初一下数学证明经典例题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,已知D 是△ABC 内一点,试说明AB+AC >BD+CD
证明:延长BD 交AC 于E
在△ABC 中,AB+AE >BE,即AB+AE >BD+DE……① 在△DEC 中,DE+EC >DC……②
①+②,得(AB+AE )+(DE+EC )>(BD+DE )+CD 即AB+(AE+EC )+DE >(BD+DE )+CD 即AB+AC+DE >BD+DE+CD ∴AB+AC>BD+CD
如图,△ABC 中,D 是BC 的中点,求证: (1)AB+AC >2AD
(2)若AB=5,AC=3,求AD 的范围。 (1)延长AD 到点G,使DG=AD.连接BG 在△CDA 和△BDE 中 AD=GD,∠ADC=∠GDB ∵D 是BC 的中点 ∴CD=BD
∴△CDA≌△BDG. ∴BG=AC
在△ABG 中,AB+BG=AB+BC AG=2AD
因为三角形两边和大于第三边,所以AB+BE >AG
B A E
A
B
C
D
G
∴AB+BC>2AD
(2)AB-AC <2AD <AB+AC 2<2AD <8 1<AD <4
如图,AB=AD,AC=AE,∠BAD=∠CAE=90°,点F 为DE 的中点,求证:BC=2AF.
延长AF 到点G,使AF=DF.连接GD 在△AFE 和△DFG 中 AF=GF,∠AFE=∠DFG ∵点F 为DE 的中点 ∴DF=EF
所以△AFE≌△DFG.(SAS) GD=AE=AC;∠G=∠FAE.
∴DG∥AE.(内错角相等,两直线平行)
则∠GDA+∠DAE=180°.(两直线平行,同旁内角互补) 又∵∠BAC+∠DAE=180°.
∴∠GDA=∠BAC.(同角的补角相等). 又∵AD=AB.
∴⊿ADG≌⊿BAC(SAS) ∴AG=BC,即2AF=BC. ∴BC=2AF.
如图,AD 是△ABC 的中线,点E 在BC 的延长线上,CE=AB,∠BAC=∠BCA
C
A
求证:AE=2AD
证明:在AD的延长线上取点F,使AD=FD,连接CF
∵AD是中线
∴BD=CD,AD=FD,∠ADB=∠FDC
∴△ABD≌△FCD (SAS)
∴CF=AB,∠B=∠FCD
∵∠ACF=∠BCA+∠BCE,∠ACE=∠BAC+∠B,∠BAC=∠BC A
∴∠ACF=∠ACE
∵CE=AB
∴CE=CF
∴△ACE≌△ACF (SAS)
∴AE=AF
∵AF=AD+FD=2AD
∴AE=2AD
如图,△ABC中,∠ABC=90°,AC=CE,BC=CD,∠ACE=∠B CD=90°,BC的延长线交DE于F。
(1)求证:EF=DF Array(2)求证:S△ABC=S△DCE
证明:
①作EG⊥BF,交BF延长线于G
则∠CGE=∠ABC=90°
∵∠ACE=90°
∴∠ACB+∠ECG=90°
∵∠ACB+∠BAC=90°
∴∠ECG=∠BAC
又∵AC=EC
∴△ABC≌△CGE(AAS)
∴BC=EG
∵BC=CD
∴EG=CD
∵∠BCD=90°
∴∠DCF=90°=∠EGF
又∵∠CFD=∠GFE(对顶角相等),CD=EG
∴△CFD≌△GFE(AAS)
∴EF=DF
②∵△CFD≌△GFE
∴S△CFD=S△GFE
∴S△CFD+S△CFE=S△GFE+S△CFE
即S△DCE=S△CGE
∵△ABC≌△CGE
∴S△ABC=S△CGE
∴S△ABC=S△DCE
如图,在△ABC,△DEF中,AM,DN分别是两三角形中线,AB=DE,AC=DF,AM=DN.
求证:△ABC≌△DEF B
A
D
证明:如图,延长AM 至A′,使A′M=AM 延长DN 至D′,使D′N=DN 连接A′C、D′F ∵AM 是△ABC 的中线 ∴BM=MC
在△ABM 和△A′CM 中
BM =MC∠AMB=∠A′MCAM=A′M ∴△ABM≌△A′CM(SAS ) ∴AB=A′C,同理可得DE=D′F ∵AB=DE,∴A′C=D′F
∵AM=DN,AA′=2AM,DD′=2DN
∴AA′=DD′,在△AA′C 和△DD′F 中,AC =DFAA′=DD′A′C=D′F
∴△AA′C≌△DD′F(SSS )
∴∠A′=∠D′,在△A′MC 和△D′NF 中,A′M=D′N ∠A′=∠D′A′C=D′F ∴△A′MC≌△D′NF(SAS ) ,∴MC=NF
∵AM、DN 分别是两三角形中线 ∴BC=2MC,EF=2NF
∴BC=EF,在△ABC 和DEF 中,AB =DEAC =DFBC =EF ∴△ABC≌DEF(SSS ).
B A
M
C
A ′