偏微分方程的解法
偏微分方程与常微分方程的解法
偏微分方程与常微分方程的解法在数学领域中,微分方程是一类重要的方程,常见的包括偏微分方程和常微分方程。
本文将介绍偏微分方程和常微分方程的解法。
一、偏微分方程的解法偏微分方程是涉及多个变量的方程,其中包含了未知函数的偏导数。
解决偏微分方程的方法有很多种,以下将介绍其中两种常见的解法。
1. 分离变量法分离变量法是一种常用的解偏微分方程的方法。
首先,将多变量的偏微分方程转化为一个或多个只包含一个变量的常微分方程。
然后,通过求解这些常微分方程,得到原偏微分方程的解。
举例来说,考虑一个常见的分离变量法的应用:热传导方程。
热传导方程描述了物质内部温度的变化情况。
假设我们要解决一维热传导方程,可以将变量分离为时间变量和空间变量。
通过引入一个分离常数,将方程转化为两个常微分方程,然后求解这两个方程得到温度分布的解析解。
2. 变量替换法变量替换法是解决偏微分方程的另一种常见方法。
该方法通过引入适当的变量替换,将原方程转化为一个更简单的形式。
通过这种变换,可以使得方程的求解更加容易。
以二阶线性偏微分方程为例,假设要解决的方程为:$$\frac{{\partial^2 u}}{{\partial x^2}} + \frac{{\partial^2 u}}{{\partialy^2}} = 0$$我们可以通过引入新的变量替换,例如令$v = \frac{{\partialu}}{{\partial x}}$,将原方程转化为两个常微分方程$\frac{{dv}}{{dx}} = 0$和$\frac{{dv}}{{dy}} = 0$。
然后,求解这两个方程,再回代求解原方程,得到偏微分方程的解。
二、常微分方程的解法常微分方程是只依赖一个自变量的方程,其中包含了未知函数的导数。
解决常微分方程的方法也有很多种,以下介绍其中两种常见的解法。
1. 分离变量法分离变量法同样可用于求解常微分方程。
通过将方程中的未知函数和自变量分离,将其转化为可分离变量的形式。
常微分方程与偏微分方程的解法
常微分方程与偏微分方程的解法常微分方程和偏微分方程是数学中的两类重要方程类型,它们在物理、工程、经济等领域中具有广泛应用。
本文将介绍常微分方程和偏微分方程的解法,并探讨它们在实际问题中的应用。
一、常微分方程的解法常微分方程是指只含有一元函数的导数的方程。
对于一阶常微分方程,可以通过分离变量、齐次方程、一阶线性方程和可化为可分离变量形式的方程四种方法进行求解。
1. 分离变量法分离变量法适用于形如dy/dx = f(x)g(y)的方程,其中f(x)和g(y)是x 和y的函数。
通过将方程两边分别关于x和y积分,可以将方程从一个含有导数的方程转化为一个只含有变量的方程。
最后进行变量替换和常数的求解即可得到方程的解。
2. 齐次方程法齐次方程是指形如dy/dx = F(y/x)的方程。
通过变换y = vx,将方程转化为一个可分离变量形式的方程。
具体步骤是将dy/dx = F(y/x)转化为dy/y = F(dx/x)。
然后对两边分别积分,最后进行变量的替换,得到方程的解。
3. 一阶线性方程法一阶线性方程是指形如dy/dx + P(x)y = Q(x)的方程。
通过引入一个积分因子,可以将方程转化为一个可直接求解的方程。
积分因子满足条件μ(x) = e^(∫P(x)dx),其中P(x)是方程中y的系数。
最后将方程两边乘以积分因子,再利用乘法法则和积分规则进行求解。
4. 可化为可分离变量形式的方程对于形如dy/dx = f(ax + by + c)的方程,可以通过变换u = ax + by + c来将方程转化为一个可分离变量的形式。
将dy/dx = f(u)进行变量替换和求解,最后再通过反向的代换将方程转化到y = F(x)的形式,得到方程的解。
二、偏微分方程的解法与常微分方程不同,偏微分方程含有多个变量的偏导数,并且解是一个多变量的函数。
常见的偏微分方程求解方法有分离变量法、特征线法和变量替换法。
1. 分离变量法分离变量法适用于形如u_t = F(x,t)的偏微分方程。
偏微分方程的解法
偏微分方程的解法偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,它描述了多变量函数的偏导数之间的关系。
这些方程在自然科学、工程应用和社会科学等领域都发挥着重要作用。
解决偏微分方程是一个复杂而有挑战性的过程,需要运用多种数学方法和工具来求解。
在本文中,我将为您介绍几种常见的偏微分方程的解法,并提供一些示例以帮助您更好地理解。
以下是本文的主要内容:1. 一阶线性偏微分方程的解法1.1 分离变量法1.2 特征线方法2. 二阶线性偏微分方程的解法2.1 分离变量法2.2 特征值法2.3 Green函数法3. 非线性偏微分方程的解法3.1 平移法3.2 线性叠加法3.3 变换法4. 数值方法解偏微分方程4.1 有限差分法4.2 有限元法4.3 谱方法5. 偏微分方程的应用领域5.1 热传导方程5.2 波动方程5.3 扩散方程在解一阶线性偏微分方程时,我们可以使用分离变量法或特征线方法。
分离变量法的基本思路是将方程中的变量分离,然后通过积分的方式求解每个分离后的常微分方程,最后再将结果合并。
特征线方法则是将方程中的变量替换为新的变量,使得方程中的导数项消失,从而简化求解过程。
对于二阶线性偏微分方程,分离变量法、特征值法和Green函数法是常用的解法。
分离变量法的核心思想与一阶线性偏微分方程相似,将方程中的变量分离并得到常微分方程,然后进行求解。
特征值法则利用特征值和特征函数的性质来求解方程,适用于带有齐次边界条件的问题。
Green函数法则通过引入Green函数来求解方程,其特点是适用于非齐次边界条件的情况。
非线性偏微分方程的解法则更加复杂,常用的方法有平移法、线性叠加法和变换法。
这些方法需要根据具体问题的特点选择合适的变换和求解技巧,具有一定的灵活性和创造性。
除了上述解析解法,数值方法也是解偏微分方程的重要手段。
常用的数值方法包括有限差分法、有限元法和谱方法等。
偏微分方程的解法
例 7.6 求解如下定解问题:
utt − a uxx = f (x, t),(−∞< x < ∞, t > 0) ut (x,0) =ψ (x) u(x,0) = ϕ(x),
2
本题可根据线性方程的性质,假定原问题的解可以表示为: 解: 本题可根据线性方程的性质,假定原问题的解可以表示为:
d’Alembert公式 公式
考察泛定方程的通解: 考察泛定方程的通解: 泛定方程 作一变换: 作一变换: x ' =
u ( x, t ) = f1 ( x + at ) + f 2 ( x − at )
x + at ,则有 f1 ( x + at ) = f1 ( x ') .这表明在相对于
运动的坐标系中来看, 原来坐标轴以速度 a 运动的坐标系中来看,通解中的第一部分贡献是和 时间无关的;回到原来坐标系中观察, 时间无关的;回到原来坐标系中观察,则第一部分贡献的波形随时间变 轴正向移动.同理, 化以速度 a 沿 x 轴正向移动.同理,通解中第二部分可以看作另外一列 反向传播的行波的贡献. 反向传播的行波的贡献.
其中 F
( x )、G ( y ) 是任意两个独立的函数.
1 2
如果指定 F
( x ) =0,
特解. G ( y ) = 0 ; 则 u ( x, y ) = xy 2 − x 2 y 是原方程的一个特解 特解
一般地,一个 n 阶常微分方程的通解含有 n 常数。一 个 n 阶偏微分方程的通解含有 n 个任意函数。
9Leabharlann 原方程满足初始条件的 解可以表示为: 故原方程满足初始条件的特解可以表示为: 满足初始条件
1 1 x + at u ( x, t ) = [ϕ ( x + at ) + ϕ ( x − at ) ]+ ∫ ψ ( x ') dx ' 2 2a x − at
高等数学中的偏微分方程方法
高等数学中的偏微分方程方法偏微分方程是数学中的一类非常重要的方程。
它们广泛应用于物理、工程和其他领域中,如热传导、电路等等。
因此,研究偏微分方程的方法和技巧尤为重要。
在高等数学中,有许多关于偏微分方程的方法,下面我们来介绍其中的几种。
1. 分离变量法分离变量法是解偏微分方程的一种常用方法。
这种方法的基本思想是假设解可以表示为形式为x、y、z等变量的函数之积的形式,然后通过代入相关偏微分方程中去求解出每个变量的解,最终将这些解组合起来得到总体解。
以拉普拉斯方程为例,其定义如下:$\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0$假设解为$u(x,y,z)=X(x)Y(y)Z(z)$,则可以得到:$\frac{1}{X}\frac{\partial^2 X}{\partialx^2}+\frac{1}{Y}\frac{\partial^2 Y}{\partialy^2}+\frac{1}{Z}\frac{\partial^2 Z}{\partial z^2}=0$由于等式左边是一个只关于x的函数与一个只关于y的函数之和,所以这个等式必须等于常数k。
因此,我们可以得到:$\frac{1}{X}\frac{\partial^2 X}{\partial x^2}=k_1$,$\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2}=k_2$,$\frac{1}{Z}\frac{\partial^2 Z}{\partial z^2}=k_3$然后我们可以对每一个方程分别求解得到:$X(x)=Ae^{\sqrt{k_1}x}+Be^{-\sqrt{k_1}x}$,$Y(y)=Ce^{\sqrt{k_2}y}+De^{-\sqrt{k_2}y}$,$Z(z)=Ee^{\sqrt{k_3}z}+Fe^{-\sqrt{k_3}z}$最终得到的总体解形式为:$u=\sum_{n=1}^{\infty} C_ne^{(-\sqrt{k_1^2+k_2^2+k_3^2})r}sin(n_1x)sin(n_2y)sin(n_3z)$2. 特征线法特征线法是一种常用于解决一阶偏微分方程的方法。
偏微分方程解法
偏微分方程解法导言偏微分方程是数学中一个重要的研究领域,它涉及到物理、工程、经济等众多学科,对于解决现实世界中的问题起着至关重要的作用。
本文将深入探讨偏微分方程的解法,包括常见的求解方法和应用示例。
偏微分方程简介在分析偏微分方程之前,我们先了解一下什么是偏微分方程。
简单来说,偏微分方程是由未知函数及其偏导数构成的方程。
它包含多个自变量和多个偏导数,用于描述有多个变量的物理现象或者其他现象。
常见的偏微分方程求解方法分离变量法分离变量法是解偏微分方程的主要方法之一。
它的基本思想是将偏微分方程中的未知函数表示为多个单变量函数的乘积,然后进行求解。
具体步骤如下: 1. 分离变量:将未知函数表示为多个单变量函数的乘积。
2. 将方程化为两端只含单变量函数的方程。
3. 求解单变量函数的方程。
4. 将求解得到的单变量函数组合在一起,得到原方程的解。
特征线法特征线法是另一种常用的偏微分方程求解方法。
它的基本思想是通过引入曲线方程(特征线),将偏微分方程转化为常微分方程,然后再进行求解。
特征线法的步骤如下: 1. 引入曲线方程,将偏微分方程转化为常微分方程。
2. 求解常微分方程。
3. 将常微分方程的解代回原方程,得到原方程的解。
变换方法除了分离变量法和特征线法,还有一些其他的变换方法可以用来求解偏微分方程。
其中比较常用的有变换坐标法和变换函数法。
变换坐标法的基本思想是通过适当的坐标变换,将原方程转化为更简单的形式,然后再进行求解。
变换函数法的基本思想是通过引入新的未知函数,将原方程转化为只含有新未知函数的形式,然后再进行求解。
偏微分方程解法的应用示例偏微分方程解法广泛应用于各个领域,下面将简要介绍一些应用示例。
热传导方程热传导方程是物理学中的一个重要方程,它描述了热量在物体中的传导过程。
通过对热传导方程进行求解,可以得到物体温度分布随时间的变化规律,从而可以预测物体的热传导行为。
斯托克斯方程斯托克斯方程是流体力学中的一个基本方程,描述了流体在静止或者稳定的情况下的运动规律。
偏微分方程的几种解法
偏微分方程的几种解法偏微分方程(Partial Differential Equations, PDEs)是数学中的一个重要分支,广泛应用于物理学、工程学、经济学等领域。
解决PDEs的问题是科学研究和工程实践中的一个关键任务。
本文将介绍几种常见的偏微分方程的解法。
一、分离变量法分离变量法是解偏微分方程最常用的方法之一。
其基本思想是将未知函数表示为一系列互相独立的分离变量的乘积,然后将方程两边同时关于这些变量积分。
这样就可以得到一系列常微分方程,然后通过求解这些常微分方程得到原偏微分方程的解。
例如,对于二维的泊松方程(Poisson Equation)∇²u = f,可以假设u(x, y) = X(x)Y(y),将其代入方程后得到两个常微分方程,然后分别求解这两个常微分方程,最后将其合并即可得到泊松方程的解。
分离变量法的优点是简单易行,适用于一些特定的偏微分方程。
但也存在一些限制,例如只适用于线性齐次方程、边界条件满足一定条件等。
二、变量替换法变量替换法是另一种常见的解偏微分方程的方法。
通过合适的变量替换,可以将原方程转化为一些形式简单的方程,从而更容易求解。
例如,对于热传导方程(Heat Equation)∂u/∂t = α∇²u,可以通过变量替换u(x, t) = v(x, t)exp(-αt)将其转化为∂v/∂t = α∇²v,然后再利用分离变量法或其他方法求解新方程。
变量替换法的优点是可以将一些复杂的偏微分方程转化为简单的形式,便于求解。
但需要根据具体问题选择合适的变量替换,有时可能会引入新的困难。
三、特征线法特征线法是解一阶偏微分方程的一种有效方法。
通过寻找方程的特征线,可以将方程转化为常微分方程,从而更容易求解。
例如,对于一维线性对流方程(Linear Convection Equation)∂u/∂t + c∂u/∂x = 0,其中c为常数,可以通过特征线法将其转化为沿着特征线的常微分方程du/dt = 0,然后求解得到解。
偏微分方程数值解法
偏微分方程数值解法偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,其在物理学、工程学、经济学等领域有广泛的应用。
然而,对于大多数偏微分方程而言,很难通过解析方法得到精确解,因此需要借助数值解法来求解。
本文将介绍几种常见的偏微分方程数值解法。
一、有限差分法(Finite Difference Method)有限差分法是一种常见且直观的偏微分方程数值解法。
其基本思想是将偏微分方程中的导数通过差分近似来表示,然后通过离散化的方式转化为代数方程组进行求解。
对于一维偏微分方程,可以通过将空间坐标离散化成一系列有限的格点,并使用中心差分格式来近似原方程中的导数项。
然后,将时间坐标离散化,利用差分格式逐步计算每个时间步的解。
最后,通过迭代计算所有时间步,可以得到整个时间域上的解。
对于二维或高维的偏微分方程,可以将空间坐标进行多重离散化,利用多维的中心差分格式进行近似,然后通过迭代计算得到整个空间域上的解。
二、有限元法(Finite Element Method)有限元法是另一种重要的偏微分方程数值解法。
其基本思想是将求解区域分割成有限数量的子区域(单元),然后通过求解子区域上的局部问题来逼近整个求解区域上的解。
在有限元法中,首先选择适当的形状函数,在每个单元上构建近似函数空间。
然后,通过构建变分问题,将原偏微分方程转化为一系列代数方程。
最后,通过求解这些代数方程,可以得到整个求解区域上的解。
有限元法适用于各种复杂的边界条件和几何构型,因此在实际工程问题中被广泛应用。
三、谱方法(Spectral Methods)谱方法是一种基于特定基函数(如切比雪夫多项式、勒让德多项式等)展开解的偏微分方程数值解法。
与有限差分法和有限元法不同,谱方法在整个求解区域上都具有高精度和快速收敛的特性。
在谱方法中,通过选择适当的基函数,并利用其正交性质,可以将解在整个求解区域上展开为基函数系数的线性组合。
偏微分方程的解法
偏微分方程的解法偏微分方程(Partial Differential Equation,简称PDE)是数学中一种重要的方程形式,广泛应用于物理、工程、金融等领域。
本文将介绍几种常见的偏微分方程的解法,并对其原理和应用进行详细的讨论。
一、分离变量法分离变量法是求解偏微分方程中最常用的方法之一。
该方法的基本思想是将偏微分方程中的未知函数表示为多个单变量函数的乘积,然后通过分别求解这些单变量函数的常微分方程来得到原方程的解。
以下以一个简单的例子来说明该方法的具体步骤。
考虑一个常见的一维热传导方程:\[\frac{{\partial u}}{{\partial t}} = \alpha \frac{{\partial^2 u}}{{\partial x^2}}\]假设 u(x,t) 可以表示为两个单变量函数的乘积形式:u(x,t) =X(x)T(t),将其代入原方程,可以得到如下的形式:\[\frac{1}{\alpha}\cdot\frac{1}{X(x)}\cdot\frac{{d^2X}}{{dx^2}} =\frac{1}{T(t)}\cdot\frac{{dT}}{{dt}} = -\lambda\]通过解这两个单变量函数所满足的常微分方程,可以得到 X(x) 和T(t) 的解,再将其组合即可得到原方程的通解。
二、变换方法变换方法是另一种重要的求解偏微分方程的技巧。
通过对原方程进行适当的变换,可以将其转化为常微分方程或者其他更容易求解的形式。
以下介绍两种常见的变换方法。
1. 傅立叶变换法傅立叶变换法被广泛应用于分析和求解各种偏微分方程。
通过将原方程进行傅立叶变换,可以将其转化为代数方程,并通过解代数方程来得到原方程的解。
具体来说,假设原方程为:\[L[u(x,t)] = f(x,t)\]将其进行傅立叶变换,可以得到:\[L[\hat{u}(k,\omega)] = \hat{f}(k,\omega)\]然后通过解代数方程来求得 \(\hat{u}(k,\omega)\),再进行逆傅立叶变换即可得到 u(x,t) 的解。
偏微分方程的基本理论与解法
偏微分方程的基本理论与解法偏微分方程(Partial Differential Equations,简称PDE)是数学中非常重要的一个分支。
它描述了自然界中各种物理现象和工程问题中的变化和传播过程。
本文将介绍偏微分方程的基本理论和一些常见的解法。
一、偏微分方程的定义与分类偏微分方程是包含多个未知函数及其偏导数的方程。
它的一般形式可以表示为F(x1, x2, ..., xn, u, ∂u/∂x1, ∂u/∂x2, ..., ∂u/∂xn) = 0,其中u是未知函数,而∂u/∂xi表示对变量xi的偏导数。
根据方程中涉及的未知函数的个数以及偏导数的阶数,偏微分方程可以分为以下几类:1. 一阶偏微分方程:方程中包含一阶偏导数。
2. 二阶偏微分方程:方程中包含二阶偏导数。
3. 高阶偏微分方程:方程中包含高于二阶的偏导数。
4. 线性偏微分方程:方程中的未知函数及其偏导数之间的关系是线性的。
5. 非线性偏微分方程:方程中的未知函数及其偏导数之间的关系是非线性的。
二、偏微分方程的基本理论1. 解的存在性和唯一性:对于一些特定类型的偏微分方程,可以证明在一定的条件下,方程存在唯一的解。
这对于物理和工程问题的建模和求解非常重要。
2. 奇性理论:奇性现象是指当某些参数取特定值时,偏微分方程的解会发生突变。
奇性理论研究了这些特殊情况下方程解的行为。
3. 变分原理:变分原理是一种通过极小化能量泛函来求解偏微分方程的方法。
它是最优控制、计算物理等领域中的重要工具。
三、常见的偏微分方程解法1. 分离变量法:这是一种常见的求解线性偏微分方程的方法。
通过假设解可分离变量的形式,将方程转化为一系列常微分方程。
2. 特征线法:特征线法适用于一些特殊的偏微分方程,通过引入一组参数,将方程转化为关于参数的常微分方程组。
3. 变换法:变换法通过引入适当的变换,将原方程转化为简单形式的偏微分方程,进而求解。
总结:本文简单介绍了偏微分方程的基本理论与解法。
各类偏微分方程的解法
各类偏微分方程的解法偏微分方程是数学中的重要分支,广泛应用于物理学、工程学以及许多其他科学领域。
本文档将介绍几种常见的偏微分方程以及它们的解法。
1. 热传导方程热传导方程描述了物体内部的温度分布随时间的变化情况。
它的一般形式如下:$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$其中,$u$ 是物体的温度分布,$t$ 是时间,$\alpha$ 是热传导系数。
常见的解法包括分离变量法、变换法和格林函数法。
这些方法可以用来求解不同边界条件下的热传导方程。
2. 波动方程波动方程描述了波的传播和振动现象,常用于描述声波、电磁波等。
它的一般形式如下:$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \nabla^2 u$$其中,$u$ 是波函数,$t$ 是时间,$c$ 是波速。
常用的解法包括分离变量法、变换法和傅里叶变换法。
这些方法可以求解不同边界条件下的波动方程。
3. 粒子扩散方程粒子扩散方程描述了物质粒子的扩散过程。
它的一般形式如下:$$\frac{\partial u}{\partial t} = D \nabla^2 u$$其中,$u$ 是物质浓度分布,$t$ 是时间,$D$ 是扩散系数。
常见的解法包括分离变量法、变换法和格林函数法。
这些方法可以用来求解不同边界条件下的粒子扩散方程。
4. 薛定谔方程薛定谔方程描述了量子力学系统中粒子的行为。
它的一般形式如下:$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \Psi + V\Psi$$其中,$\Psi$ 是波函数,$t$ 是时间,$\hbar$ 是约化普朗克常数,$m$ 是质量,$V$ 是势能。
求解薛定谔方程涉及到一些特殊的数学技巧,如变换方法和定态解法。
偏微分方程的求解方法
偏微分方程的求解方法偏微分方程是研究自然现象中具有变化性、互相联系的物理量之间的关系的数学工具。
例如流体力学、电磁学、量子力学等领域中,大量问题都可以用偏微分方程来描述。
因此,研究偏微分方程求解方法是数学领域中一个重要的研究方向。
偏微分方程的一般形式为$$F(x, u, \frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2}, ..., \frac{\partial^n u}{\partial x^n})=0$$其中,$x$是自变量,$u(x)$是未知函数,$\frac{\partialu}{\partial x}, \frac{\partial^2 u}{\partial x^2}, ..., \frac{\partial^n u}{\partial x^n}$是$u(x)$的各阶导数,$F$是给定的函数。
偏微分方程的求解方法主要有分离变量法、变量代换法、特征线法、有限差分法、有限元法等。
一、分离变量法分离变量法是偏微分方程最常用的求解方法之一。
分离变量法的基本思路是,假设$u(x)$可以表示为几个只与$x$有关的函数的积的形式,通过代入偏微分方程中,再根据对称性和正交性等特征来推导出每个函数的具体形式。
例如,考虑一维热传导方程$$\frac{\partial u}{\partial t}=\alpha\frac{\partial^2 u}{\partialx^2}$$其中,$u(x, t)$表示在位置$x$和时间$t$上的温度分布,$\alpha$为热传导系数。
假设$u(x, t)$可以表示为$$u(x,t)=X(x)T(t)$$将$u(x,t)$代入热传导方程中,得到$$\frac{1}{\alpha}\frac{T'(t)}{T(t)}=\frac{X''(x)}{X(x)}=-\lambda$$其中,$\lambda$为常数。
偏微分方程的解法
偏微分方程的解法偏微分方程(Partial Differential Equations, PDEs)是数学中的重要分支,在科学和工程领域具有广泛的应用。
解决偏微分方程的问题,可帮助我们理解自然界中的各种现象,如电磁场的传播、流体运动等。
本文将介绍几种常见的偏微分方程的解法。
一、分离变量法分离变量法是解偏微分方程最常见的方法之一。
我们以二阶线性偏微分方程为例,假设其形式为:A(x,y)u_{xx} + B(x,y)u_{xy} + C(x,y)u_{yy} + D(x,y,u,u_x,u_y) = 0其中u表示未知函数,A、B、C、D为已知函数。
为了使用分离变量法,我们假设解可以表示为两个函数的乘积形式:u(x,y) = X(x)Y(y)将上述形式代入方程,利用变量分离的性质,可将原方程化简为两个常微分方程。
解决这两个常微分方程,即可得到偏微分方程的解。
二、特征线法特征线法适用于一类特殊的偏微分方程,其中包含一阶偏导数和高阶偏导数的混合项。
我们以一维波动方程为例,其形式为:u_{tt} - c^2 u_{xx} = 0其中c表示波速。
特征线法的思想是引入新的变量,使得原方程可以转化为一组常微分方程。
对于波动方程,我们引入变量ξ和η,定义如下:ξ = x + ctη = x - ct通过做变量替换后,原方程可以转化为常微分方程:u_{ξη} = 0这样,我们可以通过求解常微分方程得到偏微分方程的解。
三、变换方法变换方法包括拉普拉斯变换、傅里叶变换等,通过引入新的变量,将原偏微分方程转化为代数方程,然后利用代数方程的解法解出未知函数。
变换方法的优势在于可以将一些常见的偏微分方程转化为代数方程,从而简化解法的步骤。
四、数值解法对于复杂的偏微分方程,解析解可能难以求得或不存在。
此时,数值解法就变得非常重要。
常用的数值解法包括差分法、有限元法、有限差分法等。
这些方法将连续的偏微分方程离散化,将其转化为差分方程或代数方程,然后使用计算机进行求解。
帮助高中生理解数学偏微分方程的解法
帮助高中生理解数学偏微分方程的解法在数学学科中,偏微分方程是一种常见且重要的工具。
它描述了自然界中许多现象的行为和变化。
然而,对许多高中生而言,理解和解决偏微分方程可能是一项具有挑战性的任务。
本文将介绍一些简单且易于理解的方法,以帮助高中生解决数学偏微分方程。
1. 什么是偏微分方程偏微分方程是包含未知函数的方程,其中该未知函数的多个自变量中的一个或多个进行了偏导数运算。
这种方程常被用来描述区域内某个变量的变化及其与其他变量的关系。
2. 一阶偏微分方程的解法对于一阶偏微分方程,常见的解法之一是分离变量法。
该方法基于假设解可以表示为两个独立变量的乘积,从而将方程转化为两个常微分方程,进而可以更容易地求解。
例如,考虑以下的一阶偏微分方程:∂u/∂x + ∂u/∂y = 0假设 u(x,y) = X(x)Y(y),将其代入方程,得到:X'(x)Y(y) + X(x)Y'(y) = 0将两边分离,得到两个常微分方程:X'(x)/X(x) = -Y'(y)/Y(y)对两边进行积分,得到:ln|X(x)| = -ln|Y(y)| + C其中,C为常数。
通过简化和整理,我们可以得到最终的解: X(x)Y(y) = C',其中,C'为常数。
这样,我们得到了一阶偏微分方程的解法。
3. 高阶偏微分方程的解法-特征线方法对于高阶偏微分方程,常用的解法之一是特征线方法。
该方法基于假设解沿着某些特定曲线或特征线变化,通过对这些特征线进行求解,最终可以得到偏微分方程的解。
举个例子,考虑以下的二阶偏微分方程:∂²u/∂x² + 2∂²u/∂x∂y + ∂²u/∂y² = 0假设特征线方程为 dx/dt = dy/dt = dz/dt可以通过对此方程组进行求解来确定特征线,并将特征线代入原方程,从而得到一个关于z的常微分方程。
4. 使用数值方法求解偏微分方程对于一些复杂的偏微分方程,解析解可能很难获得。
偏微分方程的数值解法
偏微分方程的数值解法在科学和工程领域中,偏微分方程(Partial Differential Equations,简称PDEs)被广泛应用于描述自然现象和工程问题。
由于许多复杂的PDE难以找到解析解,数值方法成为了求解这些方程的重要途径之一。
本文将介绍几种常见的偏微分方程数值解法,并探讨其应用。
一、有限差分法有限差分法是求解偏微分方程最常用的数值方法之一。
其基本思想是将空间和时间连续区域离散化成有限个点,通过差分逼近偏微分方程中的导数,将偏微分方程转化为差分方程。
然后,利用差分方程的迭代计算方法,求解近似解。
以一维热传导方程为例,其数值解可通过有限差分法得到。
将空间区域离散化为若干个网格点,时间区域离散化为若干个时间步长。
通过差分逼近热传导方程中的导数项,得到差分方程。
然后,利用迭代方法,逐步更新每个网格点的数值,直到达到收敛条件。
最终得到近似解。
二、有限元法有限元法是另一种常用于求解偏微分方程的数值方法。
它将连续的空间区域离散化为有限个单元,将PDE转化为每个单元内的局部方程。
然后,通过将各个单元的局部方程组合起来,构成整个区域的方程组。
最后,通过求解这个方程组来获得PDE的数值解。
有限元法的优势在于可以适应复杂的几何形状和边界条件。
对于二维或三维的PDE问题,有限元法可以更好地处理。
同时,有限元法还可以用于非线性和时变问题的数值求解。
三、谱方法谱方法是利用一组基函数来表示PDE的解,并将其代入PDE中得到一组代数方程的数值方法。
谱方法具有高精度和快速收敛的特点,在某些问题上比其他数值方法更具优势。
谱方法的核心是选择合适的基函数,常用的基函数包括Legendre多项式、Chebyshev多项式等。
通过将基函数展开系数与PDE的解相匹配,可以得到代数方程组。
通过求解这个方程组,可以得到PDE的数值解。
四、有限体积法有限体积法是将空间域划分为有限个小体积单元,将PDE在每个小体积单元上进行积分,通过适当的数值通量计算来近似描述流体在边界上的净流量。
偏微分方程解法
偏微分方程解法一、概述偏微分方程是数学中的一个重要分支,广泛应用于物理、工程、经济等领域。
解决偏微分方程的方法有很多种,其中最常用的方法是数值解法和解析解法。
本文将重点介绍偏微分方程的解析解法。
二、基本概念1. 偏微分方程:含有多个自变量和它们的偏导数的方程。
2. 解析解:能够用一定的代数式或函数表示出来的解。
3. 常微分方程:只含一个自变量和它的导数的方程。
4. 偏微分方程分类:(1)线性偏微分方程:各项次数之和为1或2。
(2)非线性偏微分方程:各项次数之和大于2。
5. 解析解法分类:(1)可分离变量法(2)相似变量法(3)积分因子法(4)特征线法(5)变换法三、可分离变量法可分离变量法是求解一类特殊形式线性偏微分方程最常用的方法,其基本思想是将未知函数表示成各自变量之积,然后将其带入原偏微分方程中得到一组常微分方程,再求解这些常微分方程,最后将得到的解代回原方程中即可。
以一阶线性偏微分方程为例:$$\frac{\partial u}{\partial t}+a(t)u=b(t)$$其中$a(t)$和$b(t)$为已知函数,$u=u(x,t)$为未知函数。
将未知函数表示成各自变量之积:$$u=X(x)T(t)$$将其带入原方程中得到:$$XT'+aXT=bXt$$将$X$和$T$分离变量并整理得到:$$\frac{1}{X}\frac{dX}{dx}=\frac{1}{at+b}-\frac{c}{X}$$其中$c$为常数。
对上式两边同时积分得到:$$ln|X|=ln|at+b|-ct+D_1,D_1为常数。
$$即可得到$X(x)$的解析解。
同理,对于$T(t)$也可以通过可分离变量法求出其解析解。
最后将$X(x)$和$T(t)$的解代入原方程中即可得到未知函数$u=u(x,t)$的解析解。
四、相似变量法相似变量法是一种适用于非线性偏微分方程的方法,其基本思想是通过引入新的自变量和因变量,将原偏微分方程转化成一个形式相似但更简单的方程,从而求出原方程的解析解。
偏微分方程常见解法
偏微分方程常见解法
偏微分方程(Partial Differential Equations, PDE)一直是高等教育中非
常重要的学科,由于它延伸到数学、物理、工程和计算机科学领域,理解和解决这些偏微分方程都是非常具有挑战性的。
当偏微分方程变得复杂和数量庞大时,就需要借助一系列的数学方法来进行解决,常见的解法可分为三类:分析解法,数值解法和解析解法。
分析解法是利用分析学概念(譬如拉格朗日乘子法)来解决偏微分方程,其假
设结果是以某种解析式形式出现,其最大的优点就是解出来的答案是可以直观观察,但是最明显的缺点就是没有办法用于求解复杂情况。
数值解法是基于数值技术,如有限差分法和蒙特卡洛法,来解决偏微分方程,
它的最大优点在于可以用于解决复杂的情况,但是缺点在于容易有误差,而且在很多情况下,不能找到全局最优解。
解析解法是混合应用分析学和数值学技术,如有限元法和粒子法,来解决偏微
分方程,它具有数值解法解决复杂情况和分析解法易于理解结果的共同优点,但是也会有误差。
总而言之,偏微分方程的解法是充满挑战的,因此在高等教育中,教师应重视
与之相关课题的加强,致力于提高学生的基础数学水平和数值分析能力,从而更好的应对不断增加的偏微分方程的解决问题。
偏微分方程的几种经典解法
偏微分方程的几种经典解法经过一个学期偏微分方程课程的学习,我们掌握了几种求解三种典型方程的方法,如分离变量法、行波法、特征函数展开法、求解非齐次方程的Duhanmel 原理灯,此外,我们通过学习还掌握了求解波动方程的'D Alembert 公式,求解位势方程的Green 公式等等.这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的.本文着重总结了偏微分方程的几种经典解法,一次介绍了分离变量法、行波法、幂级数解法、Fourier 变换法以及Green 函数法,通过对典型方程的研究,深入理解集中经典方法.1.分离变量法分离变量法:基本思想是设法把偏微分方程的问题转化为解常微分方程的问题.1.1第一初边值问题例:利用分离变量法求解下述问题(非齐次0边值双曲方程)2222sin 2cos 2,u ux t t x ∂∂-=∂∂ 0,0x t π<<> (1.1) (0,)(,)0,u t u t π== 0t > (1.2) (,0)sin ,u x x =0x π<< (1.3)(,0)sin 2,ux x t∂=∂ 0x π<< (1.4) 解:用分离变量法求问题(1.1)—(1.4)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.5)方程(1.1)对应的齐次方程为22220,u ut x∂∂-=∂∂0,0x t π<<> (1.6) 将(1.5)式代入方程(1.6)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.7) 其中λ为固定常数,下面证明0λ>. 由(1.7)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.2)和(1.5)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.2)—(1.6)可以化为如下形式的两个常微分问题,即()()"()()0,1(0)()0,2X x X x X X λπ⎧+=⎪⎨==⎪⎩ 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题. 求解问题(1).根据常微分方程的理论可知,问题(1)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.8)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底.将问题(1.1)—(1.4)中的非齐次项和初值按{}1()n n X x ∞=展开,得1sin 2cos 2()sin ,n n x t f t nx ∞==∑ 0,0x t π≤≤≥1sin sin ,n n x a nx ∞==∑ 0,x π≤≤1sin 2sin ,n n x b nx ∞==∑ 0,x π≤≤其中0,1()cos 2,20,0,3n n f t t n t n =⎧⎪==≥⎨⎪≥⎩ 1,10,2n n a n =⎧=⎨≥⎩,0,11,20,3n n b n n =⎧⎪==⎨⎪≥⎩设1(,)()()n n n u x t X x T t ∞==∑, 0,0x t π≤≤≥ (1.9)是问题(1.1)—(1.4)的形式解,将上式代入(1.1)—(1.4)可得,()n T t 是如下常微分方程初值问题的解,"'()()(),0(0),(0),n n n n n n n n T t T t f t t T a T b λ⎧+=>⎪=⎨⎪=⎩,其中1,2,n = . 求解问题(2).当1n =时,问题(2)转化为求常微分问题"11'11()()0,(0)0,(0)1,T t T t T T ⎧+=⎪=⎨⎪=⎩ (3) 有常微分方程理论可知,问题(3)的通解为112()cos sin T t c t c t =+.将其代入1(0)1T =,得11c =.将12()cos sin T t t c t =+代入'1(0)0T =得20c =.故1()cos T t t =. 当2n =时,问题(2)转化为常微分问题"22'22()4()cos 2,(0)1,(0)0,T t T t t T T ⎧+=⎪=⎨⎪=⎩ (4)对应其次方程的特征根为2i α=±,用常微分方程中的算子解法求特解.2(4)cos2,D x t +=故sin 24tx t =.所以问题(4)的通解为212()cos 2sin 2sin 2.4tT t c t c t t =++将其代入2(0)0T =得10c =,将22()sin 2sin 24t T t c t t =+代入'2(0)1T =得212c =,故22()sin 2.4t T t t +=当3n ≥时,问题(2)转化为常微分问题"2'()()0,(0)0,(0)0,n n n nT t n T t T T ⎧+=⎪=⎨⎪=⎩ (5) 由常微分理论可知,问题(5)的通解为12()cos sin ,3,4,n T t c nt c nt n =+= 将其代入(0)0,n T =得10c =.将2()sin n T t c nt =代入'(0)0,n T =得20c =.故()0n T t =. 综上有cos ,1,2()sin 2,2,040,3,n t n t T t t n t n =⎧⎪+⎪==≥⎨⎪≥⎪⎩(1.10)将(1.8)(1.10)代入(1.9)中,得问题(1.1)—(1.4)的形式解为2(,)sin cos sin 2sin 2,4t u x t x t x t +=+ 0,0x t π≤≤≥经检验,该形式解满足原问题及初边值条件,该形式解就是原问题的解. 例:利用分离变量法求解下述问题22220,u ut x ∂∂-=∂∂ 0,0x t π<<> (1.11) (0,)sin ,(,)0,u t t u t π== 0t >, (1.12) (,0)0,u x = 0x π<<, (1.13)(,0),u x x t ππ∂-=∂ 0x π<<, (1.14)解:将上述非零边值问题转化为零边值问题,用变量代换,设(,)u x t 是原问题的解,令(,)(,)sin ,xv x t u x t t ππ-=-0,0x t π≤≤≥. 则(,)v x t 是如下问题的解2222(,),v vf x t t x ∂∂-=∂∂ 0,0x t π<<> (1.15) (0,)(,)0,v t v t π== 0t >, (1.16) (,0)0v x =, 0x π<<, (1.17)(,0)0,vx t∂=∂ 0x π<<, (1.18) 其中(,)sin ,xf x t t ππ-=0,0x t π≤≤≥. 用分离变量法求问题(1.15)—(1.18)的形式解.设该问题有如下形式的形式解(,)()()v x t X x T t =, (1.19)方程(1.15)对应的齐次方程为22220,v vt x∂∂-=∂∂ 0,0x t π<<>, (1.20) 将(1.19)代入方程(1.20)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.21) 其中λ为固定常数,下面证明0λ>. 由(1.21)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.16)和(1.19)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.16)—(1.18)(1.20)可以化为如下形式的两个常微分问题,即"()()0,(0)()0,X x X x X X λπ⎧+=⎨==⎩ (6) 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题.(7) 求解问题(6).根据常微分方程的理论可知,问题(6)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.22)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底. 将问题(1.15)—(1.18)的非齐次项按{}1()n n X x ∞=展开,得1sin ()sin ,n n xt f t nx ππ∞=-=∑0,0.x t π≤≤≥ 令sin n xc nx ππ-=,则在其两端同乘sin nx 再在(0,)π上积分,得 200sin sin 2nn x nxdx c nxdx c πππππ-==⎰⎰. 由分部积分,经计算可得2n c n π=.从而2()sin n f t t n π=,0t ≥,1,2,n = . 设1(,)()()n n n v x t X x T t ∞==∑,0,0.x t π≤≤≥是问题(1.15)—(1.18)的形式解,将其带入(1.15)—(1.18)可得,()n T t 是如下常微分问题的解"22()()sin ,n n T t n T t t n π+=0,t > (1.23) (0)0,n T = (1.24) '(0)0,n T = (1.25)其中1,2,n =(1.23)—(1.25)对应的齐次方程的特征根为ni α=±,则通解为()cos sin n n n T t A nt B nt =+.用算子算法求特解,222()()sin n D n T t t n π+=,解得 22sin ()(1)n tT t n n π=-.故该问题的通解为22sin ()cos sin (1)n n n tT t A nt B nt n n π=++-. (1.26)将上式代入(0)0,n T =得0n A =,将22sin ()sin (1)n n tT t B nt n n π=+-代入'(0)0,n T =得222(1)n B n n π-=-,1,2,n = . 故2222sin 2sin ()(1)(1)n nt tT t n n n n ππ-=+--,0,t >1,2,n = . 因此,问题(1.15)—(1.18)的形式解为22212sin 2sin (,)sin (1)(1)n nt t v x t nx n n n n ππ∞=⎛⎫-=+ ⎪--⎝⎭∑,0,0.x t π≤≤≥ (1.27) 考察(1.27)右端级数的收敛性.记2222sin 2sin sin (1)(1)n nt t a nx n n n n ππ⎛⎫-=+ ⎪--⎝⎭,0,0,x t π≤≤≥1,2,n = . 容易验证下列级数均在[0,][0,)π⨯+∞上一致收敛1n n a ∞=∑,1n n a x ∞=∂∂∑,1n n a t ∞=∂∂∑,221n n a x ∞=∂∂∑,221n n a t ∞=∂∂∑,21nn a x t ∞=∂∂∂∑. 经检验,(,)v x t 满足问题(1.15)—(1.18),就是 问题(1.15)—(1.18)解.将(1.27)代入(,)(,)sin xu x t v x t t ππ-=+,0,0,x t π≤≤≥ 得22212sin 2sin (,)sin sin (1)(1)n nt t xu x t nx t n n n n ππππ∞=⎛⎫--=++ ⎪--⎝⎭∑,0,0,x t π≤≤≥ 此即为原问题(1.11)—(1.14)的解.1.2第二初边值问题例:利用分离变量法求解下述问题(抛物型)220,u ut x ∂∂-=∂∂ 01,0x t <<> (1.28) (0,)(1,)0,u u t t x x ∂∂==∂∂ 0,t > (1.29) (,0)cos ,u x x π= 01,x << (1.30)解:用分离变量法求解问题(1.28)—(1.30)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.31)将其代入(1.28)有"'()()()()X x T t X x T t λ∆==-,01,0x t <<> (1.32) 其中λ为某一常数,且0λ≥. 由(1.32)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,1)上积分,得11"20()()()0,X x X x dx X x dx λ+=⎰⎰注意到由(1.29)和(1.31)有''(0)(1)0,X X ==所以有11'220()()X x dx X x dx λ=⎰⎰易见0λ≥.故(1.28)—(1.30)可化为如下形式的两个常微分问题,即"''()()0,01,(0)(1)0,X x X x x X X λ⎧+=<<⎨==⎩ (8) 和'()()0,0T t T t t λ+=> (9)求解问题(8),当0λ=时,有"()0X x =,''(0)(1)0,X X ==由常微分方程的理论可知,问题(8)的通解为12()X x c c x =+,01x ≤≤.将其代入'(0)0X =,有20c =,故1()X x c =,其中1c 为任意常数. 当0λ>时,由常微分方程的理论可知,问题(8)的通解为12(),X x c c =+ 01x ≤≤将其代入'(0)0X =,则20c =,将1()X x c =代入'(1)0X =,得2()n n λπ=, 1,2,n =特征值n λ对应的特征函数为()cos n X x n x π=,1,2,n = ,01x ≤≤. 所以,对于0λ≥,有()cos n X x n x π=,01x ≤≤, 0,1,2,n =注意到{}1()n n X x ∞=是一个直交系统,即10,,()(),,2m n m n X x X x dx m n π≠⎧⎪=⎨=⎪⎩⎰ 这表明{}1()n n X x ∞=正规化后是2((0,1))L 的一个基底. 下面求解问题(9),将2()n n λπ=代入,可有'22()()0,n n T t n T t π+=0,1,2,n = ,0t ≥.有常微分方程理论可知其通解为223()n t n T t c e π-=, 0,1,2,n = , 0t ≥.此时,形式解为2230(,)()()cos n t n n n n u x t X x T t c n xe ππ∞∞-====∑∑, 01x ≤≤,0t ≥.将其代入(1.30)中,得30(,0)cos cos n u x c n x x ππ∞===∑,01,x <<由比较系数法,可得31,10,1n c n =⎧=⎨≠⎩故问题(1.28)—(1.30)的形式解为2(,)cos t u x t xe ππ-=,01x ≤≤,0t ≥.经检验,该形式解满足原问题(1.28)—(1.30),此即为原问题的解.1.3 Poisson 方程的边值问题分离变量法还适用于某些特殊形状区域上的二维Poisson 方程的各种边值问题,如果所考虑的定解区域是矩形域,那么可以完全仿照前面的方法来求解,只是此时x,y 之一要扮演t 的角色;如果定解区域是圆域或环形域,则应先做极坐标变换将定解问题化为矩形区域上的定解问题,然后利用分离变量法求解. 例:利用分离变量法求解下述问题22222212(),u u x y x y∂∂+=-∂∂ 12,<< (1.33)(,)0,u x y =1,= (1.34)(,)0,ux y υ∂=∂2,= (1.35)其中υ为2{(,)2}x y R ∂∈上的单位外法向量.解:用分离变量法求解问题(1.33)—(1.35)的形式解.首先,通过极坐标变换将环形域上的定解问题化为矩形域上的定解问题,做极 坐标变换cos ,sin ,x y ρθρθ=⎧⎨=⎩ 12,02ρθπ≤≤≤≤, 则(1.33)—(1.35)化为2222221112cos 2,v v vρθρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.36) (1,)0,(2,)0,vv θθρ∂==∂ 02θπ<<, (1.37) 其中(,)(cos ,sin )v u ρθρθρθ=,12,02ρθπ≤≤≤≤.注意到在极坐标条件下(,0)ρ与(,2)ρπ表示同一点,故(,)v ρθ还满足如下周期性条件(,0)(,2),(,0)(,2),v v v v ρρπρρπθθ∂∂==∂∂ 12,ρ<< (1.38) 问题(1.36)—(1.38)是一个定解问题. 方程(1.36)对应的齐次方程为22222110,v v vρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.39) 设问题对应的形式解为(,)()()v R ρθρθ=ψ,12,02ρθπ≤≤≤≤. (1.40)将(1.40)代入(1.37)中,得"'"211()()()()()()0,R R R ρθρθρθρρψ+ψ+ψ= 12,02ρθπ<<<<即"2"'()()(),()()R R R θρρρρλθρ∆ψ+=-=-ψ12,02ρθπ<<<<, (1.41) 其中λ为固定常数,下面证明0λ≥.由(1.41)有"()()0,θλθψ+ψ= 02θπ<<,在上式两端同乘()θψ,并在(0,2)π上积分,由(1.38)和(1.40)可知''(0)(2),(0)(2),ππψ=ψψ=ψ所以有22'220()(),d d ππθθλθθψ=ψ⎰⎰易见0λ≥.所以问题(1.37)(1.38)(1.40)可化为两个常微分问题,即"''()()0,(0)(2),(0)(2),θλθππ⎧ψ+ψ=⎪⎨ψ=ψψ=ψ⎪⎩ 02θπ<<, (10) 以及2"'()()()0R R R ρρρρλρ+-=和适当定解条件的常微分问题(11)求解问题(10).当0λ=时,有"''()0,(0)(2),(0)(2),θππψ=ψ=ψψ=ψ由常微分方程的理论可知,问题(10)的通解为()A B θθψ=+,02θπ≤≤,代入(0)(2)πψ=ψ得()A θψ=,其中A 为任意实数. 当0λ>时,通解为(),A B θψ=+02θπ≤≤, 将其代入''(0)(2),(0)(2)ππψ=ψψ=ψ有sin ,A A B =+=-+,故2,1,2,n n n λ==特征值n λ对应的特征函数为()cos sin ,02,1,2,n n n A n B n n θθθθπψ=+≤≤= .其中n A 和n B 是任意不同时为零的实数,综上可知()cos sin ,02,0,1,2,n n n A n B n n θθθθπψ=+≤≤= ,其中0A 是任意不为零的实数,n A 和n B 是任意不同时为零的实数. 注意到1{cos sin }n n n θθ∞=+是一个直交系统,即20()()0,,,0,1,2,m n m n m n πθθψψ=≠=⎰,这表明1{cos sin }n n n θθ∞=+正规化后是2((0,2))L π的一个基底.设1(,)()()()cos ()sin ,n n n n n n n v R A n B n ρθρθρθρθ∞∞∞====ψ=+∑∑∑12,02ρθπ≤≤≤≤,将非齐次项按1{cos sin }n n n θθ∞=+展开,有2n =时,2212A ρ=代入(1.4)—(1.6)有"'22222'2214()()()12,(1)(2)0,A A A A A ρρρρρρ⎧+-=⎪⎨⎪==⎩ 12,ρ<< 2"'2'1()()()0,12,(1)(2)0,n n n nn n A A A A A ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 0,1,3,4,n = ,和2"'2'1()()()0,12,(1)(2)0,n n n nn n B B B B B ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 1,2,3,n = .解得2242129112(),1717A ρρρρ-=-++ 12ρ≤≤, ()0n A ρ=, 12ρ≤≤,0,1,3,4,n = , ()0n B ρ=, 12ρ≤≤,1,2,3,n = .故224129112(,)()cos 21717v ρθρρρθ-=-++, 12,02ρθπ≤≤≤≤ 因此,原问题的形式解为2222222112(,)[12917()],17()x y u x y x y x y -=-++++12≤. 经检验,该形式解满足原问题,即为原问题的解.二.行波法行波法:求解一维波动方程的常用解法,利用这种方法得到波动方程的一个重要求解公式('d Alembert 公式)1.齐次波动方程cauchy 问题定理2.1('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),则函数 ()()()()()x+atx-at11u x t =x-at +x+at +d 22a ϕϕψξζ⎰,,[)()2u C R 0+∈⨯∞, 是cauchy 问题22222u u-a=0t x ∂∂∂∂, x R t>0∈, ()(),0u x x ϕ=, x R ∈()(),0ux x tψ∂=∂, x R ∈的解.例:求解下述波动方程的cauchy 问题()()2222120,,0,0cos ,,0cos ,u u uu x R t t x t u x x x R ux e x x R t -⎧∂∂∂-++=∈>⎪∂∂∂⎪⎪=∈⎨⎪∂⎪=-∈⎪∂⎩解:首先将方程化为标准形式.设u 是原问题的解,令()(),,,,0t v x t e u x t x R t =∈≥则v 是如下问题的解()()222210,,0,cos ,,0,v vx R t t x v x t x x Rvx e x R t -⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩由定理2.1可知()()()()1111,cos cos 22cos cos ,,0x t x tv x t x t x t e d x t te x R t ζ+---=-+++=+∈≥⎰ 因此()()()1,cos cos t u x t e x t t e -+=+, ,0x R t ∈≥为原问题的解.利用一维齐次波动方程cauchy 问题的通解表达式,还可以求解其他定解问题.在此不再赘述.2.非齐次波动方程的cauchy 问题定理2.2('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),[)()10,f C R ∈⨯+∞, 则函数()()()()()()()()011,221,,,02x atx att x a t x a t u x t x at x at d a f d d x R t a ττϕϕψξζζτζτ+-+---=-++++∈≥⎰⎰⎰属于[)()20,C R ⨯+∞,是cauchy 问题()()()()()22222,,,0,0,,0,u u a f x t x R t t x u x x x R ux x x R t ϕψ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩的解,其中0a >.注2.1上述问题解得光滑程度本质上取决于初值和非齐次项的光滑程度. 注2.2 如果()(),x x ϕψ和(),f x t 都是x 的奇(偶,周期)函数,则上述问题的解也是x 的奇(偶,周期)函数. 例:求解下述波动方程的定解问题()()()()()()22222,,00,0,0,0,0,0,0u u a f x t x t x u t t u x x x ux x x tϕψ∂∂-=>∂∂=>=>∂=>∂其中0a >,[)()[)()[)[)()2110,,0,,0,0,C C f C ϕψ∈+∞∈+∞∈+∞⨯+∞,且满足相容性条件()()()()2''000,00,0a f ϕψϕ==-=解:注意到如果u 是x 的奇函数,则u 自然满足边值条件.因此,根据注2.2,我们可以采用奇延拓方法来求解上述问题.将()(),x x ϕψ和(),f x t 关于0x =做奇延拓,即令()()(),0,0x x x x x ϕϕ≥⎧⎪Φ=⎨-<⎪⎩ ()()(),,0x x x x x ψψ≥⎧⎪ψ=⎨-<⎪⎩ ()()(),,0,0,,,0,0f x t x t F x t f x t x t ≥≥⎧⎪=⎨-<≥⎪⎩考虑cauchy 问题()()()()()22222,,,0,0,,0,u u a F x t x R t t x u x x x R ux x x R t⎧∂∂-=∈>⎪∂∂⎪⎪=Φ∈⎨⎪∂⎪=ψ∈∂⎪⎩ 按'd Alembert 公式形式地写出其解()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d F d d x R t aττξζζτζτ+-+---=Φ-+Φ++ψ+∈≥⎰⎰⎰回到原来的初值,ϕψ和非齐次项f ,就可以得到原问题的形式解如下:当0x at ≥≥时,()()()()()()()()011,221,2x atx at t x a t x a t u x t x at x at d af d d aττϕϕψξζζτζτ+-+---=-++++⎰⎰⎰ ()1而当0x at ≤≤时,()()()()()()()()()()())/0/11,221(,,2x at at x t x a x a t t x a t a t x t x a x a t u x t at x x at d af d d f d d aττττϕϕψξζζτζτζτζτ+--+-+------=--+++++⎰⎰⎰⎰⎰ ()2可以直接验证由()1和()2确定的形式解[)[)()20,0,u C ∈+∞⨯+∞就是定解问题的解.三.幂级数解法幂级数解法:是求解偏微分方程的经典解法之一,不仅可以求解一维问题,还可以求解高维问题.我们先来求解如下的常微分方程初值问题()()()()2''0,00,'00,u t a u t t u A u +=>== ()()()3.13.23.3其中0a >方程()3.1的通解是()12cos sin ,0u t C at C at t =+≥其中1C 和2C 是任意实数.由边值条件()3.2和()3.3,可得12,0C A C ==.于是,问题()()3.1 3.3-的解为()cos ,0u t A at t =≥注意到()()()201cos ,02!nnn at at t n ∞=-=≥∑因此,问题()()3.1 3.3-的解可写为如下的级数形式()()()()()()222001,02!2!nn nnn n at tu x A a A t n n ∞∞==-==-≥∑∑. ()3.4定理3.1 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数()202!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()()()2222200,,,0,2!2!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑ 就是波动方程Cauchy 问题()()()22220,,0,0,,0=0,u ux R t t x u x x x R u x x Rt ϕ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪∈∂⎪⎩的级数形式的形式解.定理3.2 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数0!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()22200,,,0,!!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑就是热传导方程Cauchy 问题220,,0u u x R t t x ∂∂-=∈>∂∂()(),0,u x x x R ϕ=∈的级数形式地形式解.幂级数方法求解问题的一大优点就是空间维数不限,下面的例子是一个高维问题.例:求解三维波动方程的Cauchy 问题()()()()()()()()()232330,,,,0, 3.5,,,0,,,,,, 3.6,,,00,,,,3.7uu x y z R t t u x y z x y z x y z R ux y z x y z R tϕ∂-∆=∈>∂=∈∂=∈∂ 其中222222,x y z∂∂∂∆=++∂∂∂()()2223,,,,,x y z x y z x y z R ϕ=++∈解:令2,a A ϕ=-∆=,则由()3.4可得到问题()()3.5 3.7-的级数形式的形式解()()()()230,,,,,,,,,02!n nn t u x y z t x y z x y z R t n ϕ∞==∆∈≥∑ ()3.8将ϕ的表达式代入()3.8,得()()22223,,,3,,,,0u x y z t x y z t x y z R t =+++∈≥容易验证,这个形式解的确是定解问题的解.四.Fourier 变换方法1.()R ε,()D R 和()R ϕ空间(i )()R ε空间:对于{}()1n n u C R ∞∞=⊂和()u C R ∞∈,如果对任何a b <及任何非负整数k ,都有[]()()()(),0sup limk knn x a b u x u x →∞∈-= 则称()n u x 在()C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()C R ∞,称为基本空间()R ε.(ii )()D R 空间:对于{}()01n n u C R ∞∞=⊂和()0u C R ∞∈,如果存在a b <,使得[],n u a b ⊂supp 且对任何非负整数k ,都有()()()()0sup limk knn x Ru x u x →∞∈-= 则称()n u x 在()0C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()0C R ∞,称为基本空间()D R .(iii )()R ϕ空间:如果()u C R ∞∈,且对任何非负整数k 和m ,都有()()s u p k mx Rxu x ∈<+∞,则称()u R ϕ∈.()R ϕ中序列收敛的概念:对于{}()1n n u R ϕ∞=⊂和()u R ϕ∈,如果对任何非负整数m 和k ,都有()()()()()0sup limkkmnn x Rx u x u x →∞∈-= 则称()n u x 在()R ϕ中收敛于()u x .2.速降函数空间上的Fourier 变换(i )定义:设(),R ϕϕ∈称函数[]()(),ix Rx e dx R ξϕξϕξ-=∈⎰F为ϕ的Fourier 变换,也记为();ϕξ∧称函数[]()-11x (),2ix Re d x R ξϕϕξξπ=∈⎰F为ϕ的Fourier 逆变换,也记为()x ϕ∨. (ii )性质:a )设()R ϕϕ∈,对任意正整数m 有()()()[]()()()()[]()11,;m m m m i x ix x ϕξξϕξϕϕ--⎡⎤⎡⎤==-⎣⎦⎣⎦F F F F[]()()()()()[]()()()()()11,.m m mm ix x i x ϕξϕξϕξϕ--⎡⎤⎡⎤=-=⎣⎦⎣⎦F F F Fb) 设()R ϕϕ∈,对任意正整数0a R b R ∈≠∈和,有[]()[]()()()[]()11(),;ia iaxx a e a x e x ξϕξϕξϕξϕ----=-=⎡⎤⎣⎦F F FF[]()[]()()()[]()1111(),.x bx b x b b bbξϕξϕϕξϕ--==⎡⎤⎣⎦F F FFc) 设()12,R ϕϕϕ∈,则[][][][][][]11112121212,2ϕϕϕϕϕϕπϕϕ---*=*=;F F F FF F [][][][][][]111121212121,.2ϕϕϕϕϕϕϕϕπ---=*=*F F F F FF其中12ϕϕ*表示1ϕ与2ϕ的卷积,即()()()()1212,.R x x y y dy x R ϕϕϕϕ*=-∈⎰d )Fourier 变换与Fourier 逆变换都是()R ϕ上的连续线性变换.e )Fourier 变换与Fourier 逆变换互为逆变换. (iii)在速降函数空间中求解热传导方程 考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.1,0,,4.2u u x t R t xu x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.1, 4.2的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.1和初值问题()4.2关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥关于ξ作Fourier 逆变换,并利用()R ϕ上Fourier 逆变换的线性性质,得(),u x t ()212t ix Rg e e d ξξξξπ∧-=⎰()()22241()21()2().iy t ix R R t i x y R R x y tR g y e dye e d g y e d dy g y e dy ξξξξξξπξπ---+---===⎰⎰⎰⎰⎰ 即问题()()4.1,4.2的解u 具有如下表达式的形式解()()24,(),,0.x y tRu x t g y edy x R t --=∈>⎰特别地,若()22,xg x ex R -=∈,则问题()()4.1,4.2的解u 的形式解为()()()2222442,,,0.x x y y t tRu x t eedy x R t ----+==∈≥且容易验证这个形式解满足方程(4.1)和初值问题(4.2),从而是问题(4.1),(4.2)的解.(iv)在速降函数空间中求解弦振动方程考虑弦振动方程的Cauchy 问题()()()()()()()()()22220,,0,,4.3,0,, 4.4,0,,4.5u ux t R t xu x x x R ux x x R tϕψ∂∂-=∈⨯+∞∂∂=∈∂=∈∂其中()()(),x x R ϕψϕ∈.由于()()(),x x R ϕψϕ∈,因此,我们猜想Cauchy 问题()()4.3 4.5-的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.3和初值问题()()4.4,4.5关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()()()()()()2220,0,4.6,0, 4.7,0, 4.8u u t t u ut ξξϕξξψξ∧∧∧∧∧∧⎧∂⎪+=>⎪∂⎪⎪=⎨⎪⎪∂=⎪∂⎪⎩其中R ξ∈.求解这个常微分方程,方程()4.6的通解为()()()12,.i t i t u t C e C e ξξξξξ∧-=+由()()4.7 4.8和,得()()()()()()12121==,.C C C C R i ξξϕξξξψξξξ∧∧+-∈,因此()()()()()()1211=,.22C C R i i ψξψξξϕξξϕξξξξ∧∧∧∧⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪⎝⎭⎝⎭,从而()()()()()11,22i t i t u t e e i i ξξψξψξξϕξϕξξξ∧∧∧∧∧-⎛⎫⎛⎫ ⎪ ⎪=++-⎪ ⎪⎝⎭⎝⎭()()()()1,,0.(4.9)22i t i t i t i t e e e e R t i ξξξξψξϕξξξ∧∧--=++-∈≥将()()i t i t e e i ξξξ--改写为()1,,0.t i t i t i t e e e d R t i ξξξττξξ---=∈≥⎰ 对()4.9两端同时关于ξ作Fourier 变换,结合上式可得(),u x t ()()()()11222i t i t i t i t ix R e e e e e d i ξξξξξψξϕξξπξ∧∧--⎡⎤⎢⎥=++-⎢⎥⎣⎦⎰ ()()()()()()()()()()()()()()()()()()()1144111222112211,,0.22t i x t i x t i i xR R t t i x t t R t tx tx te e d e d e d x t x t e d d x t x t x d x t x t d x R t ξξξτξξϕξξψξτξππϕϕψξξτπϕϕψττϕϕψξξ∧∧+--∧+--+-=++⎛⎫=++-+ ⎪⎝⎭=++-++=++-+∈≥⎰⎰⎰⎰⎰⎰⎰即问题()()4.3 4.5-的解u 具有如下表达式的形式解()()()()()11,,,0.22x tx tu x t x t x t d x R t ϕϕψξξ+-==++-+∈≥⎰3.广义函数(i )定义:(),D R ()R ε和()R ϕ上的连续线性泛函分别称为()',D R ()'R ε和()'R ϕ广义函数,它们统称为广义函数;(),D R ()R ε和()R ϕ上的全体连续线性泛函分别记为()',D R ()'R ε和()'.R ϕ(ii)判定:a )设F 为()D R 上的线性泛函,则()'F D R ∈的充分必要条件是对任何闭区间[],ab ,存在非负整数~k 和正实数,M 使得()[]()()()[]~,0,,.sup k x a b k kF u M u x u D R a b ∈≤≤≤∈⊂且supp ub )设F 为()R ε上的线性泛函,则()'F R ε∈的充分必要条件是存在闭区间[],a b以及非负整数~k 和正实数,M 使得()[]()()()~,0,.sup k x a b k kF u M u x u R ε∈≤≤≤∈c )设F 为()R ϕ上的线性泛函,则()'F R ϕ∈的充分必要条件是存在非负整数~~,m k 和正实数,M 使得()()()()~~0,0,.supk m x Rm m k kF u Mx u x u R ϕ∈≤≤≤≤≤∈4.广义函数空间上的Fourier 变换(i )定义:设()[]()',f R f Fourier f R ϕϕ∈定义的变换为如下的上的泛函F[][](),,,f f R ϕϕϕϕ=∈,FF也记为;f ∧[]()-1f Fourier f R ϕ定义的逆变换为如下的上的泛函F[][]()-1-1,,,f f R ϕϕϕϕ=∈,F F也记为f ∨. (ii )性质:a )设()'f R ϕ∈,有()[]()[]()'1'1,;f i f f x ix f x ξξ--⎡⎤⎡⎤==-⎣⎦⎣⎦F FFF[]()()()()[]()()()()'11,'.f ixf x f x i f x ξξξξ--=-=⎡⎤⎡⎤⎣⎦⎣⎦F FFF这里,导数指广义导数,乘积是指广义函数与其乘子的乘积.b )Fourier 变换与Fourier 逆变换都是()'R ϕ上的连续线性变换.c )Fourier 变换与Fourier 逆变换互为逆变换.(iii )()'R Fourier ϕ上的变换方法考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.10,0,,4.11u u x t R t x u x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()'g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.10,4.11的解u 满足(),u t ∙∈()()'0.R t ϕ≥将方程()4.10和初值问题()4.11关于x 作Fourier 变换,并利用()'R ϕ上Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.tu t g eR t ξξξξ∧∧-=∈≥()()()2'',0t g R e t R ξϕϕ∧-∈≥这里是的乘子.关于ξ作Fourier 逆变换,就可以得到问题()()4.10,4.11的形式解. 例:求解问题()()()()()()220,,0,,4.12,0,,4.13u u x t R t x u x x x R δ⎧∂∂-=∈⨯+∞⎪∂∂⎨⎪=∈⎩解:由于初值不是一个普通函数,所以问题()()4.12,4.13的解不可能在 0t =处连续,因此我们需要重新定义u 满足初值条件()4.13的含义.既然g 是一个不是普通函数的()'R ϕ广义函数,因此我们可以把初值条件()4.13定义为:作为()'R ϕ广义函数,(),u t ∙在0t =处等于g ,即()()'0lim ,.t u t g R ϕ+→∙=于下面我们来求解问题()()()4.12,4.13.1, 5.3g ∧=注意到于是由,得()()22,=,,0.ttu t g eeR t ξξξξξ∧∧--=∈≥0t >因此当时,有()()224-14,,.x t tu x t ex R ξ--⎡⎤==∈⎢⎥⎣⎦F()()4.12,4.13于是我们得到问题的形式解()()24,,0.xt u x t x R t -=∈>,()()()0, 5.1.u C R ∞∈⨯+∞容易验证这个形式解满足方程最后验证它还满足初值条件()5.2,即()()()0lim ,,,,.t u x t x R ϕδϕϕϕ+→=∈事实上,对任意的()R ϕϕ∈,有()()()()()()2244,,,xxt t Ru x t x x ex dx ϕϕϕ--==⎰(22,0.yRe dy t ϕ-=>由控制收敛定理可知()()(2lim ,,lim 2y Rt t u x t x e dyϕϕ++-→→=(()200,yRedy ϕϕϕ-===五.Laplace 方程的基本解和Green 函数place 方程的基本解求解全空间上的N (≥2)维Poisson 方程()(), 5.1Nu f x x R -∆=∈的解的表达式,先寻找其次Poisson 方程,即Laplace 方程()0, 5.2Nu x R -∆=∈的径向解,设()(||),N u x w x x R =∈是方程(5.2)的一个解,将u 的表达式代入方程(5.2),得1''(||)'()0,\{0}N N w x w r x R r---=∈也就是说,w 满足方程1''()'()0,0N w r w r r r-+=>即1('())'0,0N r w r r -=>因此1'(),0,N A w r r r -=>其中A 是任意实数.从而2ln ,2(),3N B r C N w r BC N r -+=⎧⎪⎨+≥⎪⎩当,当, 其中B 和C 是任意实数, 定义:称N R 上的函数211ln 22||()1,3(2)||N N N x x N N x πω-⎧=⎪⎪Γ=⎨⎪≥⎪-⎩,当当 为Laplace 方程(5.2)的基本解,也成为Newton 位势,其中N ω是N 维单位球的表面积,Laplace 方程的基本解具有的性质:(1) (\{0})N C R ∞Γ∈,且对任意的\{0}N x R ∈,有()0x ∆Γ=;(2) Γ,1()()Nloc x L R ∇Γ∈,且在广义函数意义下()(),N x x x R δ-∆Γ=∈,即对任意的0()N C R ϕ∞∈,有()()(0)NR x x dx ϕϕ∇Γ⋅∇=⎰或者()()(0)NR x x dx ϕϕΓ⋅∇=-⎰2.Green 函数考虑Poisson 方程的第一边值问题()(),, 5.3u f x x -∆=∈Ω()()(),,5.4u x g x x =∈∂Ω其中Ω是(2)N R N ≥中具有光滑边界的有界区域,设21()()u C C ∈Ω⋂Ω是为题(5.3),(5.4)的解,可以得到对任意的ξ∈Ω,()()()()()(()()),u x x x u x dx u x x u x dS v vξξξΩ∂Ω∂∂Γ-Γ-∆=-+Γ--∂∂⎰⎰ 即()()()()()()(()()), 5.5u x x u x x u x dx x u x dS v vξξξΩ∂Ω∂∂Γ-=Γ-∆+Γ--∂∂⎰⎰其中v 表示∂Ω的单位外法向量,因此,问题(5.3),(5.4)属于21()()C C Ω⋂Ω的解可用(5.5)右侧积分值表示出来,但第二个积分式子中含未知数u 沿外法向量的导数,这是我们所不知道的,注意到由Green 公式可以推出:对任意的21()()v C C ∈Ω⋂Ω,有()()(()()()())(()()),v x u x u x v x v x u x dx u x v x dS v vΩ∂Ω∂∂∆-∆=-∂∂⎰⎰ 即()()()(()()()())(()()). 5.6v x u x u x v x v x f x dx g x v x dS v vΩ∂Ω∂∂∆+=-∂∂⎰⎰由(5.5)和(5.6)得()()()()()[(()())()()()][(()())()()].5.7u u x v x x x v x f x u x v x dx x v x g x dS v v v ξξξξΩ∂Ω=∂∂∂Γ-Γ-++∆+Γ-+-+∂∂∂⎰⎰ 如果21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω是问题()(,)0,,5.8x v x x ξ-∆=∈Ω()(,)(), 5.9v x x x ξξ=-Γ-∈∂Ω的解,那么根据(5.7)有()()()(,)()(),, 5.10G x u G x f x dx g x dS vξξξΩ∂Ω∂=-∈Ω∂⎰⎰其中(,)()(,),(,),.G x x v x x x ξξξξξ=Γ-+∈Ω⨯Ω≠这样我们得到了问题(5.3),(5.4)一个解的表达式(5.10)定义:如果对任意固定的21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω满足方程(5.8)和边值条件(5.9),则我们称定义于{(,):}x x ξξ∈Ω⨯Ω≠上的函数(,)()(,)G x x v x ξξξ=Γ-+为Laplace 算子关于区域Ω的Green 函数,称()x ξΓ-为Green 函数(,)G x ξ的奇异部分,而称(,)v x ξ为Green 函数(,)G x ξ的正则部分,注:如果Green 函数(,)G x ξ的正则部分(,)v x ξ存在,则根据第一边值问题(5.8)(5.9)解的唯一性,可知(,)(,),(,).v x v x x ξξξ=∈Ω⨯Ω因此21()().v C C ∈Ω⨯Ω⋂Ω⨯ΩLaplace 算子关于区域Ω的Green 函数(,)G x ξ具有以下性质: (1) 对任意的(,)x ξ∈Ω⨯Ω,x ξ≠,都有(,)(,);G x G x ξξ=(2) 对任意的ξ∈Ω,有21(,)(\{})(\{}),(,)|0,G C C G ξξξξ∂Ω⋅∈Ω⋂Ω⋅=且对任意的\{}x ξ∈Ω,(,)0x G x ξ∆=;(3) 对任意的ξ∈Ω,有1(,),(,)(),x G G x L ξξ⋅∇∈Ω且在广义函数意义下(,)(),x G x x x ξδξ-∆=-∈Ω.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? 把通解代入初始条件易得 :
f1 ?x ??
f2
?x ??
1 a
x
?
x0
?x '?dx ' ? C0
从中易解得 :
f1 ?x??
1 [?
2
?x ??
?1
x
?
a x0
?x '?dx ' ? C ]
f2 ?x??
1 [? ?x ??
2
?1
x
?
a x0
?x '?dx ' ? C]
9
故原方程满足初始条件的特解可以表示为:
容易知道 ,若设 ? ? b2 ? 4ac ,则分别当 ? ? 0、? ? 0 和
? ? 0 时该方程分别对应于 xy 平面上的双曲线、抛物线和椭圆。
一般地 ,对于一个任意的二次函数
n
n
? ? ? ? f x1, , xn ? aij xi x j ? bi xi ? c
总可以化为如下标准形式:
i, j?1
11
? ? ? ? 时间(足够短 ) 内,外力的冲量为 f x,? ? ? ,? 时刻该冲量在弦
中引起的振动可以由以下方程确定 :
??vtt ? a2vxx ? 0, ??? ? x ? ?? ,? ? t ? ? ? ? ? ?
? ?
v
?x,?
??
0,
vt ?x,? ??
f
?x,? ?
而原问题的解则可以看作持续冲量作用在弦中产生的振动的叠加 ,即:
n
? di 'uxixi ? c 'u ? f ' ? 0 i
7
行波法 d'Alembert 公式
行波法是以自变量的线性组合作变量代换,对方程进 行求解的一种方法,它对波动方程类型的问题求解十分有 效.
一维无界弦自由振动(即无外力)定解问题为:
?utt ? a2uxx ? 0
? ?u
?x,0
??
?
方程。
(三维波动方程、扩散和传导方程以及三维 Poisson方程和Schr?dinger方程
是什么类型的方程?)
6
常系数线性偏微分方程
n
n
? ? 如果在二阶线性偏微分方程
a uij xix j ? biuxi ? cu ? f ? 0
i程可以进一步简化为 :
G ?y ?? 0 ; 则 u ?x, y ?? xy2 ? 1 x2 y 是原方程的一个 特解.
2
一般地,一个 n 阶常微分方程的通解含有 n 常数。一 个 n 阶偏微分方程的通解含有 n 个任意函数。
2
数学物理方程的分类
考察二元二次方程:
ax2 ? bxy ? cy2 ? dx ? ey ? f ? 0
反向传播的行波的贡献 .
10
d'Alembert 公式的应用
1.齐次偏微分方程的求解 (P172)
2.非齐次偏微分方程的求解
??utt ? a2uxx ? f ?x,t ?, ??? ? x ? ?? ,t ? 0?
? ?u
?x,0
??
0,
ut
?x,0
??
0
该体系在外力作用下开始振动,可以看作外界持续给体系 施加以冲量,体系的振动即为持续冲量效果的叠加。从这一思 路出发求解问题被称为冲量原理法。
作一变换 : x ' ? x ? at ,则有 f1 ?x ? at ?? ? ? f1 x ' .这表明在相对于
原来坐标轴以速度 a 运动的坐标系中来看 ,通解中的第一部分贡献是和
时间无关的 ;回到原来坐标系中观察 ,则第一部分贡献的波形随时间变
化以速度 a 沿 x 轴正向移动 .同理,通解中第二部分可以看作另外一列
t
u ?x,t ?? ?0 v ?x,t;? ?d? ? 而且 v ?x,? ?? 1 x? a?t?? ? f ?x ',? ?dx '
2a x? a?t?? ?
12
根据以上分析,易得上述纯受迫振动的解为:
? ? u(x,t) ? 1
t x? a(t?? )
f (? ,? )d? d?
2a 0 x? a(t?? )
回顾
1、定解问题的边界条件 2、定解问题的分类与适定性 3、二阶线性偏微分方程的有关概念 4、常系数线性偏微分方程的通解
1
方程的通解和特解
例子 7.4 二阶线性非齐次偏微方程 uxy ? 2 y ? x 的通解是
u ?x, y?? xy2 ? 1 x2 y ? F ?x?? G ?y?,
2
其中 F ?x?、G ?y?是任意两个独立的函数 . 如果指定 F ?x?=0,
i?1
n
n
? ? f ?x1 ', , xn '?? di x 'i2 ? bi ' xi ' ? c ' 二次型的主轴定理
i?1
i?1
3
类似地,二阶线性偏微分方程
n
n
? ? a uij xi xj ? biuxi ? cu ? f ? 0
i, j
i
一定可以改写为如下“形式”:
n
n
? ? ? ? d u ? i xi 'xi ' b 'i uxi ' ? c 'u ? f ' ? 0 Dx Dy ? Dy Dx
?x ?
? ?
ut
?x,0
??
?
?x ?
8
在本问题中,泛定方程是常系数的;根据前边的讨论,该方程的附
加方程为: ? 2 ? a2 ? 0 ;且解为 ? ? ? a .故原方程的通解可以表示为 :
u ?x,t ?? f1 ?x ? at ?? f2 ?x ? at ?
f1 ?x ?? f2 ?x?? ? ?x ?
i
i
4
根据 di 符号的不同 可以划分方程的类型如下:
有某些 di ? 0 ,
抛物型 ;
所有 di ? 0 ,且均同号,
椭圆型 ;
n ? 1 个 di 同号,另一个反号,
双曲型 ;
di ? 0 ,正和负的个数都不止一个 超双曲型。
由二次型的性质可知,上述分类方法在区域上任一点 总是可行的;但方程在不同的点可能属于不同的类型。
5
两个自变量的情形
抛物型: uxx ? bux ? cu y ? du ? f
椭圆型: uxx ? a2uyy ? bux ? cuy ? du ? f
双曲型: uxx ? a2uyy ? bux ? cuy ? du ? f
显然,弦的横振动方程和杆的纵振动方程是双曲型方程; 一维扩散和传导方程是抛物型方程;二维静电场方程是椭圆型
? u ?x,t ?? 1 [? ?x ? at ?? ? ?x ? at ?]+ 1
x? at
?
?x '?dx '
2
2a x? at
其中的 ? ?x?,? ? ?x 为任意二次可微函数 .
d'Alembert 公式
考察泛定方程的通解 : u ?x,t ?? f1 ?x ? at ?? f2 ?x ? at ?