=x b分别交于A,B,C,D四点,且|AB|=|CD|,则m a+m b =()A.B.1C.D.210.(2022春•丽江期末)若,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.3 幂函数
一、基础过关
1.下列结论错误的个数为________.
①幂函数图象一定过原点;
②当α<0时,幂函数y =x α是减函数;
③当α>1时,幂函数y =x α是增函数;
④函数y =x 2既是二次函数,也是幂函数.
2.在函数y =1x
2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为________. 3.函数y =x 12
-1的图象关于x 轴对称的图象大致是______.(填图象编号)
4.下列表示y =x 23
的图象的是________.(填图象编号)
5.给出以下结论:
①当α=0时,函数y =x α的图象是一条直线;
②幂函数的图象都经过(0,0),(1,1)两点;
③若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大; ④幂函数的图象不可能在第四象限,但可能在第二象限.
则正确结论的个数为________.
6.函数y =x 12
+x -1的定义域是________. 7.已知函数f (x )=(m 2+2m )·xm 2+m -1,m 为何值时,函数f (x )是:(1)正比例函数;(2)反
比例函数;(3)二次函数;(4)幂函数.
8.已知幂函数f (x )=xm 2-m -3为奇函数,且在区间(0,+∞)上是减函数(m ∈N *,且m ≥2).
(1)求f (x );
(2)比较f (-2 008)与f (-2)的大小.
二、能力提升
9.设a =5253⎪⎭⎫ ⎝⎛,b =5352⎪⎭⎫ ⎝⎛,c =52
52⎪⎭
⎫ ⎝⎛,则a ,b ,c 的大小关系为________. 10.函数f (x )=x α,x ∈(-1,0)∪(0,1),若不等式f (x )>|x |成立,则在α∈{-2,-1,0,1,2}的条
件下,α可以取值的个数是________.
11.已知幂函数f (x )的图象过点(2,2),幂函数g (x )的图象过点⎝⎛⎭
⎫2,14. (1)求f (x ),g (x )的解析式;
(2)当x 为何值时,①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).
三、探究与拓展
12.已知幂函数f (x )=xm 2-2m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,
求满足(a +1)-m 3<(3-2a )-m 3
的a 的取值范围.
答案
1.3
2.1
3.②
4.②
5.1
6.(0,+∞)
7.解 (1)若f (x )为正比例函数,
则⎩⎪⎨⎪⎧
m 2+m -1=1,m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数,
则⎩⎪⎨⎪⎧
m 2+m -1=-1,m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则
⎩⎪⎨⎪⎧
m 2+m -1=2,m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,
∴m =-1±2.
8.解 (1)因为幂函数f (x )=xm 2-m -3为奇函数,且m ∈N *,
所以m 2-m -3为奇数.
因为f (x )在区间(0,+∞)上是减函数,
所以m 2-m -3<0,
又m ∈N *,且m ≥2,
当m =2时,m 2-m -3=4-2-3=-1,
当m =3时,m 2-m -3=3>0,
即m >3时,m 2-m -3>0.
所以f (x )=x -1.
(2)由(1)知f (x )=1x -,
所以f (-2 008)=()12008--
=-12 008
, f (-2)=
()12--=-12. 因为-12 008>-12
, 所以f (-2 008)>f (-2).
9.a >c >b
10.2
11.解 (1)设f (x )=x α,∵其图象过点(2,2),故2=(2)α,解得α=2,
∴f (x )=x 2.
设g (x )=x β,∵其图象过点⎝⎛⎭⎫2,14,∴14
=2β, 解得β=-2,∴g (x )=x -2.
(2)
在同一坐标系下作出f (x )=x 2与g (x )=x -2的图象,如图所示.由图象可知:f (x ),g (x )的图象均过点(-1,1)与(1,1).
∴①当x >1或x <-1时,f (x )>g (x );
②当x =1或x =-1时,f (x )=g (x );
③当-1<x <1且x ≠0时,f (x )<g (x ).
12.解 ∵函数在(0,+∞)上递减,∴m 2-2m -3<0,解得-1<m <3.∵m ∈N *,∴m =1,2.
又函数的图象关于y 轴对称,
∴m 2-2m -3是偶数,
而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,
∴m =1.
而f (x )=x -13
在(-∞,0),(0,+∞)上均为减函数, ∴(a +1)-13<(3-2a )-13
等价于a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a . 解得a <-1或23<a <32.
故a 的取值范围为
⎩⎨⎧⎭⎬⎫
a |a <-1或23<a <32.。

相关文档
最新文档