数学:《解三角形锐角三角函数》教案(人教版九年级下)
人教版九年级锐角三角函数全章教案
人教版九年级锐角三角函数全章教案【教案名称】:人教版九年级锐角三角函数全章教案【教学目标】:1. 了解锐角三角函数的概念和基本性质;2. 掌握锐角三角函数的定义和计算方法;3. 能够应用锐角三角函数解决实际问题;4. 培养学生的数学思维和解决问题的能力。
【教学内容】:本教案共包含以下内容:1. 锐角三角函数的引入和概念介绍;2. 正弦函数、余弦函数和正切函数的定义和计算方法;3. 锐角三角函数的性质和关系;4. 锐角三角函数的应用。
【教学步骤】:一、引入和概念介绍1. 通过引导学生观察直角三角形中的角度和边长关系,引入锐角三角函数的概念;2. 介绍正弦函数、余弦函数和正切函数的定义和符号表示;3. 通过实例演示和练习,让学生掌握锐角三角函数的计算方法。
二、正弦函数、余弦函数和正切函数的性质和关系1. 通过图像和表格展示正弦函数、余弦函数和正切函数的周期性、奇偶性和单调性;2. 引导学生观察和总结正弦函数、余弦函数和正切函数之间的关系,如正弦函数与余弦函数的关系、正切函数与正弦函数的关系等;3. 练习题目让学生巩固和应用正弦函数、余弦函数和正切函数的性质和关系。
三、锐角三角函数的应用1. 通过实际问题引导学生应用锐角三角函数解决实际问题,如测量高楼的高度、计算斜坡的坡度等;2. 练习题目和实例让学生掌握如何运用锐角三角函数解决实际问题。
【教学重点】:1. 锐角三角函数的定义和计算方法;2. 正弦函数、余弦函数和正切函数的性质和关系;3. 锐角三角函数的应用。
【教学扩展】:1. 引导学生探究其他三角函数(割函数、余割函数和余切函数)的定义和性质;2. 给予学生更多的应用题目和实例,提高学生运用锐角三角函数解决实际问题的能力;3. 鼓励学生自主学习和探索,拓宽数学知识的广度和深度。
【教学评估】:1. 课堂练习:通过课堂练习,检查学生对锐角三角函数的理解和掌握程度;2. 作业布置:布置相关的作业题目,让学生巩固和应用所学知识;3. 个人表现评估:评估学生在课堂讨论、问题解答和实际应用中的表现。
数学人教版九年级下册锐角三角函数教案-正弦
B A 30
0
则 3 C
sinA=______ .
7
学生做作业时,教师勤于巡视,尤其注意后进生有没有困难。 板 书 设 计 组内评价
反思
课题
28. 1 銳角三角函數(1) -------正弦
教 学 1.探究当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即 目标 正弦值不变)。 2.能根据正弦概念正确进行计算。 教 学 理解正弦概念,知道当直角三角形的锐角固定时,它的对边与斜边的比 重点 值是固定值这一事实。
教 学 当直角三角形的锐角固定时,它的对边与斜边的比值是固定不变的。 难点
如图 (1)
sinA=
BC AB
(
)
(2)sinB=
(3)sinA=0.6m
BC AB
(
)
(
)
(4)SinB=0.8
(
)
B 10m A
(1)
6m C
(2)
2
如图:sinA=
BC ( AB
)
3 .在 Rt△ABC 中,锐角 A 的对边和斜边同时扩大 100 倍,sinA 的值( A.扩大 100 倍 C.不变 4 如图: ) B.缩小 D.不能确定
改
一、板书课题。 师: 同学们, 今天我们学习锐角三角函数的第一课时----学 正弦。 。 二、出示目标。 习 今天的学习目标是什么呢? 学习目标 1.探究当直角三角形的锐角固定时,它的对边与斜边的比值 都固定(即正弦值不变)。 2.能根据正弦概念正确进行计算。 三、自学指导。 师:怎样才能达到今天的学习目标呢?主要靠大家自学、 程 自己去探索、追求、今天:自学的内容和要求是: 自学指导 认真看课本 P74-P77 练习前注意:
九年级数学下册《锐角三角函数》教案、教学设计
2.教学方法:
采用讲解法、示例教学法,结合几何画板演示,帮助学生形象地理解锐角三角函数的定义和性质。
3.教学过程:
(1)通过回顾勾股定理,引导学生发现锐角三角函数的定义。
(2)利用几何画板,动态演示锐角三角函数随角度变化的规律,帮助学生理解其性质。
(4)注重情感教育,关注学生的学习情感,激发学生的学习兴趣和内在动力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决等方面,全面评价学生的学习过程。
(2)终结性评价:通过测试、作业等方式,评价学生对本章知识的掌握程度。
(3)增值性评价:关注学生的进步,鼓励学生自我评价,激发学生的学习潜能。
九年级数学下册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其相互关系。
2.学会使用计算器或手工计算方法,解决直角三角形中锐角三角函数值的问题。
3.掌握用锐角三角函数解决实际问题的方法,如测量物体的高度、计算物体之间的距离等。
4.能够运用锐角三角函数的性质,解决一些简单的几何问题,如求角的度数、证明线段相等等。
3.利用计算器、几何画板等教学辅助工具,帮助学生直观地理解锐角三角函数的图像和变化规律,提高学生的数学思维能力。
4.设计丰富的例题和练习题,巩固学生对锐角三角函数知识的掌握,培养学生分析问题、解决问题的能力。
5.通过课堂小结,引导学生总结本章所学内容,形成知识体系,提高学生的概括和表达能力。
(三)情感态度与价值观
3.思考题:
(1)思考锐角三角函数的定义在解决实际问题中的作用,举例说明。
人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例
(一)知识与技能
1.让学生掌握特殊角的三角函数值,包括30°、45°、60°等角的正弦、余弦和正切值。
2.使学生能够运用特殊角的三角函数值进行简化解题,提高问题解决能力。
3.培养学生运用数学知识描述现实生活中的现象,提高数学应用能力。
在教学过程中,我将以生活实例为导入,引导学生主动探究特殊角的三角函数值。通过多媒体课件的展示,让学生直观地理解特殊角的三角函数值,并在实际问题中运用。此外,我将设计具有挑战性的问题,激发学生的思考,培养学生的创新思维和问题解决能力。
3.培养学生勇于挑战、克服困难的勇气,培养他们的自信心和自尊心。
在教学过程中,我将关注学生的情感需求,以鼓励、表扬等方式激励学生,让他们在学习中感受到成功的喜悦。同时,我将引导学生认识到数学在现实生活中的重要性,培养他们的责任感和使命感。
三、教学策略
(一)情景创设
1.生活实例导入:以实际生活中的问题为导入,引发学生对特殊角的三角函数值的兴趣,激发学生的学习动机。
人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例
一、案例背景
本节课是人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值。在学习了锐角三角函数的基础上,本节课主要让学生掌握特殊角的三角函数值,进一步深化对锐角三角函数的理解和运用。
在案例背景中,学生已经掌握了锐角三角函数的定义和基本性质,具备了一定的数学思维能力和问题解决能力。然而,对于特殊角的三角函数值,学生可能存在一定的困难,需要通过本节课的学习,进一步巩固和提高。
(四)反思与评价
1.自我反思:让学生在学习过程中进行自我反思,发现自己的不足之处,明确改进方向。
2.同伴评价:学生相互评价,给予意见和建议,共同促进彼此的进步。
人教版九年级数学下册: 28《锐角三角函数》《《锐角三角函数》教案》教案1
人教版九年级数学下册: 28《锐角三角函数》《《锐角三角函数》教案》教案1一. 教材分析人教版九年级数学下册第28课《锐角三角函数》是学生在学习了三角函数概念和特殊角的三角函数值的基础上进行的一节实践性较强的课程。
本节课主要让学生了解锐角三角函数的概念,学会用锐角三角函数解决实际问题,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了三角函数的基本概念和特殊角的三角函数值,具备一定的数学基础。
但是,对于锐角三角函数的实际应用,学生可能还比较陌生。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生运用数学知识解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握锐角三角函数的概念,学会用锐角三角函数解决实际问题。
2.过程与方法:通过自主学习、合作探究的方式,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:锐角三角函数的概念及应用。
2.难点:如何引导学生将理论知识与实际问题相结合,提高学生运用数学知识解决实际问题的能力。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解锐角三角函数在实际生活中的应用。
2.自主学习法:鼓励学生自主探究,培养学生的学习能力。
3.合作学习法:学生进行小组讨论,提高学生的团队合作能力。
六. 教学准备1.准备相关的生活实例,用于引导学生了解锐角三角函数在实际生活中的应用。
2.准备多媒体教学课件,帮助学生直观地理解锐角三角函数的概念。
七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如测量山的高度、计算建筑物的斜面积等,引导学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体课件,介绍锐角三角函数的概念,让学生了解锐角三角函数的定义和性质。
同时,教师可以通过讲解特殊角的三角函数值,帮助学生巩固已学的知识。
第28章-锐角三角函数-全章教案
====Word 行业资料分享--可编辑版本--双击可删====
一、在 Rt△ABC 中,∠C =90°: B
a 对边
c 斜边
视,对学习基 A 的对边与斜边的比;
础 较 弱 的 学 求 sinB 就是要确定∠B
生 及 时 给 予 的对边与斜边的比.
指点.
教师引导学
生作知识总
结,不断扩充
培养学生概括的能
学 生 的 知 识 力,使知识形成体系,
结构,学习新 并渗透数学思想方法。
的解题方法.
Cb
A
五、体验 收获
即
sin
A
A的对边 斜边
a c
.
同样 sinB= B的对边 斜边
b c
当∠A=300 时,sinA=? 当∠A=450 时,sinA=? 当∠A=600 时,sinA=?
也随之确
定”.但是怎
样证明这个
C
A C1
A!
命题呢?学
生这时的思
经过学生的实验和证明,得出:
维很活跃.对
于这个问题,
在 Rt△ABC 中,∠C=90°,我们把锐
部分学生可
角 A 的对边与斜边的比叫做∠A 的正弦
能能解决
(sine),记作:sinA,
它.因此教师
此时应让学
B
生展开讨论,
独立完成.
a 对边
长 50m,那么斜坡与水平面所成角的度数是多少
呢?
二、探究 1.请每一位同学拿出自己的三角板,分别测量并 教 师 提 出 问 在培养学生动手能力的
====Word 行业资料分享--可编辑版本--双击可删====
说理
三、感悟 深化
九年级数学下册第二十八章锐角三角函数28.2解直角三角形及其应用教案新版新人教版
1.在探索解直角三角形的过程中,渗透数形结合思想,培养学生综合运用知识的能力和良 好的学习习惯.
2.在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数 学的信心.
3.通过根据实际问题画示意图的过程,培养学生的动手能力,激发学生对数学的好奇心和 求知欲.
【师生活动】 学生在教师提出的问题的引导下,小组合作交流,回答解题思路,教师根据
学生的回答进行汇总归纳,学生回答问题过程中注意解题方法的多样性.
【课件展示】
(1)在直角三角形的六个元素中,除直角外的五个元素,只要知道两个元素(其中至少有一
条边),就可以求出其余的三个未知元素.
(2)定义:由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.
∵tanB=b,∴a= b = 20 ≈28.6.
a
tanB tan35°
∵sinB=b,∴c= b = 20 ≈34.9.
c
sinB sin35°
[设计意图] 通过例题理解和掌握解直角三角形的思路和方法,进一步训练学生学会灵活
运用直角三角形的有关知识解直角三角形,并体会从计算简便的角度选用适当的关系式求解,
一、共同探究 思路一 探究: (1)在 Rt△ABC 中,∠A=60°,AB=30,你能求出这个直角三角形的其他元素吗?
(2)在上图中,若 AC= 2,BC= 6,你能求出这个直角三角形的其他元素吗? (3)在上图中,若∠A=60°,∠B=30°,你能求出这个直角三角形的其他元素吗? (4)在直角三角形中,知道几个元素就可以求出其他元素? 【师生活动】 小组合作交流解题思路,注意在解题过程中方法的多样性,教师根据学生的 回答进行汇总归纳. 【课件展示】 (1)在直角三角形的六个元素中,除直角外的五个元素,只要知道两个元素(其中至少有一 条边),就可以求出其余的三个未知元素. (2)定义:由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形. (3)解直角三角形,只有两种:①已知两条边;②已知一条边和一个锐角.
人教版九年级数学下册《锐角三角函数-正弦》优秀教学设计
人教版九年级数学下册《锐角三角函数-正弦》优秀教学设计一. 教材分析人教版九年级数学下册《锐角三角函数-正弦》是学生在学习三角函数知识的重要阶段,本节内容主要介绍了正弦的概念和性质。
通过本节课的学习,学生能够理解正弦的定义,掌握正弦函数的增减性和奇偶性,为后续学习三角函数的其他部分打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了锐角三角函数的基本概念,对三角函数有一定的了解。
但部分学生对概念的理解不够深入,对函数性质的把握不够准确。
因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和讲解。
三. 教学目标1.理解正弦的概念,掌握正弦函数的定义域和值域。
2.能够运用正弦函数解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正弦函数的定义和性质。
2.正弦函数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正弦函数的性质。
2.运用实例分析,让学生体会正弦函数在实际问题中的应用价值。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.安排学生在课前预习正弦函数的相关内容。
3.准备一些实际问题,用于课堂讨论。
七. 教学过程1.导入(5分钟)利用生活中的实例,如音乐播放器的音量调节,引入正弦函数的概念。
引导学生思考:如何用数学语言描述这个现象?2.呈现(15分钟)讲解正弦函数的定义,通过PPT展示正弦函数的图像,让学生了解正弦函数的性质。
同时,引导学生通过小组讨论,总结正弦函数的增减性和奇偶性。
3.操练(15分钟)布置一些练习题,让学生运用正弦函数的性质解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对学生的练习情况,进行讲解和总结,强化对正弦函数性质的理解。
5.拓展(10分钟)出示一些实际问题,让学生运用正弦函数解决。
引导学生思考:如何将实际问题转化为数学问题?6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
人教版九年级锐角三角函数全章教案
人教版九年级锐角三角函数全章教案【人教版九年级锐角三角函数全章教案】一、教学目标:1. 理解锐角三角函数的概念和性质;2. 掌握正弦、余弦、正切函数的定义和计算方法;3. 能够应用三角函数解决实际问题;4. 培养学生的逻辑思维和解决问题的能力。
二、教学重点:1. 掌握锐角三角函数的定义和性质;2. 理解三角函数在坐标系中的几何意义;3. 能够应用三角函数解决实际问题。
三、教学难点:1. 理解三角函数的周期性和图像特点;2. 运用三角函数解决实际问题。
四、教学准备:1. 教材:人教版九年级数学教材;2. 教具:黑板、白板、书写工具、计算器等。
五、教学过程:1. 引入(10分钟)通过提问和讨论的方式引导学生回顾和复习之前学过的角的概念和性质,引出锐角的概念,并与直角、钝角进行对比。
2. 基本概念的引入(20分钟)a. 讲解锐角三角函数的定义:正弦、余弦、正切。
b. 讲解三角函数的计算方法和性质。
c. 通过例题演示如何计算三角函数的值。
3. 几何意义的理解(30分钟)a. 介绍三角函数在坐标系中的几何意义。
b. 讲解三角函数的周期性和图像特点。
c. 通过绘制图像和实例分析,让学生理解三角函数的变化规律。
4. 实际问题的应用(40分钟)a. 引导学生通过实例,学习如何应用三角函数解决实际问题,如测量高度、距离等。
b. 给学生一些练习题,让他们独立解决实际问题。
5. 总结与拓展(10分钟)a. 总结本节课所学的内容和方法。
b. 引导学生思考,如何进一步拓展和应用锐角三角函数的知识。
六、教学反思:本节课通过引导学生回顾和复习角的概念和性质,引入锐角的概念,并讲解了锐角三角函数的定义、计算方法和性质。
通过绘制图像和实例分析,让学生理解三角函数的几何意义和变化规律,并应用三角函数解决实际问题。
通过这样的教学过程,学生能够更好地掌握锐角三角函数的知识,提高他们的逻辑思维和解决问题的能力。
同时,教师需要根据学生的实际情况,灵活调整教学方法和教学内容,确保教学效果的最大化。
(初三数学教案)人教版初中九年级数学下册第28章锐角三角函数28.1 锐角三角函数第1课时教学设计
28.1 锐角三角函数第1课时一、教学目标【知识与技能】1.理解锐角正弦的概念,掌握正弦的表示方法;2.会根据直角三角形的边长求一个锐角的正弦值,并且能利用正弦求直角三角形的边长。
【过程与方法】1.经历探索直角三角形中的边与角的关系,培养学生由特殊到一般的演绎推理能力。
2.通过学生自我发现培养学生的自我反思能力,通过提出困惑提升学生发现问题的能力。
【情感态度与价值观】1.在主动参与探索概念的过程中,开展学生的合情推理能力和合作交流、探究发现的意识。
2.培养学生独立思考的习惯以及使学生获得成功的体验,建立自信心。
二、课型新授课三、课时第1课时共4课时四、教学重难点【教学重点】理解正弦函数意义,并会求直角三角形中一个锐角的正弦值。
【教学难点】理解当直角三角形的锐角固定时,它的对边与斜边的比值都固定这一事实.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)美国人体工程研究学人员调查发现,当高跟鞋的鞋底与地面的夹角为11°左右时,人脚的感觉最舒适,假设某成年人前脚掌到脚后跟长为15厘米,请问鞋跟在几厘米高度为最佳?(二)探索新知为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?(出示课件4)教师问:如右图所示,本题可看作是在三角形ABC 中探求某些问题,你可以把已知条件用数学语言描述出来吗?(学生思考后,找同学回答)学生答:这个问题可以归结为,在Rt △ABC 中,∠C=90°,∠A =30°,BC =35m ,求AB.教师问:可以用学过的什么数学知识来解决这个问题?学生答:根据“直角三角形中,30°角所对的直角边是斜边的一半”来解决.师生一起解答:根据“直角三角形中,30°角所对的直角边是斜边的一半”,即∠A 的对边斜边=BC AB =12,可得AB =2BC =70m ,也就是说,需要准备70m 长的水管.教师问:类比上面的问题,如果使出水口的高度为50 m ,如图所示,那么需要准备多长的水管?(出示课件5)学生讨论后作答:∠A 的对边斜边=B′C′AB′=12,AB ′=2B ′C ′=2×50=100m所以需要准备100m 长的水管.教师问:对于有一个锐角为30°的任意直角三角形,30°角的对边与斜边有怎样的数量关系?可以用一个怎样的式子表示呢?学生回答:30°角的对边是斜边的2倍,∠A 的对边斜边=12。
锐角三角函数(第2课时)教案 2022—2023学年人教版数学九年级下册
28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF=成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE,因此AC DF=.AB DE教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF =, 即BC EF AC DF=. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A 的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A 的正切值可以等于1;当a=b 时;可以大于1,当a >b 时.出示课件15,学生独立思考后口答,教师订正.知识点三 锐角三角函数的定义出示课件16:锐角A 的正弦、余弦、和正切统称∠A 的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例 如图,△ABC 中,∠C=90°,AB=10,BC=6,求sinA ,cosA ,tanA 的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得2222=106AC AB BC --, 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==. 又22221068AC AB BC =-=-=, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。
人教版九年级下册28.1《锐角三角函数》教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-锐角三角函数关系的理解:正弦、余弦、正切之间的关系较为复杂,学生难以理解和记忆。
-锐角三角函数图像的掌握:学生可能无法将图像与函数的性质有效联系起来。
举例解释:
-通过对比和实际操作,帮助学生区分正弦、余弦、正切的定义,例如通过直角三角形的模型进行直观展示。
-设计具体的计算题目,指导学生如何根据角度求函数值,强调记忆特殊角度的函数值,如30°、45°、60°等。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,我会通过举分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题,如测量旗杆的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量角度和距离,演示锐角三角函数的基本原理。
人教版九年级下册28.1《锐角三角函数》教案
一、教学内容
人教版九年级下册第28章《锐角三角函数》第1节,主要包括以下内容:
1.锐角三角函数的定义:正弦、余弦、正切的概念及其在直角三角形中的应用。
2.锐角三角函数的值:通过具体例子,让学生学会如何求锐角三角函数的值。
3.锐角三角函数的关系:掌握正弦、余弦、正切之间的基本关系,并能运用这些关系解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
人教版九年级下册28.1特殊角的锐角三角函数值优秀教学案例
4.利用多媒体手段,如动画、视频等,形象地展示特殊角的三角函数值的变化规律,增强学生的直观感受。
(二)问题导向
1.设计一系列具有启发性的问题,引导学生思考特殊角三角函数值的意义和作用。
2.引导学生通过实验、观察、讨论等方式,自主探究特殊角三角函数值的规律。
3.提出挑战性的问题,激发学生深入思考,提高学生解决问题的能力。
在实际教学中,我发现许多学生在学习这一部分内容时存在一定的困难,主要是由于对三角函数概念的理解不够深刻,以及对特殊角三角函数值的记忆不牢固。因此,在教学过程中,我需要针对学生的实际情况进行有针对性的教学设计,通过合理的教学方法和手段,帮助学生理解和掌握特殊角的三角函数值,提高他们的学习效果。
二、教学目标
4.采用小组合作学习的方式,培养学生团队合作的精神,提高学生的沟通表达能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习三角函数的内在动机。
2.使学生认识到特殊角三角函数值在实际生活中的应用,提高学生对数学价值的认识。
3.培养学生勇于挑战自我,克服困难的意志,增强学生的自信心。
4.引导学生树立正确的价值观,明白努力学习三角函数的重要性,为今后的学习和生活打下坚实的基础。
4.鼓励学生提出自己的疑问,培养学生敢于质疑、善于思考的良好习惯。
(三)小组合作
1.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队合作精神。
2.设计小组合作任务,让学生在实践中运用特殊角的三角函数值,提高学生的动手操作能力。
3.采用小组竞赛的方式,激发学生的竞争意识,提高学生的学习积极性。
锐角三角函数——解直角三角形及其应用++教学设计++2023—2024学年人教版数学九年级下册
教学设计课题解直角三角形及其应用课型新授课☑复习课□试卷讲评课□其它课□教学内容分析解直角三角形的意义,直角三角形的解法学情分析本节是在学习锐角三角函数之后,结合已学过的勾股定理和三角形内角和定理研究,解直角三角形的问题,本课内容既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础.虽然通过锐角三角函数概念的学习,学生有了一定的基础,但在具体的直角三角形中,根据已知条件,选择恰当的锐角三角函数还是有些困难,易混淆,也易出错,另外,解直角三角形往往需综合运用勾股定理、锐角三角函数等知识,具有一定的综合性。
学习目标(1)了解解直角三角形的意义和条件.(2)能根据直角三角形中除直角以外的两个元素(至少有一个是边),解直角三角形.重难点(1)知道解直角三角形的内涵,以及根据直角三角形中已知元素,明确所有要求的未知元素,根据已知条件,能从全等三角形判定定理的角度判断是否能解直角三角形.(2)根据元素间的关系选择,适当关系式求出所有未知元素.教学评活动过程教师活动学生活动环节一:(实例引入,初步体验)在上节锐角三角函数的学习中,我们建立了直角三角形中边与角之间关系,回到本章引言提出的描述比萨斜塔倾斜程度的问题在上截锐角三角函数的学习中,我们建立了直角三角形中边与角之间关系,回到本章引言提出的描述比萨斜塔倾斜程度的问题,把该问题1972年时的情形抽象为一个数学问题,你能解决这个问题吗?问题1:设塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC 中,∠C=900度BC=5.2m,AB=54.5m,求∠A的度数.师生活动:教师呈现问题并引导学生结合图形,观察已知的边和要求的角之间的关系,分析得到通过求∠A的正弦来求∠A的度数.然后学生思考并作答:已知直角三角形的斜边和一条直角边,求它的锐角的度数.利用锐角的正弦(或余弦)的概念直接求解.投影显示追问1:将上述问题推广为一般的数学问题如何求解?追问2:在上述Rt△ABC中,你还能求其他未知的边和角吗?师生活动:教师把问题一般化,给出解直角形的内涵:一般的,在直角三角形中,除直角外,共有五个元素,即三条边和两个锐角,由直角三角形中的已知元素求出未知元素的过程,叫做解直角三角形.学生思考并说明求解思路.设计意图:通过实际问题激发学生学习的兴趣,把实际问题转化为数学问题,并一般化:已知直角三角形斜边和直角边,求它的锐角的度数.通过求解的过程,初步体会解直角三角形的内涵,引入课题.环节二:(典例示范,探究方法)例1 如图,在Rt△ABC 中,∠C=90°AC=√2,BC=√6,解这个直角三角形.追问1 解直角三角形的目标是什么?.追问2 在Rt△ABC 中有哪些未知元素?如何求这些未知元素?求解的依据是什么?教师活动:教师引导学生结合图形选择反映五个元素之间关系的式子,鼓励学生采取不同方法求解,并引导学生选择简洁的解题途警最后给出检教师引导学生结合图形选择,反映,五个元素之间关系的式子,鼓励学生采取不同方法求解并引导学生选择,简洁的解题途径,最后给出简洁规范的解题步骤。
人教版九年级数学下册锐角三角函数《解直角三角形及其应用(第1课时)》示范教学课件
一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.
在直角三角形中,除直角外的五个元素之间有哪些关系?
如图,在 Rt△ABC 中,∠C 为直角,∠A,∠B,∠C 所对的边分别为 a,b,c,那么除直角∠C 外的五个元素之间有如下关系:
解直角三角形的类型及方法
图示
已知类型
已知条件
方法与步骤
两边
斜边,一条直角边(如 c,a)
(1) ;(2)由 ,求∠A;(3)∠B=90°-∠A
两条直角边 a,b
(1) ;(2)由 ,求∠A;(3)∠B=90°-∠A
解直角三角形及其应用
(第1课时)
人教版九年级数学下册
sin A=____________=____.
如图,在 Rt△ABC 中,∠C=90°. 我们把锐角 A 的_________________叫做∠A 的正弦,记作 sin A,即
对边与斜边的比
把∠A 的________________叫做∠A 的余弦,记作 cos A,即
在 Rt△ABC 中,有哪些未知元素?如何求这些未知元素?求解的依据是什么?
例1 如图,在 Rt△ABC 中,∠C=90°,AC= ,BC= ,解这个直角三角形.
例2 如图,在 Rt△ABC 中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).
cos A=____________=____;
邻边与斜边的比
把∠A 的_________________叫做∠A 的正切,
记作 tan A,即
tan A=__________=____.
人教版九年级数学下册锐角三角函数《解直角三角形及其应用(第5课时)》示范教学课件
例3 如图,某人在山坡坡脚 A 处测得电视塔尖点 C 的仰角为60°,沿山坡向上走到 P 处再测得电视塔尖点 C 的仰角为45°,已知 OA=200 m,山坡坡度为 ,且 O,A,B 在同一条直线上,求电视塔 OC 的高度以及此人所在位置点 P 的垂直高度(测倾器的高度忽略不计,结果保留根号).
分析:解题的关键是理解仰角、俯角、坡度、坡角的有关概念,通过作辅助线,将有关数据转化到直角三角形中解答.
在 Rt△AOC 中,直接利用锐角三角函数求得电视塔 OC 的高度;求点 P 的垂直高度时,关键有三步:①过点 P 作 PE⊥OB 于点 E,PF⊥CO 于点 F,得到 Rt△PAE 和Rt△PFC;
②利用 60°,45°以及坡度,发现 AE=3PE,PF=CF=OC-PE,PF=OA+AE;③选取 PE 为未知数,通过设元列方程求解.
解:如图,过点 P 作 PE⊥OB 于点 E,PF⊥CO 于点 F.在 Rt△AOC 中,∵ OA=200 m,∠CAO=60°,∴ OC=OA·tan∠CAO=200×tan 60°= (m).设 PE=x m,∵ ,∴ AE=3x m.
例1 如图,一山坡的坡度为 i=1∶2.小刚从山脚 A 出发,沿山坡向上走了 240 m 到达点 C.则小刚上升了多少米?
解:用 α 表示坡角的大小,由题意可得tan α= ,AC=240 m,∴sin α= ,∴BC=240× .则小刚上升了 m.
E
F
在 Rt△PCF 中,CF=OC-PE=( -x)m,PF=OA+AE=(200+3x)m.
人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案
2.能够运用锐角三角函数解决实际问题,提高学生的应用能力。
3.学会使用三角板和直尺等工具进行角度测量,培养学生的动手操作能力。
4.能够运用信息技术辅助学习,提高学生的信息素养。
(二)过程与方法
1.通过观察、实验、探究等方法,引导学生主动发现锐角三角函数的规律。
四、教学内容与过程
(一)导入新课
1.生活实例引入:教师通过展示一些实际生活中的图片,如建筑物的设计图、物理实验场景等,让学生观察并思考其中涉及到的角度问题。
2.提问引导:教师向学生提出问题,如“这些图片中的角度是如何计算的?”“你能想到一些与角度相关的实际问题吗?”等,激发学生的思考兴趣。
3.学生回答:鼓励学生积极回答问题,分享自己的观点和思考。
三、教学策略
(一)情景创设
1.生活情境:通过设置一些与生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.问题情境:设计一些具有挑战性的问题,让学生在解决问题的过程中自然地引入锐角三角函数的知识,引导学生主动探究。
3.互动情境:创设轻松、愉快的课堂氛围,鼓励学生积极参与课堂讨论,培养学生主动表达自己观点的能力。
2.作业反馈:教师及时批改学生的作业,给予反馈和评价,指出学生的错误和不足,帮助学生提高。
3.学生自我检查:学生对自己的作业进行自我检查,总结自己在作业中的优点和不足,不断提高自己的学习效果。
五、案例亮点
1.生活情境的引入:通过展示与学生生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,使学生感受到数学的实用性,激发学生的学习兴趣。这种生活情境的引入,不仅能够引起学生的兴趣,还能够增强学生对知识的理解和记忆。
人教版九年级下册数学《锐角三角函数》教案(附解答)
南京市中考化学二模试题及答案一、选择题1.已知某固体粉末是由 NaCl、CaCl2、NaOH、K2CO3、Na2CO3中的一种或几种组成,取这种粉末24g 加足量的水,振荡后呈浑浊,过滤、洗涤、烘干后得到10g沉淀和滤液。
向滤液中滴加酚酞,变红;取少量滤液于试管中滴加硝酸银溶液有白色沉淀生成,再加入稀硝酸沉淀不消失且试管中有气泡产生。
下列说法正确的是A.原固体中一定含CaCl2、NaOH和Na2CO3B.原固体中一定含Na2CO3,可能含K2CO3和NaClC.滤液中一定含NaCl和K2CO3,可能含NaOHD.上述实验无法证明原固体中是否含NaCl、CaCl2、NaOH2.在AlCl3溶液中逐滴加入NaOH溶液至过量,发生如下反应:3NaOH+AlCl3=Al(OH)3↓+3NaCl, Al(OH)3+NaOH=NaAlO2+2H2O。
已知NaAlO2易溶于水,则下列图像不正确的是( )A.B.C.D.3.用数形结合的方法表示某些化学知识直观、简明、易记.下列用数轴表示正确的是()A .不同物质的着火点:B .硫及其化合物与化合价的关系:C .50g19.6%的稀硫酸与足量的金属反应产生氢气的质量:D .物质形成溶液的pH :4.甲、乙、丙、丁均为初中化学常见的物质,它们之间的部分转化关系如图所示(部分反应物、生成物和反应条件已略去。
“——”表示物质之间能发生化学反应。
“―→”表示物质之间的转化关系)。
下列推论不正确...的是( )A .若甲是碳酸钙,则乙转化成丙的反应可以是放热反应B .若乙是最常用的溶剂,则丁可以是单质碳C .若甲是碳酸钠,乙是硫酸钠,则丁可以是氯化钡D .若丙是二氧化碳,丁是熟石灰,则丁可以通过复分解反应转化为乙5.金属钠非常活泼,常温下在空气中易被氧化,也易与水反应。
现将5.4g 部分氧化的金属钠样品放入150g 16%的硫酸铜溶液中,充分反应后过滤,得到9.8g 蓝色滤渣。
人教版九年级数学下册: 28.1 《锐角三角函数》教案6
人教版九年级数学下册: 28.1 《锐角三角函数》教案6一. 教材分析人教版九年级数学下册第28.1节《锐角三角函数》是学生在学习了锐角三角函数的概念、定义、性质的基础上,进一步探究锐角三角函数的计算方法和应用。
本节课的内容与生活实际紧密相连,对于培养学生的学习兴趣,提高学生的数学应用能力具有重要意义。
二. 学情分析九年级的学生已经掌握了锐角三角函数的基本概念和性质,对于函数的计算和应用也有了一定的了解。
但是,对于一些复杂的角度计算和应用问题,学生可能还存在着一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过自主学习、合作交流等方式,进一步理解和掌握锐角三角函数的知识。
三. 教学目标1.知识与技能:使学生掌握锐角三角函数的计算方法,提高学生的计算能力。
2.过程与方法:通过自主学习、合作交流等方式,培养学生的学习兴趣,提高学生的数学应用能力。
3.情感态度与价值观:让学生体验数学与生活实际的联系,增强学生学习数学的积极性。
四. 教学重难点1.重点:锐角三角函数的计算方法。
2.难点:复杂角度的锐角三角函数计算和应用。
五. 教学方法采用自主学习、合作交流、讲解演示等教学方法,引导学生通过观察、思考、讨论、操作等活动,理解和掌握锐角三角函数的知识。
六. 教学准备1.教师准备:教材、课件、黑板、粉笔等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾锐角三角函数的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用课件展示锐角三角函数的计算方法,引导学生观察、思考,并通过讲解演示,使学生理解并掌握计算方法。
3.操练(10分钟)教师提出一些具体的练习题,让学生独立完成,检验学生对锐角三角函数计算方法的掌握情况。
4.巩固(10分钟)教师学生进行小组讨论,共同解答一些复杂角度的锐角三角函数计算问题,加深学生对知识的理解。
5.拓展(10分钟)教师提出一些实际问题,让学生运用所学知识进行解决,提高学生的数学应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数(1)
【教学目标】
1.探索直角三角形中锐角三角函数值与三边之间的关系。
2.掌握三角函数定义式:sinA=斜边的对边
A ∠, cosA=斜边
的邻边A ∠,
【重点难点】
重点:三角函数定义的理解。
难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。
【教学过程】 一、情境导入
如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB 和A ′B ′相等,∠α和∠β大小不同, 那么它们的高度AC 和
A ′C ′相等吗?A
B 、A
C 、BC 与∠α,A ′B ′、A ′C ′、B ′C ′与∠β之间有什么关系呢? ------导出新课
二、新课教学 1、合作探究
(1) Rt △AB 1C 1和Rt △ABC 有什么关系?
B 1
C 1AB 1
,
AC
AB
和
AC 1
AB 1
,BC AC
和B 1C 1
AC 1
有什么关系?
(2)和
(3)如果改变B 在AB 1上的位置呢? 2、三角函数的定义
在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定. ∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =
斜边
的对边
A ∠
C′
B′
A′
C B
A 2
1
3米
3米
2米
4米β
a
BC
AB
a
B
B 1
C 1
C A
tanA=∠A的对边∠A的邻边
∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=
斜边
的邻边
A ∠
∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tangent),记作tanA ,即 锐角A 的正弦、余弦和正切统称∠A 的三角函数.
注意:sinA ,cosA ,tanA 都是一个完整的符号,单独的 “sin ”没有意义,其中A 前面的“∠”一般省略
不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗? 师:(点拨)直角三角形中,斜边大于直角边. 生:独立思考,尝试回答,交流结果. 明确:0<sina <1,0<cosa <1.
巩固练习:课本第6页课内练习T1、作业题T1、2 3、例题教学:课本第5页中例1.
例1 如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3, 求∠A, ∠B 的正弦,余弦和正切.
分析:由勾股定理求出AC 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
师:观察以上计算结果,你发现了什么?
生:独立思考,交流结果,举手板演. 明确:sinA=cosB ,cosA=sinB ,tanA ·tanB=1
4、课堂练习:课本第6页课内练习T2、3,作业题T3、4、5 三、课堂小结:谈谈今天的收获
1、内容总结
(1)在Rt ΔABC 中,设∠C=900
,∠α为Rt ΔABC 的一个锐角,则
∠α的正弦斜边的对边αα∠=
sin , ∠α的余弦 斜边的邻边
αα∠=cos ,
∠α的正切的邻边
的对边
ααα∠∠=
tan
(2)一般地,在Rt △ABC 中, 当∠C=90°时,sinA=cosB ,cosA=sinB ,tanA ·tanB=1 2、方法归纳
在涉及直角三角形边角关系时,常借助三角函数定义来解
C
B
A
tanA=
∠A的对边∠A的邻边
四、布置作业:见作业本 【板书设计】
锐角三角函数(1)
sin A=
斜边的对边
A ∠叫∠A 的正弦 例1
cos A=
斜边
的邻边
A ∠叫∠A 的余弦
叫∠A 的正切
在Rt △ABC 中, 当∠C=90°时,sinA=cosB ,cosA=sinB ,tanA ·tanB=1
tanA= ∠ A 的对边 ∠
A 的邻边。