有限元方法ppt课件

合集下载

桁架有限元分析ppt课件

桁架有限元分析ppt课件

以图26所示的空间 桁架节点 3 为例,说 明总刚矩阵及总刚方 程的建立。该桁架共 有9个单元,5个节点, 单元及节点编号如图 示。相交于节点3的杆 件有⑥⑦⑧⑨。
图3.26 单元及节点编号
➢ 变形协调条件为连于同一节点上的杆端位移相 等 ,即:
➢ 内外力平衡条件为汇交于同一节点的杆端内力 之和等于该节点上的外荷载,即:
➢ (10)按杆件内力调整杆件截面,并重新计算, 迭代次数宜不超过4~5次。

Ec——K支cx承柱3的EH材c料3Ic弹y 性模量K;cy
3E c I cx H3
➢ Icy、Icx——分别为支承柱绕截面y、x轴的截面惯 性矩;
➢ H——支承悬臂柱长度。
(3)斜边界处理 ➢ 斜边界是指与整体坐标斜交的方向有约束的边界。 ➢ 建筑平面为圆形或多边形的网架会存在斜边界( 图3.27a)。 ➢ 矩形平面网架利用对称性时,对称面也存在斜边 界(图3.27b,c)。
基本未知量
节点平衡及变形协调条件
总刚度矩阵 总刚度方程
引入边界条件
节点位移值
单元内力与节点位移间关系
杆件内力
3.4.1网架计算基本假定
➢ 网架的节点为空间铰接节点,杆件只承受轴 力;
➢ 结构材料为完全弹性,在荷载作用下网架变 形很小,符合小变形理论。
奥运会场馆
鸟巢
3.4.2单元刚度矩阵
一等截面空间桁架杆件ij如图所示,设局部直角坐
图3.27 网架的斜边界约束
➢ 斜边界有两种处理方法,一种是根据边界点的 位移约束情况设置具有一定截面积的附加杆, 如节点沿边界法线方向位移为零,则该方向设 一刚度很大的附加杆,截面积A=106~108(图 3.27b);如该节点沿边界法线方向为弹性约束, 则调节附加杆的截面积,使之满足弹性约束条 件。这种处理方法有时会使刚度矩阵病态。

有限元分析-动力学分析PPT课件

有限元分析-动力学分析PPT课件
有限元分析-动力学分析ppt课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。

有限元入门ppt课件

有限元入门ppt课件

有限体积法 (Finite Volume Method)
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
1-2 应力的概念
作用于弹性体的外力(或称荷载)可能有两种: 表面力,是分布于物体表面的力,如静水压力,一物体与另一物体之间的接触压力等。单位面积上的表面力通常分解为平行于座标轴的三个成分,用记号 来表示。 体力,是分布于物体体积内的外力,如重力、磁力、惯性力等。单位体积内的体力亦可分解为三个成分,用记号X、Y、Z表示。 弹性体受外力以后,其内部将产生应力。
边界元法 (Boundary Element Method)
边界元法是一种继有限元法之后发展起来的一种新的数值方法,与有限元法不同,边界元法仅在定义域的边界划分单元,用满足控制方程的函数去逼近边界条件。所以边界元与有限元相比具有单元和未知数少、数据准备简单等优点,但边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分奇异点处的强烈的奇异性,使求解遇到困难。边界元法在塑性问题中应用还比较少。
弹性力学 — 区别与联系 — 材料力学 弹性力学与材料力学既有联系又有区别。它们都同属于固体力学领域,但弹性力学研究的对象更普遍,分析的方法更严密,研究的结果更精确,因而应用的范围更广泛。 弹性力学 固有弱点: 由于研究对象的变形状态较复杂,处理的方法又较严谨,因而解算问题时,往往需要冗长的数学运算。但为了简化计算,便于数学处理,它仍然保留了材料力学中关于材料性质的假定:
塑性有限元常用软件

有限单元法ppt课件

有限单元法ppt课件

06
有限单元法的发展趋势和展 望
发展趋势
工程应用领域拓展
随着科技的发展,有限单元法在解决 复杂工程问题上的应用越来越广泛, 不仅局限于结构分析,还涉及到流体 动力学、热传导等领域。
与其他方法的结合
有限单元法正与其他数值方法(如有 限差分法、边界元法等)进行交叉融 合,形成更为强大的数值分析工具。
05
有限单元法的优缺点
优点
灵活性
有限单元法允许对复杂的几何形状进 行离散化,适用于解决各种形状和大 小的问题。
高效性
有限单元法能够处理大规模问题,通 过使用计算机技术,可以快速求解。
广泛的应用领域
有限单元法被广泛应用于工程、物理 、生物等领域,是一种通用的数值分 析方法。
易于理解和实现
有限单元法的基本概念直观易懂,且 实现起来相对简单。
01
利用线性代数方法,将 各个单元的数学模型和 节点信息组合成整体方
程组。
03
将节点的未知量返回到 原问题中,得到问题的
解。
05
根据问题的物理性质和 边界条件,建立单元的 数学模型和节点信息。
02
解整体方程组,得到节 点的未知量。
04
有限单元法的特点
适用范围广
可以用于解决各种类型的问题,如弹性力学 、流体力学、传热学等。
高精度与高效率
研究者们致力于开发更高效、精确的 算法,以解决大规模、非线性、动态 等复杂问题。
并行化与云计算应用
随着计算资源的丰富,有限单元法的 计算过程正逐步实现并行化,利用云 计算平台进行大规模计算已成为趋势 。
展望
理论完善与创新
随着工程实践的深入,有限单元法的理论体系将进一步完善,同时会 有更多创新性的算法和模型出现。

《有限元分析及应用》PPT课件

《有限元分析及应用》PPT课件

41
2.3 基本变量的指标表达
指标记法的约定:
自由指标:在每项中只有一个下标出现,如

i,j为自由指标,它们可以自由变化;在三维ij 问题
中,分别取为1,2,3;在直角坐标系中,可表示
三个坐标轴x, y, z。
哑指标:在每项中有重复下标出现,如:
,j为哑指标。在三维问题中其变化的范ai围j x为j 1,b2i ,3
有限元方法的思路及发展过程
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
20
技术路线:
21
发展过程: 如何处理
对象的离散化过程
22
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
.. 轴..对称实体.).......
3
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
4
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
由此得到
考虑 X 0
xyl ym zy n Y xl yxm zxn X
考虑
Z 0 xzl yzm zn Z
应力边界条件

《汽车有限元法》课件

《汽车有限元法》课件
优化底盘部件的布局和结构,提高车辆行提高发动机 性能和燃油经济性。
安全性优化
通过有限元分析,对汽车碰撞安全性能进行 评估和优化。
优化设计中的约束条件和目标函数
约束条件
包括结构强度、刚度、疲劳寿命等方 面的限制,以及设计变量本身的约束 (如尺寸限制等)。
《汽车有限元法》ppt 课件
目录
• 有限元法简介 • 汽车结构有限元分析 • 汽车零部件有限元分析 • 汽车碰撞有限元分析 • 汽车优化设计中的有限元法
有限元法简介
01
有限元法的定义
有限元法是一种数值分析方法,通过 将连续的物理系统离散化为有限个小 的单元,利用数学方法求解这些单元 的近似解,从而得到整个系统的近似 解。
结构优化
根据分析结果,可以对汽车结构进行优化设计, 提高其抗碰撞能力和轻量化水平。
碰撞模拟
在汽车开发过程中,可以利用有限元分析进行碰 撞模拟,以评估新车型的碰撞性能和安全性。
汽车优化设计中的
05
有限元法
基于有限元的优化设计方法
有限元法的基本原理
将复杂的结构分解为简单的、易于分析的单元,通过求解这些单元 的平衡方程来获得整个结构的响应。
潜在的安全问题。
动态分析
在碰撞过程中,对汽车进行 动态分析,以模拟各部件的 相互作用和变形。这一步需 要充分考虑碰撞过程中的冲
击载荷和瞬态效应。
结果后处理
对分析结果进行后处理,如 查看各部件的应力分布、变 形情况、碰撞力等,以便对 汽车结构进行优化和改进。
汽车碰撞有限元分析的应用
安全性评估
通过有限元分析,可以对汽车结构进行安全性评 估,检查是否存在潜在的安全隐患和改进空间。
有限元法广泛应用于工程领域,如结 构分析、流体动力学、电磁场等领域 。

有限元法基础ppt课件

有限元法基础ppt课件

有限单元法
一、数值模拟方法概述 二、有限单元法简介 三、有限单元法分析步骤 四、利用有限元软件进行工程分析
一、数值模拟方法概述
工程技术领域中的许多力学问题和场问题,如固 体力学中的位移场、应力场分析、电磁学中的电磁 分析、振动特性分析、热力学中的温度场分析,流 体力学中的流场分析等,都可以归结为在给定边界 条件下求解其控制方程的问题。
结构矩阵分析方法认为:整体结构可以看作是由有限 个力学小单元相互连接而组成的集合体,每个单元的 力学特征可以看作建筑物的砖瓦,装配在一起就能提 供整体结构的力学特性。
结构矩阵分析方法分析的结构本身都明显地由杆件组 成,杆件的特征可通过经典的位移法分析建立。
虽然矩阵位移法整个分析方法和步骤都与有限单元法 相似,也是用矩阵来表达、用计算机来求解,但是它 与目前广泛应用的有限单元法是有本质区别的。
❖ 国际上早在20世纪50年代末、60年代初就投入大量的人力和 物力开发具有强大功能的有限元分析程序。其中最为著名的是 由美国国家宇航局(NASA)在1965年委托美国计算科学公司 和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系 统发展至今已有几十个版本,是目前世界上规模最大、功能最 强的有限元分析系统。
有限元法
既可以分析杆系结构,又分析非杆系的连续 体结构。
三、有限单元法简介
有限单元法的常用术语:
有限元模型 是真实系统理想化的数学抽象。
定义
真实系统
有限元模型
自由度(DOFs- degree of freedoms)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
目前在工程技术领域内常用的数值模拟方法有: 1、有限单元法FEM( Finite Element Method) 2、边界元法BEM(Boundary Element Method ) 3、有限差分法FDM( Finite Difference Method 4、离散单元法DEM(Discrete Element Method) 其中有限单元法是最具实用性和应用最广泛的。

有限元法PPT课件

有限元法PPT课件
和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。

有限元课件ppt

有限元课件ppt
整体刚度矩阵
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等

线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量

有限元基本概念ppt课件

有限元基本概念ppt课件

i1
i1
其中: Hi( xj )δij H'i(xj )0
'
Hi( xj )0 Hi( xj )δij
1 i j δij 0 i j
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
经推导:
n
n
P 2 n - 1 ( x ) 1 2 W i 'x ix x i W i2 x u ix - x iW i2 x u i '
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
• 有限元方法的分类
依据求解问题的路径不同,有限元方法大致可分为: 位移法:以位移为基本未知量 力法:应力为基本未知量 混合法:部分以位移;部分以应力为基本未知量
• 有限元位移法的基本概念
几何矩阵的一般表达形式:
其中:
ε
B
e
δ
x
0
0
0
y
0
0
B
y
0
x
z
0
N
0
0
1
0 N1 0
0 0 N1
N2 0 0
0 N2 0
0
0
N 2
0
z y
z
0
x
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
ji ji
i,j0,1,2, n
可令:
Ni
x
C x x 0 x x 1 x x i - 1 x x i + 1 x x n

有限元分析 (FEA) 方法(PPT 13)

有限元分析 (FEA) 方法(PPT 13)

有限元模型
.
A-4
自由度(DOFs)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
结构 DOFs
方向
结构 热 电
流体 磁
自由度
位移 温度 电位 压力 磁位
September 30, 1998
.
A-5
节点和单元
载荷
节点: 空间中的坐标位置,具有一定自由度和 存在相互物理作用。
September 30, 1998
.
A-12
单元形函数(续)
遵循原则:
• 当选择了某种单元类型时,也就十分确定地选择并接受该种单元 类型所假定的单元形函数。
• 在选定单元类型并随之确定了形函数的情况下,必须确保分析时 有足够数量的单元和节点来精确描述所要求解的问题。
September 30, 1998
September 30, 1998
.
A-7
节点和单元 (续)
信息是通过单元之间的公共节点传递的。
. . 2 nodes ...
A
B
.. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
September 30, 1998
.
1 node
...
A
B
...
具有公共节点的单元 之间存在信息传递
September 30, 1998
.
A-10
单元形函数(续)
DOF值二次分布
.
.
1
节点
单元
二次曲线的线性近 (不理想结果)
真实的二次曲线
.
.
2

《有限元法及其应用》课件

《有限元法及其应用》课件
实例
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点

有限元法PPT课件

有限元法PPT课件
重工业
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)

《有限元基本原理》课件

《有限元基本原理》课件
这些有限元在节点处相互连接,形成 一个离散化的模型,用于模拟真实结 构的力学行为、热传导、电磁场分布 等。
有限元法的历史与发展
01
有限元法的思想起源于20世纪40年代,但直到1960年 才由美国科学家克拉夫(Clough)正式提出“有限元 法”这一术语。
02
随着计算机技术的发展,有限元法得到了广泛应用和推 广,成为工程领域中解决复杂问题的有力工具。
03
近年来,随着计算能力的提升和算法优化,有限元法的 应用范围不断扩大,涉及的领域也更加广泛。
有限元法的基本思想
01
将连续体离散化为有限个单元,每个单元具 有简单的几何形状和物理属性。
03
02
通过在节点处设置位移约束,将各个单元相 互连接,形成一个整体模型。
通过在各个单元上设置方程,建立整个离散 化模型的平衡方程组。
高阶有限元方法
与其他方法的结合
研究高阶有限元方法,以提高计算的精度 和稳定性。
研究有限元方法与其他数值方法的结合, 如有限差分法、有限体积法等,以拓展其 应用范围。
谢谢聆听
04 有限元法的应用实例
静力分析实例
总结词
静力分析是有限元法最常用的领域之一,主要用于分析结构在恒定载荷下的响应。
详细描述
静力分析用于评估结构在恒定载荷下的应力、应变和位移。例如,桥梁、高层建筑和飞机机身等结构 的稳定性分析。通过有限元法,可以模拟复杂结构的整体行为,并预测其在各种载荷条件下的性能。
动力分析实例
总结词
动力分析涉及结构在动态载荷下的响应 ,如地震、风载和冲击载荷等。
VS
详细描述
动力分析用于评估结构在动态载荷作用下 的振动、冲击和响应。例如,地震工程中 建筑物和桥梁的抗震性能分析。通过有限 元法,可以模拟结构的动态行为,预测其 在地震或其他动态载荷下的破坏模式和倒 塌过程。

有限元分析实例ppt课件

有限元分析实例ppt课件

Stress distribution
Reaction
有限元分析典型流程
§3-5 有限元分析法存在的问题及发展方向
• 有限元模型的建立 有限元网格的自动划分与动态划分-自适应网格
• 求解过程的优化 减少计算量,降低分析成本。
• 有限元分析结果的判读和评定 采用等值线图、明暗色彩、动态图形、过程模拟
机进行分析计算的重要工具。
但是当时限于国内大中型计算机很少,大约只有杭州汽轮机厂的 Siemens7738和沈阳鼓风机厂的IBM4310安装有上述程序,所以用户 算题非常不方便,而且费用昂贵。PC机的出现及其性能奇迹般的提高, 为移植和发展PC版本的有限元程序提供了必要的运行平台。可以说国内 FEA软件的发展一直是围绕着PC平台做文章。在国内开发比较成功并拥 有较多用户(100家以上) 的有限元分析系统有大连理工大学工程力学 系的FIFEX95、北京大学力学与科学工程系的SAP84、中国农机科学研 究院的MAS5.0和杭州自动化技术研究院的MFEP4. 等。但正如上面所述, 国外很多著名的有限元分析公司已经从前些年对PC平台不屑一顾转变为 热衷发展,对国内FEA程序开发者来说发展PC版本不再具有优势。
单元类型选择
Element type:
3结点三角形平面应力单元
单元特性定义 Element properties:
材料特性:E, µ 单元厚度:t
网格划分
Mesh 1
Total number of elements:356 Total number of nodes:208
Mesh 2
Total number of elements:192 Total number of nodes:115
Rotor Dynamics(转子动力学分析) :转子动力学分析主要解决旋转机械

有限元ppt课件

有限元ppt课件
h h
y(xi )2 y(xi1) h
a x b x
y(xi1) 2 y(xi ) y(xi1)
h hi 2 i1
yi1 2 yi yi1 h2
(1 5)
x
13
将(1-4)(1-5)代入(1-3),得
yi1 2 yi h2

yi1

yi1 yi h
39
厚度为1的微分体,在水平方向拉
力F的作用下发生了位移 xdx
拉力表达式:
F xdy 1
x
x dy
拉力做的功:
dx
xdx
dW

1 2
F xdx
将F代入:
dW

1 2

x
x
dxdy
40
储存在微分体内的应变能:
x
x dy
dU

dW

1 2

x
x
dxdy
单位体积内的应变能:
17
因此有 y(x) (x)
试探函数中所取的项数越多,逼近的精度越高。
将试探函数代入式(1-9),可以得到关于n个待定系数
的泛函表达式,简记为 I y(x) I(1,2,3, ,n)
根据多元函数有极值的必要条件,有

1
I (1,2 ,3,

2
I (1,2 ,3,
机械工程有限元法基础
1
有限元法是根据变分原理求解数学物理问题的一 种数值方法.
它从最初的固体力学领域 拓展到了
发展到了
从简单的静力分析
电磁学,流体力学,传热学, 声学等领域
动态分析,非线性分析, 多物理场耦合分析等复 杂问题的计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(7.12) K (i) hi
1( pMT M
0
qNT N)d
故Vh是H E1的一个n维子空间,称为试探函数空间, uh Vh称为试探函数.
10
4. 形成有限元方程
与Ritz 法一样,以Vh替代H E1,在Vh上解泛函(7.3)的极小 问题,将式(7.4)代入(7.3),得
1 J (uh ) 2 a(uh ,uh ) ( f ,uh )
1 2
i
,
n j 1
第一步:单元分析.注意到
1
J (uh ) 2
b a
(
puh2
quh2
2
fuh
)dx
1 n 2 i1
( pu xi
2
xi 1
h
quh2 )dx
n i 1
xi xi 1
fuh dx
(7.7)
作变换
x xi1
hi
(7.8)
12
并引入记号
N0 ( ) 1 , N1( )
则在单元 ei [xi1, xi ]上,uh可写成
a(i
,
j
)uiu
j
n
uj( f
j 1
, j )
令 J (uh ) 0
u j
便得到确定 u1, u2 ,L , un的线性代数方程组
n
a(i , j )ui ( f , j ), j 1, 2,L , n
i 1
称式(7.5)为有限元方程.
(7.6)
11
值得注意的是,在实际计算中,并不是按照上述步骤形 成有限元方程的,而是先进行单元分析,即在单元上建立有 限元特征式,然后再进行总体合成,即将各单元的有限元特 征式进行累加,合成为有限元方程.具体过程如下:
dv dx
quvdx
, f
,u
b
a
fudx.
式(7.3)是应用有限元法求解边值问题(7.1)、(7.2)的出发 点.
4
2. 区域剖分
剖分原则与差分法相同,即将求解区域剖分成若干个互 相连接,且不重叠的子区域,这些子区域称为单元.单元的 几何形状可以人为选取,一般是规则的,但形状与大小可以 不同.对于一维情形最为简单.
或写成
uh (x)
N0 ( )ui1
N1( )ui
(
N0
,
N1
)
ui1 ui
uh Nu(i)(7.9)
其中,N (N0 , N1),u(i) .于(ui是1,ui )T
uh (x)
1 hi
(ui
ui1()7.1M0)u(i)
其中,M (1 / hi ,1.从/ hi而) 有
13
这里
(7.11)
7
若取i (x)为线性函数,则按上述原则,可将Vh中的基
函数取为
x
xi1 hi
,
xi1 x xi ,
i
(x)
xi 1 hi
1
0,
x
,
xi x xi1 , 在别处.
i 1,2, , n 1,
n
(x)
x
xn1 hn
,
xn1 x xn ,
0,
在别处.
(7.4)
(7.1) (7.2)
其中,pxC1a,b, p 0,q Ca,b,q 0, f Ca,b
3
1. 写出Ritz形式的变分问题
与边值问题(7.1)、(7.2)等价的变分问题是:
求 u* HE1,使
其中,
J
u*
min
uH
1 E
J
u
ห้องสมุดไป่ตู้
J u 1 au,u f ,u
2
(7.3)
au,v
b
a
p
du dx
5
设 Vh

H
1 E
的有限维子空间,它的元素为
uh (x).
要构造 Vh ,只需构造单元基函数i .构造单元基函数所遵循 的原则是:
(1)每个单元中的基函数的个数和单元中的节点数相同,
每个节点对应一个基函数,本例中,单元ei 有两个节点,因
此基函数有两个.
(2)基函数应具有性质
j (xk ) jk
显然,Vh中任一函数 uh可以表示为基函数 i (x)的
线性组合,即
uh u11 (x) u22 (x) unn (x)
8
其中,u1,u2 , ,un是uh在节点上的值,即 uh (xi ) ui (i 1,2, , n),
在单元ei上,uh (x)表示为
uh (x) ui1 i1(x) uii (x)
2
§7. 两点边值问题的有限元方法
本节以两点边值问题为例,并从Ritz法和Galerkin法两 种观点出发来叙述有限元法的基本思想及解题过程.
7.1 基于Ritz法的有限元方程
考虑两点边值问题
Lu d ( p du ) qu f ,
dx dx
u(a) 0, u(b) 0
a x b,
将求解区间 [a, b]分成若干个子区间,其节点为 a x0 x1 L xi L xn b
每个单元 ei [xi1, xi ] 的长度为 hi xi xi1 . 单元在区间中分布的疏密程度或单元尺寸的大小,可根
据问题的物理性质来决定,一般来说,在物理量变化剧烈的 地方,单元尺寸要相对小一些,排列要密一些.
ui1
xi x hi
ui
x xi1 hi
,
x [xi1, xi ].
(7.5)
可见,单元中的近似函 数由单元基函数线性组 合产 生,全区域的近似函数 由各个单元的近似函数 叠加而成.
9
由以上可以看出,Vh是满足下列条件的所有函数uh 的集合:
(1) uh 在[a,b]上连续,且uh ,uh L2[a,b]; (2) uh 在ei上是次数不超过1的多项式(i 1,2, , n); (3) uh (a) 0,
1, 0,
j k, j k,
其中,xk 是单元节点序号为 k 的节点.
6
3.确定单元基函数 有限元法与Ritz-Galerkin方法的主要区别之一,就在 于有限元方法中的基函数是在单元中选取的.由于各个单元 具有规则的几何形状,而且可以不必考虑边界条件的影响, 因此在单元中选取基函数可遵循一定的法则.
有限元方法
1
有限元法是求解偏微分方程问题的一种重要数值方法, 它的基础分两个方面:一是变分原理,二是剖分插值.
从第一方面看,有限元法是Ritz-Galerkin方法的一种 变形.它提供了一种选取“局部基函数”的新技巧,从而克 服了Ritz-Galerkin方法选取基函数的固有困难.
从第二方面看,它是差分方法的一种变形.差分法是点 近似,它只考虑在有限个离散点上函数值,而不考虑在点的 邻域函数值如何变化;有限元方法考虑的是分段(块)的近 似.因此有限元方法是这两类方法相结合,取长补短而进一 步发展了的结果.在几何和物理条件比较复杂的问题中,有 限元方法比差分方法有更广泛的适应性.
相关文档
最新文档