年产5万吨α-淀粉酶 工厂发酵车间设计 毕业论文.x

合集下载

(完整版)年产5000吨糖化酶发酵车间设计

(完整版)年产5000吨糖化酶发酵车间设计

南阳理工学院本科生毕业设计学院(系):生物与化学工程学院专业:生物工程学生: *******指导教师:***完成日期 2010 年 5 月南阳理工学院本科生毕业设计年产5000吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop总计:毕业设计(论文)28页表格: 5 个插图: 1 幅南阳理工学院本科毕业设计年产5000吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop学院(系):生物与化学工程学院专业:生物工程学生姓名:郭留洋学号:*****指导教师:******评阅教师:完成日期:2010年5月南阳理工学院Nanyang Institute of Technology年产5000吨糖化酶发酵车间的工艺设计生物工程专业郭留洋【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。

本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产5000吨糖化酶发酵车间采用3个75m3发酵罐和3个6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。

【关键字】糖化酶工厂设计深层发酵黑曲霉The Design of Annual Output of 5000 Tons ofGlucoamylase Fermentation FactoryWorkshopAbstract:Glucoamylase is the main enzyme of industrial production which is widely used in wine, glucose, fructose syrup, antibiotics, lactic acid, organic acid, monosodium glutamate, cotton and so on.The design use corn starch as main raw material, using Aspergillums Niger, and apply mechanical ventilation it that can be fermented production. This industrial workshop design can complete the process of industrial design, the accounting, equipment selection facility layout design. This workshop can make production of 5,000 tons of glucoamylase fermentation using three 75 m3 and 3 based fermentation tank 6m3 seed set and so on, The fermentation plant has a reasonable layout which according to thefactory workshop’s layout of bio-engineering principles, With drawing a flow chart and workshop’s layout, the result of industrial design provide a reference to the production of glucoamylase.Keywords:Glucoamylase Plant DesignFermentation Aspergillus Niger目录1前言 (1)1.1糖化酶的简介 (1)1.2糖化酶的应用现状 (1)1.3糖化酶在国内外的研究进展及前景 (1)1.4设计内容及意义 (3)2本论 (5)2.1糖化酶生产中所用黑曲霉的特性 (5)2.2菌种培养工艺 (5)2.2.1菌种活化 (6)2.2.2一级种子培养 (6)2.2.3二级种子培养 (6)2.3工艺计算 (6)2.3.1工艺技术指标及基础数据 (6)2.3.2发酵工艺流程图 (8)2.3.3物料衡算 (8)2.3.4热量衡算 (10)2.3.5水平衡的计算 (13)2.3.6无菌空气用量的计算 (14)2.4设备的设计与选型 (14)2.4.1发酵罐的设计与选型 (14)2.4.2种子罐的设计与选型 (17)2.5 车间布置设计 (18)2.5.1车间布置设计的目的和重要性 (18)2.5.2 车间布置的有关技术要求和参数 (19)2.5.3设备的安全距离 (19)2.5.4设备布置原则 (20)3结论 (21)参考文献 (22)致谢 (23)1前言1.1 糖化酶的简介糖化酶又称葡萄糖淀粉酶,糖化酶是一种习惯上的名称,学名为α-1,4-葡萄糖水解酶。

α-淀粉酶的生产工艺设计

α-淀粉酶的生产工艺设计

α-淀粉酶的生产工艺设计α-淀粉酶的发酵生产工艺摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。

目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。

1.菌种的选育1. 1 细菌的分离与初步鉴定:将土壤系列稀释,把10-3 、10-4、10-5分别涂布到淀粉培养基上,27℃倒置培养2天,将长出的菌落接入斜面。

将细菌从斜面接种到淀粉培养基培养2天,用碘液染色,记录透明圈大小和菌落直径,计算D/d值。

保菌供下次实验用。

1.2 紫外线诱变育种:取活化后的菌种配成菌悬液、稀释;倒淀粉培养基平板,将菌悬液涂布其表面;用紫外线处理平板0、2min、4min、6min、8min、10min,每个处理2次重复;放到黑暗中倒置培养,37℃培养48h,分别计数诱变组和对照组平板上的菌落数,并计算致死率;加入碘液,分别测量诱变组和对照组菌落的透明圈直径和菌落直径,计算D/d值;将D/d值最大的菌种保存到斜面培养基上。

1.3 诱变方法以及变异菌株的筛选①诱变出发菌株在完全培养基中培养至对数生长期后期。

②以NTG为诱变剂,按一定处理剂量(μg/ml),在一定pH值的缓冲液中30℃恒温振荡处理1~4 h。

③经高速离心分离,移植于液体完全培养基进行后培养。

④经稀释涂布在含有1%淀粉BY固体培养基上,经24 h培养形成小菌落。

⑤把单菌落分别移植于含2%淀粉BY液体培养基中,30℃培养36 h。

⑥用2#定性滤纸制成5 mm disc(小圆纸片),并用2%琼脂BY培养基灭菌后加入较大剂量青霉素(抑菌)。

倒入200 mm×300mm长方形不锈钢玻璃培养皿中,冷却凝固。

然后把5 mm disc 纸顺序放在培养基表面。

⑦用微量注射器分别吸取培养液,移植到相应的disc上。

把disc 培养皿经37℃,24h分别培养。

毕业设计--年产5万吨α淀粉酶工厂生产车间的设计

毕业设计--年产5万吨α淀粉酶工厂生产车间的设计

本科生毕业设计(论文)学院(部):生物与化学工程学院专业:生物工程目录1 绪论 (3)1.1淀粉酶简述 (3)1.2淀粉酶的发展历程 (3)2 α淀粉酶的结构与性质 (4)结构 (4)性质 (4)3 生产方法的选择 (4)3.1生产方法介绍 (4)3.1,1 固体培养法 (4)3.1.2 液体深层培养法 (5)3.2生产方法的选择原则 (5)4 工艺计算 (5)4.1 工艺技术指标 (5)5 设备的工艺计算及选型 (10)5.1发酵罐的选型 (10)5.1.1 发酵罐选型原则 (10)5.1.2生产能力、数量和容积的确定 (11)(1)发酵罐容积的确定: (11)(2)生产能力的计算: (11)5.1.3 发酵罐尺寸的确定 (11)5.1.4 发酵罐搅拌器的设计 (13)5.1.5搅拌轴功率的计算 (14)2.种子罐 (14)罐体壁厚 (15)⑷种子罐冷却面积的计算 (16)6 车间布置设计 (16)6.1 车间设计规范和规定 (16)6.2.1 发酵车间组成 (17)6.2.2 车间布置原则 (17)6.3 车间布置及结构 (17)7 结论 (18)设备选型及计算 (30)车间布置设计 (30)1绪论1.1淀粉酶简述淀粉酶广泛存在于动物、植物和微生物中[1],在食品、发酵、纺织和造纸等工业中均有应用,尤其在淀粉加工业中,微生物淀粉酶更是应用广泛并已成功取代了化学降解法;同时,它们也可以应用于制药和精细化工等行业[2]。

根据淀粉酶对淀粉的水解方式不同[3],可将其分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶等。

其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键[4],而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶[5]。

α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中[6],当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。

年产5万吨食醋专用酒精发酵

年产5万吨食醋专用酒精发酵

五万吨淀粉原料酒精厂全厂总物料衡算一.物料衡算(一)50000吨淀粉原料酒精厂全厂物料衡算1.全厂物料衡酸的内容(1)原料消耗的计算主要原料为大米,其他原料有淀粉酶,糖化酶,硫酸氨,硫酸等。

(2)中间产品蒸煮醪,糖化醪,酒母醪,发酵醪等。

(3)成品,副产品以及废气,废水,废渣即酒精,杂醇油,二氧化碳和废糟等。

2.工艺技术指标及基础数据(1)生产规模50000吨/年酒精。

(2)生产方法双酶糖化,间歇发酵。

(3)生产天数每年300天。

(4)食用酒精日产量166.67吨。

(5)食用酒精年产量50000吨。

(8)产品质量食醋生产用酒精(乙醇含量 3.45g/100mL,按照GB18187-2000要求推算)。

(9)大米原料含淀粉76.9%,水分12.9%。

(10)α-淀粉酶用量为8u/g原料,糖化酶用量为150u/g原料,酒母糖化醪用糖化酶量300u/g原料。

(11)硫酸氨用量7kg/t(酒精)。

(12)硫酸用量(调PH用)5kg/t(酒精)。

4.原料消耗的计算(1)淀粉原料生产酒精的总化学反应式:糖化:(C6H10O5)n + nH2O——nC6H12O6162 18 180发酵:C6H12O6——2C2H5OH + 2CO2180 92 88(2)生产1000kg无水酒精的理论淀粉消耗量有上式可求的理论上生产1000kg无水酒精所耗的淀粉量为:1000×163÷92=1760.9(kg)(3)生产食醋用酒精的理论淀粉消耗量按照GB18187-2000要求,将食醋成品浓度确定在4.5g/100mL,则生产食醋用酒精的乙醇含量3.45g/100mL 乙醇发酵:C2H5OH + O2——CH3COOH + H2 O46 32 60 18乙醇含量3.45g/100mL的乙醇溶液密度在0.99275~0.99103g/L之间,近似为1来计算,故生产1000kg食醋用酒精理论上须淀粉量为:34.5/1000×1760.9=60.75(g).(4)生产1000kg食醋用酒精实际淀粉消耗量实际上,整个生产过程经历原料处理、发酵及蒸馏等工序,要经过复杂的物理化学和生物化学反应,产品得率必然低于理论率。

年产5万吨淀粉糖厂设计部分内容

年产5万吨淀粉糖厂设计部分内容

第3章设计计算3.2物料平衡计算我国主要利用湿法加工生产玉米淀粉:生产能力:日加工玉米1000t要求干淀粉收率≥66% 总干物收率≥98%每小时加工玉米:1000/24=41.67t/h处理100kg绝干玉米需来自浸渍加热时的冷凝水为20kg,同时自蒸发水2kg 3.2.1浸泡工序:以每小时物料平衡计算如下:计算依据:亚硫酸氢钠:玉米(绝干)=1.25:1(质量比)加热蒸汽用2kg/c㎡汽(T=119℃,r=2205.2KJ/kg)设浸泡温度T=52℃(进料温度T=20℃)每小时净化后商品玉米为41.67t商品玉米中含水量=41.67×14%=5.83t(以玉米含水量14%计算)绝干玉米处理量=41.67-5.83=35.84t则需来自浸渍加热时的冷凝水为=35.84×(20/100)=0.72t浸泡是用亚硫酸氢钠水的用量=1.25倍×绝干玉米量=1.25×35.84=44.80t商品玉米经水流输送后含水量由14%增长为20%进入浸泡罐的玉米带水量=35.84/(1-20%)-35.84=8.96t玉米经输送带入的水量=35.84/(1-20%)-41.67=3.13t浸泡罐中料液总量=41.67+44.80+3.13=89.60t浸泡罐中液体含量=44.80+3.13+5.83=53.76t玉米中6.6%可溶物溶出,对应稀玉米浆中含干物6%所以有:玉米浆干物重量=35.84×6.6%=2.37t稀玉米浆中水分含量=39.42×(1-6%)=37.06t浸泡后玉米中干物重量=35.84-2.37-35.84×0.6%=35.25t(0.6%为浸泡时干物损失率)浸泡后湿玉米中水分含量取45%浸泡后是玉米中水分重量=35.25/(1-45%)-35.25=28.85t浸泡后湿玉米重量=35.25+28.85=64.10t浸泡干物损失量=35.84×0.6%=0.22t3.2.2破碎及胚芽分离洗涤进入一破机的物料干物质含量为25~30%(取25%)一破加入的水量=35.25/(76.90+28.85)=1:3一破进料量=64.10+76.90=141.00t(一级A胚芽分离器进料)一级A胚芽分离器溢流进料比为(o/s)=20%一级A胚芽分离器进料浓度为6~7°Be(取12%)一级A胚芽分离器进料量=35.25/12%=293.75t一级A胚芽分离器干物量=35.25t一级A胚芽分离器游离淀粉量=35.84×71%×30%=7.63t一级A胚芽分离器加水量=293.75-141=152.75t一级A胚芽分离器溢流进料比为(o/s)=20%一级A胚芽分离器溢流中干胚芽量=35.84×10%×90%=3.23t(10%为胚芽占子粒率,90%为溢流中胚芽含量)此处认为胚芽已全部分离出来则胚芽离开淀粉系统带水量=3.23/(1-75%)-3.23=9.69t(75%为挤压前胚芽带水量)一级A胚芽分离器溢流中游离淀粉含量=7.63×20%=1.53t一级A胚芽分离器溢流纤维总量=35.84×9.5%×20%=0.68t(9.5%为玉米中纤维的平均含量) 一级A胚芽分离器溢流干物总量=3.23+1.53+0.68=5.44t一级A胚芽分离器溢流干物浓度=[5.44/(293.75×20%)]×100%=9%一级A胚芽分离器底流物料量=293.75×(1-20%)=235.00t一级A胚芽分离器底流干胚芽量=35.84×10%×(1-90%)=0.36t一级A胚芽分离器底流游离淀粉量=7.63×(1-20%)=6.10t一级A胚芽分离器底流干物量=35.25-5.44=29.81t一级A胚芽分离器底流干物浓度=29.81/235.00=12.69%(一级B胚芽分离器进料)一级B胚芽分离器溢流进料比为(o/s)=30%一级B胚芽分离器溢流物料量=235.00×30%=70.50t一级B胚芽分离器溢流干物中游离淀粉量=6.10×30%=1.83t一级B胚芽分离器溢流干物浓度=1.83/70.50=2.60%一级B胚芽分离器底流物料量=235.00×(1-30%)=164.50t一级B胚芽分离器底流干游离淀粉量=6.10×(1-30%)=4.27t一级B胚芽分离器底流总干物量=29.81﹣1.83=27.98t一级B胚芽分离器底流非游离淀粉干物量=27.98﹣4.27=23.71t一级B胚芽分离器底流干物浓度=27.98/164.50=17.01%二级A胚芽分离器进料浓度为8°Be(14.4%)二级A胚芽分离器进料量=27.98/14.4%=194.31t二级A胚芽分离器加水量=194.31-164.50=29.81t二级A胚芽分离器溢流进料比为(o/s)=20%二级A胚芽分离器溢流物料量194.31×20%=38.86t二级A胚芽分离器溢流干淀粉量=4.27×20%=0.85t二级A胚芽分离器溢流干物质0.85t(主要为淀粉)二级A胚芽分离器溢流干物浓度=0.85/38.86=2.20%二级A胚芽分离器底流物料量=194.31×(1-20%)=155.45t二级A胚芽分离器底流干游离淀粉量=4.27-0.85=3.42t二级A胚芽分离器底流非游离淀粉干物量同一级B底流非游离淀粉干物量=23.71t 二级A胚芽分离器底流干物浓度=(23.71+3.42)/155.45=17.45%(二级B胚芽分离器进料)取二级B胚芽分离溢流进料比为(o/s)=30%二级B胚芽分离器溢流物料量=155.45×30%=46.64t二级B胚芽分离器溢流游离干淀粉量=3.42×30%=1.03t二级B胚芽分离器溢流干物浓度=1.03/46.64=2.20%二级B胚芽分离器底流物料量=155.45×(1-30%)=108.82t二级B胚芽分离器底流干游离淀粉含量=3.42-1.03=2.39t二级B胚芽分离器底流非游离淀粉干物量同一级B底流非游离淀粉干物量=23.71t 二级B胚芽分离器底流干物浓度=(23.71+2.39)/108.82=23.98%一级A胚芽分离器溢流干物浓度=9%一级A胚芽分离器溢流中干游离淀粉量=1.53t一级A胚芽分离器溢流中干胚芽量=3.23t一级A胚芽分离器溢流中纤维总量=0.68t一级A胚芽分离器溢流中干物重量=5.44t洗后胚芽游离淀粉含量=[3.23/(1-1.5%)]-3.23=0.049t(洗后游离淀粉所占比例1.5%) 胚芽结合淀粉量=[3.23/(1-7%)]-3.23=0.24t(胚芽结合淀粉占7%)所以洗掉淀粉量=1.53-0.049-0.24=1.24t一级A胚芽分离器溢流物料量=293.75×0.05×20%=88.13t一级A胚芽分离器溢流水量=88.13-5.44=82.69t每道磨前有分离曲筛,共三道磨,所以有三部分磨前筛(一筛进料量)一筛筛上物料含水为75%一筛筛上干淀粉量=1.53×(1-90%)=0.153t(90%为筛下淀粉含量)一筛筛上总干物量=5.44-1.53×90%=4.06t一筛筛上水量=[4.06/(1-75%)]-4.06=12.18t一筛筛上物料量=12.18﹢4.06=16.24t一筛筛下物料量=88.13-16.24=71.89t一筛筛下干物量=5.44-4.06=1.38t一筛筛下淀粉量=1.53-0.153=1.38t一筛筛下水量=71.89-1.38=70.51t一筛筛下干物浓度=(1.38/71.89)×100%=1.92%一筛洗去淀粉量=1.38t二筛筛进物料量=16.24+1.3m³/t×35.84×1=62.83t(1.3m³/t×35.84为洗水量,1为水的密度) 二筛进料干物浓度=[4.06/62.83]100%=6.46%二筛进料淀粉浓度=[0.153/62.83]100%=0.24%二筛加水量=1.3m³/t×35.84×1t/m³=46.59t二筛筛上物料含水取75%二筛筛上总干物量=4.06-0.153×90%=3.92t二筛筛上水量=3,92/(1-75%)-3.92=11.77t二筛筛上物料量=11.77+3.92=15.69t二筛筛下物料量=62.83-15.69=47.14t二筛筛下干物量=4.06-3.92=0.14t二筛筛下淀粉量=0.153×90%=0.14t二筛筛下水量=47.14-0.14=47.00t二筛筛下干物浓度=[0.14/47.14] ×100%=0.29%三筛进料量=15.69+2m³/t×35.84×1t/m³=87.37t三筛加水量=2m³/t×35.84×1t/m³=71.68t三筛筛上物料含水量为75%三筛筛上干淀粉量=0.0153×50%=0.0077t三筛筛上总干物量=3.92-0.0153×50%=3.91t三筛筛上水量=3.91/(1-75%)-3.91=11.74t三筛筛上物料量=11.74+3.91=15.66t三筛筛下物料量=87.37-15.66=71.71t三筛筛下干物量=3.92-3.91=0.0080t三筛筛下淀粉量=0.0153×50%=0.0077t三筛筛下干物浓度=[0.0080/71.71] ×100%=0.01%三筛筛下水量=71.71-0.0080=71.70t3.2.3精磨进精磨物料含水量取76%精磨后加吸水调浓度为11ºBe→20%二级B胚芽分离器底流干物量=23.71+2.39=26.10t二级B胚芽分离器底流物料量=108.82t二级B胚芽分离器底流干淀粉量=35.84×71%×50%-35.84×6.9%×11%=12.45t二级B胚芽分离器底流非游离淀粉干物量23.71t二级B胚芽分离器底流干物浓度23.98%精磨前压力曲筛筛下游离干淀粉量=12.45×90%=11.21t筛下蛋白量=35.84×10%×40%=1.43t筛下其他干物量=35.84×20%×40%=2.87t筛下总干物量=11.21+1.43+2.87=15.51t筛下总物料量=108.82-65.29=65.29t筛下水量=26.10-15.51=49.78t筛下干物浓度= [15.51/65.29]×100%=23.75%筛上总物料量=108.82-65.29=43.53t筛上干物量=26.10-15.51=10.59t筛上淀粉量=35.84×71%-35.84×6.9%×11%-11.21=13.97t筛上蛋白量=35.84×10%-0.86=2.72t筛上纤维量=35.84×10%=3.58t筛上干物浓度= [10.59/43.53]×100%=24.33%3.2.4纤维洗涤纤维总量=35.84×9.5%=3.41t(9.5%为玉米中纤维的平均含量)洗涤后纤维含水量为85%,则纤维带水为=3.41/(1-85%)-3.41=19.32t 六筛筛上物料量=3.41/(1-85%)=22.73t六筛筛上干物量(纤维)=3.41t洗水量=2.5×35.84=89.60t挤压脱水量=3.41×(85/15-60/40)=14.21t各筛纤维进料量=22.73+14.21+89.60=117.88t各筛筛上物料量=22,73t各筛筛下物料量=117.88-22.73=95.15t进入的总干物量为精磨后筛下总干物量=11.21+1.43+2.87=15.51t各筛下干物总量=15.51-3.41=12.10t取各筛上干物料量为:一筛筛下干物量为12.10t,浓度= [12.10/95.15]×100%=12.72%一筛筛上干物量为15.51t,浓度= [15.53/22.73]×100%=68.24%二筛筛下干物量为10.80t,浓度=[10.08/95.15]×100%=10.60%二筛筛上干物量为13.01t,浓度=[13.01/22.73]×100%=57.24%三筛筛下干物量为7.50t,浓度=[7.50/95.15]×100%=7.88%三筛筛上干物量为10.51t,浓度=[10.51/22.73]×100%=46.24%四筛筛下干物量为5.00t,浓度=[5.00/95.15]×100%=5.25%四筛筛上干物量为8.01t,浓度=[8.01/22.73]×100%=35.24%五筛筛下干物量为2.05t,浓度=[2.05/95.15]×100%=2.15%五筛筛上干物量为5.43t,浓度=[5.43/22.73]×100%=24.31%六筛筛下干物量为0,浓度=[0/95.15]×100%=0六筛筛上干物量为3.41t,浓度=[3.41/22.73]×100%=15.00%泵槽:一槽干物量=10.59+10.08=20.67t一槽物料浓度= [20.67/117.88]×100%=17.53%二槽干物量=15.51+7.50=23.01t二槽物料浓度= [23.01/117.88]×100%=19.52%三槽干物量=13.01+5.00=18.01t三槽物料浓度= [18.01/117.88]×100%=15.28%四槽干物量=10.51+2.05=12.56t四槽物料浓度= [12.56/117.88]×100%=10.65%五槽干物量=8.01+0=8.01t五槽物料浓度= [8.01/117.88]×100%=6.80%六槽干物量=5.43t六槽物料浓度= [5.43/117.88]×100%=14.25%去麸质分离工序物料量=65.29+117.88=183.17t去麸质分离工序干物量=15.51+10.59=26.10t去麸质分离工序浓度=[26.10/183.17]×100%=14.25%3.2.5麸质浓缩分离预浓缩离心机:计算依据:底流淀粉乳干物浓度30%,蛋白质浓度2%,其他浓度0.17%,淀粉浓度27.83%,溢流干物浓度2%,其中蛋白65%设其底流物料量为G,则有:26.10=G×30%+﹙183.72-G﹚×2%得:G=80.13t即预浓缩机底流物料量=80.13t则预浓缩机溢流物料量=183.72-80.13=103.04t预浓缩机底流物料干物量=80.13×30%=24.04t淀粉干物量=80.13×27.83%=22.30t预浓缩机溢流物料干物量=103.04×2%=2.06t麸质浓缩机:取底流浓度为13%,设底流物料量x13%x=2.06,得x=15.85t底流物料量=15.85t溢流物料量=103.04-15.85=87.19t其他推算得浓麸质含水60%,干物40%浓麸质的量=﹙35.84×6.6%﹚/40%=5.91t (绝干玉米种蛋白含量)浓麸质的水量=15.85-5.91=9.94t重新校核:进料量=103.04+9.94=112.98t溢流量=87.19+9.94=97.13t主分离机:主分离机底流浓度为35%,淀粉浓度34.61%,蛋白浓度0.3%,其他浓度0.09%主分离机溢流浓度为2%,淀粉浓度10%(干),蛋白浓度65%(干),蛋白收率6.6% 进料量为预浓缩机底流=80.13t干物量=80.13×30%=24.04t,淀粉干物量=80.13×27.83%=22.30t溢流干物量=35.84×6.6%=2.37t溢流淀粉量=2.37×10%=0.237t溢流物料量=2.37/2%=118.25t底流干物量=24.04-2.37=21.67t底流淀粉量=21.67×[1-﹙0.3+0.09﹚/35]=21.43t底流物料量=21.67/35%=61.92t总物料量=118.25+61.92=180.17t加洗水量=180.17-80.13=100.04t校核:底流干物量=21.43+2.37×80%=23.33t(回收率为80%)底流物料量=23.33/35%=66.63t(此部分进入十二级淀粉洗涤工序)3.2.6淀粉洗涤采用12级旋流洗涤器精制淀粉乳量=66.63t精制淀粉乳顶流干物量=66.63×41.74%=27.81t洗涤用水量=35.84×2.27=81.36t1级溢流干物量=81.36×8.63%=7.02t精制淀粉乳干物量=27.81-7.02=20.791级来料量=35%×66.63=23.32t末级底流物料浓度40%,淀粉浓度=40%×99.5%=39.8%蛋白浓度=40%×0.4%=0.16%1级溢流物料浓度=7%,蛋白浓度=0.43%,淀粉浓度=6.57%设底流浓度=38.4%另一级溢流物料量为a,12级底流物料量为b,根据物料平衡关系:66.63+81.36=a+b66.63×35%=7%a+40%b得a=108.71t,b=43.41t即12级底流物料量43.41t1级溢流物料量108.71t1级:o/s=65%66.63+e=108.71+f66.63×38.4%+ey=108.71×7%+38.4%f[108.71/﹙66.63+e﹚] ×100%=65%得e=100.62t,f=48.54t,y=4.47%即2级溢流浓度=4.47%2级溢流物料量=100.62t1级底流物料量=58.54t1级进料量=66.63+100.62=167.25t2级:o/s=59%58.54+g=100.62+h58.54×38.4%+gy=100.62×4.47%+38.4%h[100.62/﹙58.54+g﹚] ×100%=59%得g=111.99t,h=69.92t,y=7.92%即3级溢流浓度=7.92%3级溢流物料量=111.99t2级底流物料量=69.92t2级进料量=58.54+111.99=170.53t3级:o/s=59%69.92+i=111.99+j69.92×38.4%+iy=111.99×7.92%+38.4%h[111.99/﹙69.92+i﹚] ×100%=59%得i=119.90t,j=77.83t,y=9.92%即5级溢流浓度11.92%5级溢流物料量128.90t4级底流物料量86.23t4级进料量77.83+128.90=206.73t5级:o/s=58%86.23+m=128.90+n86.23×38.4%+my=128.90×11.92%+38.4%n[128.90/﹙86.83+m﹚] ×100%=58%得m=135.42t,n=92.74t,y=13.19%即6级溢流浓度13.19%6级溢流物料量135.42t5级底流物料量92.74t5级进料量135.42+86.23=221.65t6级:o/s==55%92.74+o=135.42+p92.74×38.4%+oy=135.42×13.19%+38.4%p[135.42/﹙92.74+o﹚] ×100%=55%得o=153.47t,p=110.80t,y=16.16%即7级溢流浓度16.16%7级溢流物料量153.47t6级底流物料量110.80t6级进料量153.47+92.74=246.22t7级:o/s=57%110.80+q=153.47+r110.80×38.4%+qy=153.47×16.16%+38.4%r[53.47/﹙110.80+q﹚] ×100%=57%得q=158.45t,r=115.78t,y=16.86%即8溢流浓度16.86%8溢流物料量158.45t7底流物料量115.78t7进料量158.45+110.80=269.25t8级:o/s=57%115.78+s=158.45+t115.78×38.4%+sy=158.45×16.86%+38.4%t[158.45/﹙115.78+s﹚] ×100%=57%得s=162.21t,t=119.53t,y=17.36%即9级溢流浓度17.36%9级溢流物料量162.21t8级底流物料量119.53t8级进料量162.21+115.78=277.98t9级:o/s=56%119.54+u=162.21+v119.54×38.4%+uy=162.21×17.36%+38.4%v[162.21/﹙119.54+u﹚] ×100%=56%得u=170.11t,v=127.45t,y=18.33%即10级溢流浓度18.33%10级溢流物料量170.11t9级底流物料量127.45t9级进料量170.11+119.54=289.65t10级:o/s=56%127.45+w=170.11+x127.45×38.4%+wy=170.11×18.33%+38.4%x[170.11/﹙127.45+w﹚] ×100%=56%得w=176.32t,x=133.66t,y=19.04%即11级溢流浓度19.04%11级溢流物料量176.32t10级底流物料量133.66t10级进料量176.32+127.45=303.77t11级:o/s=56%133.66+y′=176.32+z133.66×38.4%+yy′=176.32×19.04%+28.4%z[176.32/﹙133.66+y′﹚] ×100%=56%得y′=181.20t,z=138.54t,y=19.56%即12级溢流浓度19.56%12级溢流物料量181.20t11级底流物料量138.54t11级进料量181.20+133.66=314.86t12级底流物料量为43.41t12级底流干物=43.41×40%=17.36t1级溢流干物回流12级底流干物量为=108.71×7%×93.8%=7.14t(93.8%为淀粉含量)校核12级底流干物量=17.36+7.14=24.50t淀粉收率=﹙24.5/38.84﹚×100%=68.35%>66% 符合生产要求经脱水干燥后的商品淀粉含水12%—14%我们取13%,也就是说我们所得到商品淀粉质量=24.5/﹙1-13%﹚=28.16t3.3热量平衡计算3.3.1浸泡加热用热量Q=﹙41.67+44.80﹚×4.18×10³×﹙52-20﹚×1.05=12.14×106kj(考虑到热量损失乘以1.05)需2kg/cm²温度T=120℃冷凝潜热r=2205.2kj/kg的蒸汽量m=Q/r=﹙12.14×106﹚/2205.2=5.51t3.3.2旋流器加热洗水用热量Q=81.37×4.18×10³×﹙52-20﹚=10.88×10^6kj需2kg/cm²温度T=120℃冷凝潜热r=2205.2kj/kg 的蒸汽量m=Q/r=﹙10.88×10^6﹚/2205.2=4.93t3.3.3干燥淀粉用热量根据实际生产经验淀粉干燥前含水36%,干燥后为13.5%即淀粉最后带水=24.5/﹙1-13.5%﹚-24.5=3.82t用绝对压强2kg/cm²温度T=120℃冷凝潜热r=2205.2kj/kg的蒸汽干燥进风温度﹙新鲜空气﹚温度﹙t0﹚20℃,经加热后温度为﹙t1﹚170℃干燥淀粉后的废气温度为﹙t2﹚47℃新鲜空气湿度为x0 为0.011kg水/kg干空气废气湿度为x2 为0.05kg水/kg干空气淀粉干重为24.5t干燥前淀粉含水量=24.5/﹙1-36%﹚-24.5=13.78t干燥后淀粉含水量=24.5/﹙1-13.5%﹚-24.5=3.82t则干燥被蒸发水分W=13.78-3.82=9.96t干燥过程中绝对干空气的重量L=W/﹙x2-x0﹚=9.96/﹙0.05-0.011﹚=355.38t新鲜空气焓值I0=1.01t0+﹙1.88t0+2492﹚x0=1.01×20+﹙1.88×20+2492﹚×0.011=48.03kj/kg干空气加热后空气焓值I1=1.01t1+﹙1.88t0+2492﹚x0=1.01×170+﹙1.88×170+2492﹚×0.011=202.63kj/kg干空气则空气加热器加热新鲜空气用热量为Q=L﹙I1-I0﹚=255.38×10³×﹙202.63-48.03﹚=3.95×107kj实际生产中考虑到热量损失所以Q实际=Q﹙1+0.08﹚=3.95×107×1.08=4.27×107 kj需蒸汽量m= Q实际/r=4.27×107 kj/﹙2205kj/kg﹚=19.37t即干燥过程中每小时需蒸汽量19.37t则在生产淀粉每小时消耗热量总量Q总=3.95×107kj+10.88×106kj+12.14×106kj=6.25×107kj每小时消耗绝对压强2kg/cm²温度T=120℃冷凝潜热r=2205.2kj/kg的蒸汽总量M总=5.51t+4.93t+19.37t=29.81t+为进入系统的水量;-为排除系统的水量3.5设备选型3.5.1 设备选型原则⑴保证工艺生产过程的正常和安全进行;⑵操作费用低,耗水、电、汽较少;⑶技术先进,经济合理,操作方便;⑷清洗方便,耐用,易修;⑸设备结构紧凑,尽量实现自动化,减轻工人劳动强度;⑹要留有一定的余量和备用设备;⑺尽量减少噪音,符合环保要求。

年产5万吨α-淀粉酶 工厂发酵车间设计 毕业论文.x

年产5万吨α-淀粉酶 工厂发酵车间设计  毕业论文.x

南阳理工学院本科生毕业设计(论文)学院(部):生物与化学工程学院专业:生物工程姓名:指导老师:完成日期2014年4月南阳理工学院本科生毕业设计(论文)年产5万吨α-淀粉酶工厂发酵车间设计The Design for Alpha Amylase Fermentation Workshop with 50000 tons Annual Production总计:毕业设计(论文) 33页表格: 5 个插图: 3 幅南阳理工学院本科毕业设计(论文)年产5万吨α-淀粉酶工厂发酵车间设计The Design for Alpha Amylase Fermentation Workshop with 50000 tons Annual Production学院(部):生物与化学工程学院专业:生物工程学生姓名:方帅学号: 1 0 5 0 1 0 5 4 0 0 4 1指导教师(职称):肖连冬(教授)评阅教师:完成日期: 2014年4月年产5万吨α-淀粉酶工厂发酵车间设计[摘要]:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。

目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。

本次设计的淀粉酶发酵工厂年产量为50000吨,以枯草芽孢杆菌(Bacillus subtilis)BF-7658为生产菌种,以玉米粉为碳源,以豆饼为氮源,采用液体深层发酵法发酵,以此为基础进行设计,确定了生产工艺流程,进行了物料衡算和热量衡算,并计算了主要设备的尺寸。

[关键词]:α-淀粉酶;生产过程设计;深层发酵法The Design for alpha Amylase Fermentation Workshop with50000 tons Annual ProductionBiological engineering FANG ShuaiAbstract:Alpha amylase widely distributed in animals, plants and microbes, hydrolysis can produce dextrin, maltose starch, oligosaccharides and glucose and so on, it is the mostwidely used in industrial production of one of the enzyme preparation. At present, the alpha amylase has been widely used in modified starch and starch sugar, baking industry, beer brewing, alcohol industry, fermentation and textile and the many industries. The design of the fermentation plant amylase, respectively, with corn flour for carbon sources, to soybean cake as nitrogen source, with BF-7658 Bacillus subtilis strains for production, the deep fermentation, by salting-out extraction technology method, with the annual production capacity of 50000 tons of amylase, 167 tons per day. At the same time make the production process flow diagram, the material balance calculations and heat balance calculations, the design and the size of the cans of fermentation tank seeds.Keywords:alpha amylase; Production process design; Deep fermentation目录1 绪论 (1)1.1Α-淀粉酶简述 (1)1.2Α-淀粉酶结构 (1)1.3Α-淀粉酶催化机制 (1)1.3.1 α-淀粉酶催化过程 (1)1.3.2 α-淀粉酶空间结构特点 (2)1.4Α-淀粉酶的理化性质 (3)1.4.1 底物特异性 (3)1.4.2 最适PH和最适温度 (3)1.4.3 金属离子对酶稳定性的影响 (3)1.5国内外主要研究机构及其研究方向 (4)2 设计说明 (4)2.1设计任务 (4)2.2设计原则 (4)2.3生产菌种选择 (5)2.4生产菌种简介 (5)2.4.1枯草芽孢杆菌简介 (5)2.4.2枯草芽孢杆菌的工业应用 (5)3 生产方法的选择 (5)3.1生产方法的选择及结果 (5)3.1.1选择生产方法的主要依据[14]: (5)3.1.2生产方法介绍及确定 (6)3.2工艺流程设计原则 (6)3.3.工艺路线选择 (6)3.3.1工艺路线简述 (6)3.3.2工艺流程简图 (6)4 工艺计算 (7)4.1物料流程及说明 (7)4.1.2 工艺技术指标及基础数据 (7)4.1.3 α-淀粉酶发酵车间的物料衡算 (8)4.1.4 年产5万t/a α-淀粉酶工厂发酵车间的物料衡算表 (9)4.2生产车间的热量衡算 (10)4.2.1 糊化用水耗热量Q1 (10)4.2.2 混合醪煮沸灭菌耗热量Q2 (10)4.3生产车间耗水量 (11)4.4耗冷量计算 (12)4.4.1发酵热计算 (12)4.4.2冷却热计算 (13)4.5无菌空气用量 (13)5 主要设备的工艺计算及选型 (13)5.1发酵罐的选型 (13)5.1.1 发酵罐选型原则 (13)5.1.2 发酵罐设计参数的确定 (14)5.1.3 发酵罐尺寸的确定 (14)5.1.4 发酵罐冷却面积的确定 (15)5.1.5 发酵罐搅拌器的设计 (16)5.1.6搅拌轴功率的计算 (17)5.2种子罐的选型 (18)5.3发酵罐换热器的选择 (20)5.3.1 冷却水耗量 (20)5.3.2 冷却面积 (20)5.3.3蛇管组数和管径的确定 (20)6 车间布置设计 (21)6.1车间设计规范和规定 (21)6.2生产车间布置设计 (21)6.2.1 车间布置设计的依据 (21)6.2.2车间布置原则 (22)6.3车间布置结果 (22)7结论 (22)参考文献 (23)鸣谢 (23)1 绪论1.1α-淀粉酶简述淀粉酶广泛存在于动物、植物和微生物中[1],在食品、发酵、纺织和造纸等工业中均有应用,尤其在淀粉加工业中,微生物淀粉酶更是应用广泛并已成功取代了化学降解法;同时,它们也可以应用于制药和精细化工等行业[2]。

枯草杆菌工业生产α-淀粉酶 郑州轻工业学院结课论文

枯草杆菌工业生产α-淀粉酶 郑州轻工业学院结课论文

枯草杆菌生产α-淀粉酶摘要:α-淀粉酶广泛应用于生产生活的各个方面,并且枯草杆菌生产技术也已经拥有相当成熟的工业生产线。

但随着社会的发展,对α-淀粉酶的生产也提出来更高的要求。

本文着重介绍枯草杆菌生产α-淀粉酶生产流程以及最新的最新研究进展。

关键词:枯草杆菌α-淀粉酶基因工程菌筛选1、α-淀粉酶:1.1理化性质:米黄色、灰褐色粉末。

能水解淀粉中的α-1,4,葡萄糖苷键。

能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。

作用温度范围60~90℃,最适宜作用温度为60~70℃,作用pH 值范围 5.5~7.0,最适pH 值为6.01.2化学性质:α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。

此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。

2、枯草芽胞杆菌:2.1细胞及菌落形态:枯草芽孢杆菌,是芽孢杆菌属的一种。

单个细胞 0.7~0.8×2~3微米,着色均匀。

无荚膜,周生鞭毛,能运动。

革兰氏阳性菌,芽孢0.6~0.9×1.0~1.5微米,椭圆到柱状,位于菌体中央或稍偏,芽孢形成后菌体不膨大。

菌落表面粗糙不透明,污白色或微黄色,在液体培养基中生长时,常形成皱醭。

2.2产α-淀粉酶机制2.2.1机制一:枯草杆菌含有α-淀粉酶基因,通过基因的转录表达可以产生α-淀粉酶。

为了提高枯草杆菌的产酶能力,物理方法(射线和紫外线等)和化学方法(亚硝酸胍)常被用于诱变育种,其产酶能力提高一般5—6倍。

2.2.2机制二:利用基因工程的手段将枯草芽孢杆菌的α-淀粉酶基因导入基因工程菌内并得到表达,提高产酶能力。

3、α-淀粉酶工业生产流程:3.1菌种的初筛复筛及优化3.1.1初筛:将土壤样品10g放入带有玻璃珠盛有100ml无菌水的三角瓶中。

年产10000吨耐高温α-淀粉酶发酵车间设计

年产10000吨耐高温α-淀粉酶发酵车间设计

年产10000吨耐高温α—淀粉酶发酵车间设计[摘要]耐高温α-淀粉酶是由地衣芽孢杆菌等菌种经液体深层发酵提取得到的一种淀粉内切酶,其广泛用于食品发酵工业和纺织业,是我国三大酶制剂产品之。

本设计以地衣芽孢杆菌诱变株为生产菌,以玉米淀粉、豆粕和玉米浆为主要原料,采用机械搅拌通风罐进行间歇液体发酵生产.设计进行了生产方法的选择,确定了合理的工艺流程。

在此基础上进行了详细的工艺衡算和设备设计计算与选型.最后进行发酵车间的布置,绘出工艺流程图和车间布置图。

[关键字]耐高温α-淀粉酶;工艺衡算;设备设计和选型;车间布置Annual output of 10,000 tons of high—temperature α—amylaseworkshop DesignBiological Engineer Major Song Ning[Abstract]Facility Layout T hermostable α—amylase from Bacillus Licheniformis and other bacteria by submerged fermentation of an extracted enzyme, which is widely used in food fermentation industry and textile industry, China's three major enzyme products。

The design of Bacillus Licheniformis for the production of mutant bacteria to corn starch, soybean meal and corn syrup as the main raw materials, mechanical ventilation can be intermittent mixing liquid fermentation. Design of the production methods of choice to determine a reasonable process。

黑曲霉发酵生产α-淀粉酶1.总结

黑曲霉发酵生产α-淀粉酶1.总结

产α - 淀粉酶的黑曲霉上罐发酵技术和发酵动力学研究摘要:本实验通过对黑曲霉发酵生产α -淀粉酶上罐发酵技术和发酵动力学研究,每隔6h 取一次发酵液样品检测其pH 值、酶活、残糖量及生物量四个生理指标,并绘制出变化趋势图,从而得到黑曲霉生产α -淀粉酶过程中各项理化性质的改变,为工业生产提高发酵生产效率有指导意义。

关键词:α- 淀粉酶;黑曲霉;发酵;发酵动力学THE RESERCH ON FERMENTATION TECHNOLOGY AND FERMENTATION KINEYICS OF α - AMYLASE PRODUCTION ONASPERGILLUS NIGERABSTRACT:In this study, Aspergillus niger Fermentation on α- amylase and fermentation tank fermentation kinetics, 6h take a broth sample testing its pH value, enzyme activity, the amount of residual sugar and biomass four physiological indices, and every draw a trend change, resulting in changes Aspergillus niger α- amylase production process of the physical and chemical properties, improve the efficiency of fermentation of guiding significance for industrial production.KEY WORDS: α- amylase; Aspergillus niger; fermentation; fermentation kineticsα - 淀粉酶普遍分布在动物、植物和微生物中,是一种重要的淀粉水解酶,它以随机作用方式切断淀粉、糖原、寡聚糖或多聚糖分子内的α -1 ,4 葡萄糖糖苷键,产生麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最广泛的酶制剂之一[1]。

(完整版)年产5000吨糖化酶发酵车间设计.doc

(完整版)年产5000吨糖化酶发酵车间设计.doc

南阳理工学院本科生毕业设计学院(系):生物与化学工程学院专业:生物工程学生: *******指导教师:李慧星完成日期2010年5月南阳理工学院本科生毕业设计年产 5000 吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop总计:毕业设计(论文)28 页表格:5个插图:1幅南阳理工学院本科毕业设计年产 5000 吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop学院(系):生物与化学工程学院专业:生物工程学生姓名:郭留洋学号:*****指导教师:******评阅教师:完成日期:2010 年 5 月南阳理工学院Nanyang Institute of Technology年产 5000 吨糖化酶发酵车间的工艺设计生物工程专业郭留洋【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。

本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000 吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产 5000 吨糖化酶发酵车间采用 3 个 75 m3发酵罐和 3 个 6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。

【关键字】糖化酶工厂设计深层发酵黑曲霉The Design of Annual Output of 5000 Tons ofGlucoamylase Fermentation FactoryWorkshopAbstract :Glucoamylase is the main enzyme of industrial production which is widely used in wine, glucose, fructose syrup, antibiotics, lactic acid, organic acid, monosodium glutamate, cotton and so on. The design use corn starch as main raw material, using Aspergillums Niger, andapply mechanical ventilation it that can be fermented production. This industrial workshop designcan complete the process of industrial design, the accounting, equipment selection facility layoutdesign. This workshop can make production of 5,000 tons of glucoamylase fermentation using three 75 m3 and 3 based fermentation tank 6m3 seed set and so on, The fermentation plant has areasonable layout which according to thefactory workshop ’slayout of bio-engineering principles, With drawing a flow chart and workshop ’s layout, the result of industrial design provide a reference to the production of glucoamylase.Keywords :Glucoamylase Plant DesignFermentation Aspergillus Niger目录1 前言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 ..1.1 糖化的介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (1)1.2 糖化的用状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (1)1.3 糖化在国内外的研究展及前景⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.11.4 内容及意 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 32 本⋯..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5..2.1 糖化生中所用黑曲霉的特性⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.52.2 菌种培养工⋯⋯⋯ ...⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯⋯⋯⋯⋯⋯⋯⋯ 52.2.1 菌种活化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯62.2.2 一种子培养⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62.2.3 二种子培养⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62.3 工算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 ...2.3.1 工技指及基数据⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯.62.3.2 酵工流程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯.82.3.3 物料衡算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯.82.3.4 量衡算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯ .102.3.5 水平衡的算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯132.3.6 无菌空气用量的算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯142.4 的与型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14...2.4.1 酵罐的与型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯ .142.4.2 种子罐的与型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯.172.5 布置⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯ (18)2.5.1 布置的目的和重要性⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯.182.5.2 布置的有关技要求和参数⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯ 192.5.3 的安全距离⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯.192.5.4 布置原⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯⋯⋯⋯⋯⋯⋯ (20)3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯...⋯⋯⋯⋯⋯⋯ (21)参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.22 致⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.231 前言1.1 糖化酶的简介糖化酶又称葡萄糖淀粉酶,糖化酶是一种习惯上的名称,学名为α-1,4- 葡萄糖水解酶。

年产5万吨浓香型大曲酒发酵车间设计

年产5万吨浓香型大曲酒发酵车间设计
liquorsolidstatefermentationhighlyflavoredtypeiii目录摘要第一章全厂工艺论证11原料及辅料111高粱112玉米113大米12物料粉碎13浓香型大曲酒生产工艺131工艺特点及流程133续糟配料134蒸馏摘酒136加曲入窖1014浓香型大曲制作工艺11141原料及配料11142原料粉碎12143曲坯制作12144曲室培养与管理1214514第二章全厂物料衡算21工艺技术指标22理论出酒率23物料衡算231计算投入物料840kg物料平衡232出窖物料233成品酒及半制品234淀粉含量235淀粉理论产酒量1002310剩余母糟2311成品酒iv231424实际生产效率计算241发酵效率242蒸馏效率243淀粉利用率244每100kg65酒精体积分数酒粮耗245每100kg65酒精体积分数酒曲耗246原料出酒率247淀粉出酒率25原料用量计算第三章全厂热量衡算31蒸汽供热q311糟醅升温耗热q1312蒸酒蒸粮过程耗热q32量水耗热q33一口窖池生产总耗热量q34蒸煮过程热损失q1235一口窖池蒸汽耗用量d1036最大蒸汽消耗量qmax1037蒸汽单耗1038酒的冷凝放热q1139凉糟放热q11第四章水平衡计算1341冷凝用水1342甑桶锅底用水1343其它用水1344生产车间总用水量13第五章车间主要设备计算1351甑桶设计14511甑桶的设计15512甑桶部件选型15512116512215512316513甑桶设计参数1652冷凝器设计17521冷凝器技术指标17522冷凝器规格18523接管的选择18524冷凝器设计参数1953窖池的设计及建造1954晾糟设备2055酒醅出入窖运输设备21第六章车间布置61窖池布置2262车间面积与布局2263各设备距离2264柱子2265仓库22总结23参考文献25vi前言白酒又名烧酒或火酒是我国特有的名族传统蒸馏酒也是世界著名的六大蒸馏酒之一有着悠久的历史和独特的风格其独特的工艺更是千百年来我国劳动人民生产经验的总结和智慧的结晶也是中国文化的一种象征

8万吨α-淀粉酶生产车间的设计

8万吨α-淀粉酶生产车间的设计

8万t/a α—淀粉酶生产车间的设计摘要:本设计为年产80,000t α—淀粉酶的工厂设计,其通过枯草杆菌液体深层发酵、沉淀法提取达到分离纯化出菌体中α-淀粉酶的目的.本设计分别对α-淀粉酶的性质、用途、工艺流程及生产原理都做了相关的阐述,并对有关的物料和热量也作了相应的衡算,以及对标准设备的选型和计算,还对工艺指标、安全问题和环境保护都做了详细的阐述.通过设计得出结论:年产8万吨α-淀粉酶发酵工厂,共有18个500m3发酵罐,每月均放罐180罐,发酵周期为72小时,总提取率为82%,理论α—淀粉酶产量为27。

8吨/罐,实际α—淀粉酶产量为31.03吨/罐.每月应投入生产总成本为3993万元,根据目前市场价格,年利润为6195。

1万元。

关键词:α-淀粉酶;工厂设计;效益分析;发酵;发酵罐Plant Design of Sixty thousand t/a α—AmylaseAbstract:This project is designed by a factory which produces 60,000t α—Amylase a year.It achieves the aim of filt ration and purification of the α—Amylase by using the deep ferment of hay bacillus and settling method.The design not only respectively illustrate the quality,use,technological process and production principle but also make a materials and heat balance,the type selection and calculation of the standard equipment,further more,illustrate the technic index,the problem of security and the environmental protection detailedly。

毕业设计论文:年产5万吨啤酒厂生产车间工艺设计.

毕业设计论文:年产5万吨啤酒厂生产车间工艺设计.

毕业设计论⽂:年产5万吨啤酒⼚⽣产车间⼯艺设计.年产50000吨11o啤酒⼚⽣产车间⼯艺设计摘要本设计是对年产5万吨11°淡⾊啤酒⼚⽣产车间设计。

在设计过程中,完成了啤酒⽣产⼯艺流程的确定,根据产量进⾏糖化和发酵车间的物料衡算及热量衡算,车间的设备计算和设备选型,糖化车间平⾯布置及⼯⼚总平⾯设计,⽽且对啤酒⼚的投资及经济效益进⾏评估并进⾏可⾏性分析。

关键词:设计;⼯艺流程;发酵;糖化Annual output of 50,000 tons of 11o Brewery ProcessDesign WorkshopAbstractThis design is about an annual output of 50,000 tons pale beer production plant design. In the design process, the completion of the determination of the beer production process, according to production for saccharification and fermentation plant material balance and heat balance, workshop equipment and computing equipment selection, plant layout and plant glycosylation total graphic design, and on the brewery's investment and economic benefits and feasibility analysis.Key word:Design;process;fermentation;saccharification⽬录摘要 ................................................................. I Abstract ................................................................ II 第1章绪论 .. (1)1.1啤酒⾏业简介 (1)1.2⽣产规模 (1)1.3设计范围 (1)1.4⼚址的选择 (1)1.5项⽬实施的意义 (2)第2章设计说明书 (3)2.1规模及⽣产⽅案 (3)2.2产品质量及标准 (3)第3章⼯艺流程 (5)3.1啤酒酿造⼯艺流程图 (5)3.2⼯艺要点 (5)3.2.1 粉碎 (5)3.2.2 糖化、糊化 (5)3.2.3 麦汁过滤 (6)3.2.4 ⾼温煮沸 (6)3.2.5 澄清冷却 (6)3.2.6 加⼊酵母发酵 (6)3.2.7 硅藻过滤 (7)3.2.8 包装成品 (7)第4章⼯艺计算 (8)4.1⼯艺技术指标及基础数据 (8)4.1.1 100kg原料的物料衡算 (8)4.1.2 100L啤酒的物料衡算 (9)4.1.3 每次糖化的物料衡算 (10)4.2糖化车间的耗热量计算 (11)4.2.1 糖化和糊化⽤⽔耗热量Q(11)14.2.2 糊化锅中⽶醪煮沸耗热量Q(12)24.2.3 第⼆次煮沸前混合醪升温⾄70℃的好热量Q (14)3(14)4.2.4 第⼆次煮沸混合醪的耗热量Q44.2.5 洗槽⽔耗热量Q(15)5(15)4.2.6 麦汁煮沸过程好热量Q64.2.7 糖化⼀次总耗热量Q(16)总4.2.8 糖化⼀次耗⽤蒸汽量D (16)(16)4.2.9 糖化过程每⼩时最⼤蒸汽耗热量Qmax4.2.10 蒸汽单耗 (17)4.3发酵车间耗冷量计算 (17)4.3.1 ⼯艺耗冷量 (18)(20)4.3.2 ⾮⼯艺耗冷量Qnt第5章主要设备选型及计算 (22)5.1主要设备计算 (22)5.1.1 糖化锅 (22)5.1.2 糊化锅 (22)5.1.3 煮沸锅 (22)5.1.4 过滤槽 (23)5.1.5 回旋沉淀槽 (23)5.1.6 发酵罐 (23)5.1.7 清酒罐 (24)5.1.8 CIP系统设计思路 (24)5.2设备⼀览表(见附录A) (24)第6章车间平⾯布置设计 (25)6.1发酵⼯⼚车间布置的原则 (25)6.1.1 车间布置应符合⽣产⼯艺的要求 (25)6.1.2 车间布置应符合⽣产操作的要求 (25)6.1.3 车间布置应符合设备安装及检修的要求 (25) 6.2发酵车间布置设计的内容 (26)6.2.1 ⼚房的整体布置和轮廓设计 (26)6.2.2 设备的排列和布置 (26)6.2.3 车间附属⼯程设计 (26)6.3车间的主要设备布置 (26)第7章环境保护 (28)7.1主要设计依据 (28)7.2啤酒⽣产中的⼤⽓污染 (28)7.3啤酒⽣产中的废⽔ (28)7.3.1 啤酒⼚⼯业废⽔的污染来源 (28)7.3.2 废⽔处理⽅法 (29)7.4绿化 (29)第8章节能及综合利⽤ (30)8.1概述 (30)8.2节能 (30)8.2.1 ⼯艺 (30)8.2.2 建筑 (30)8.2.3 电⽓ (30)8.2.4 给排⽔ (30)8.3计量 (30)8.4副产品的综合利⽤ (30)结论 (32)参考⽂献 (33)附录 (34)致谢 (36)第1章绪论1.1 啤酒⾏业简介啤酒是以⼤麦和其它⾕物为原料,并加少量酒花,采⽤制麦芽、糖化、发酵等其它⼯艺酿制⽽成的。

年产5万吨12°经典啤酒厂发酵车间设计

年产5万吨12°经典啤酒厂发酵车间设计

齐齐哈尔大学毕业设计(论文)题目:年产5万吨12°经典啤酒厂发酵车间设计(发酵罐)学院:食品与生物工程学院专业班级:生物工程111班学生姓名:###指导教师:###成绩:2015年06月15日摘要本设计为年产5万吨12°经典啤酒厂发酵车间设计。

经典啤酒是以麦芽和大米为主要原料,添加大量酒花以及适量酵母发酵酿制而成的一种低二氧化碳、起泡、低酒精度(2.5%~7.5%)的饮料。

经典啤酒具有发酵度比较低、麦汁中大分子含量多、口味独特、营养丰富等特点。

本设计对5万吨12°经典啤酒厂的生产的发酵工艺进行了论证,确定了发酵方法与工艺流程,进行了物料衡算,发酵工段耗冷计算,水量衡算。

糖化方法采用双醪二次煮出糖化法,发酵方法采用下面发酵法。

本设计的图纸主要包括发酵车间流程图,发酵车间的平面图和立面图及重点设备发酵罐的装配图。

为了节能和减少污染,还设计了工业“三废”处理系统。

在降低能耗、减少废水排放、啤酒糟的回收与利用等方面进行了探讨研究。

关键词:啤酒厂;工艺设计;发酵罐;物料衡算;设备选型与论证AbstractThis design subject is annual output 50,000 tons of 12°classic brewery fermentation workshop.Classic beer is a kind of low-carbon dioxide,sparkling,low-alcohol content (2.5% to 7.5%) of the beverage malt raw material, which added a large number of hops and fermented by the right amount of yeast, malt and rice as it' s main raw material. Classic beer has many features,such as low fermentation degree,large macromolecule content in the wort, unique taste, nutrient-rich and etc.The production process of the 50,000 tons 12°classic beer was demonstrated,the technological process was formulated,and the materials balance,cooling balance,water balance were calcuated.The double-mash decoction mashing and the bottom fermentation were adopted.The drawings of this design include the flow chart of the fermentation workshops,the ichnography and elevation drawing of fermentation workshop,the assembly drawing of major equipment (fermenter).The waste treament system was design- ed for conserving energy and decreasing pollution.The reducing energy consumption and wastewater discharge, recycle and utilization of beer grains were studied in the design.Key words: Beer factory; Craft design; Fermenter; Materials balance;Equipment selection and demonstration目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 选题依据、意义及理论 (1)1.2 设计依据 (1)1.3 设计内容 (1)1.4 发酵设备及其特点 (1)1.4.1 锥形罐的优点 (2)1.4.2 锥形罐的安装和布局 (2)1.5 厂址的选择 (2)1.6 课题研究的内容和方法 (3)第2章工艺流程的选择与论证 (4)2.1 啤酒生产原料 (4)2.1.1 大麦芽 (4)2.1.2 酒花 (4)2.1.3 水 (4)2.1.4 酵母 (4)2.1.5 辅料 (5)2.2 生产工艺流程的选择与论证 (5)2.2.1 麦汁的制备 (5)2.2.2 糖化及糊化 (5)2.2.3 麦汁的过滤 (6)2.2.4 麦汁的煮沸和酒花的添加 (7)2.2.5 麦汁的冷却及凝固物的分离 (7)2.3 啤酒发酵 (7)2.3.1 酵母的扩大培养 (7)2.3.2 啤酒发酵及工艺曲线 (8)2.3.3 发酵工艺论证 (8)2.3.4 贮酒工艺论证 (8)2.3.5 啤酒过滤 (8)第3章三大衡算 (10)3.1 原始数据 (10)3.2 100kg原料生产12°经典啤酒的物料衡算 (10)3.2.1 热麦汁量 (10)3.2.2 冷麦汁量 (11)3.2.3 发酵液量 (11)3.2.4 过滤酒量 (11)3.2.5 成品酒量 (11)3.2.6 酒花量 (11)3.2.7 酒花糟量 (11)3.2.8 湿糖化糟量 (11)3.3 生产100L12°经典啤酒的物料衡算 (12)3.3.1 生产100L12°经典啤酒混合用料量 (12)3.3.2 麦芽消耗量 (12)3.3.3 大米消耗量 (12)3.3.4 酒花耗用量 (12)3.3.5 热麦汁量 (12)3.3.6 冷麦汁量 (12)3.3.7 发酵液量 (12)3.3.8 过滤液量 (13)3.3.9 湿糖化糟量 (13)3.3.10 酵母量 (13)3.3.11 酒花糟量 (13)3.3.12 二氧化碳量 (13)3.3.13 耐高温α淀粉酶量 (14)3.4 年产5×104t12°经典啤酒的物料衡算 (14)3.4.1 原料用量 (14)3.4.2 麦芽用量 (14)3.4.3 大米用量 (15)3.4.4 酒花用量 (15)3.4.5 热麦汁量 (15)3.4.6 冷麦汁量 (15)3.4.7 发酵液量 (15)3.4.8 过滤液量 (15)3.4.9 湿糖化糟量 (15)3.4.10 干酵母量 (15)3.4.11 酒花糟量 (15)3.4.12 CO2的释放量 (15)3.5 发酵车间水耗量计算 (16)3.5.1 薄板冷却器用水 (16)3.5.2 麦汁冷却器洗刷用水 (17)3.5.3 过滤机用水 (17)3.5.4 洗瓶机用水 (17)3.5.5 发酵车间水量耗表 (17)3.6 发酵车间的耗冷量衡算 (17)3.6.1 发酵工艺流程 (17)3.6.2 工艺技术指标及基础数据 (17)3.6.3 工艺耗冷量Q t (18)3.6.4 酵母培养耗冷量 (19)3.6.5 发酵车间工艺耗冷量Q t (19)3.6.6 非工艺耗冷量 (19)3.6.7 发酵车间冷量衡算表 (20)第4章啤酒生产主要设备的选型与论证 (21)4.1 主要设备的选型与计算 (21)4.1.1 薄板冷却器尺寸计算 (21)4.1.2 清酒罐尺寸计算 (21)4.2 附属设备设计与选型 (22)4.2.1 啤酒过滤设备 (22)4.2.2 酵母的扩培设备 (22)第5章发酵罐的设计与论证 (23)5.1 发酵罐数量的计算 (23)5.2 发酵罐的设计与论证 (23)5.2.1 锥角的选择 (23)5.2.2 冷却方式的确定 (23)5.2.3 罐的保温材料的选择 (23)5.2.4 罐的材料的选择 (23)5.2.5 径高比 (24)5.2.6 罐主要附件 (24)5.3 发酵罐作为内压容器的强度计算 (24)5.4 椭圆封头的壁厚计算与强度计算 (24)5.5 筒体壁厚计算与强度计算 (25)5.6 锥形封头壁厚计算与强度计算 (26)5.7 强度校核 (27)5.7.1 压力试验 (27)5.7.2 应力校核 (27)5.7.3 刚度校核 (27)5.8 冷却面积的计算 (27)5.9 部分附件设计与选型 (28)5.9.1 人孔 (28)5.9.2 视镜 (28)5.9.3 洗涤液接管 (28)5.9.4 CO2回收压缩空气管 (28)5.9.5 冷却剂出管 (28)5.9.6 出酒管 (28)5.9.7 支座 (28)第6章啤酒厂三废处理 (29)6.1 废水 (29)6.1.1 废水来源 (29)6.1.2 废水处理 (29)6.2 酵母 (30)6.2.1 废酵母在饲料工业中的应用 (30)6.2.2 废酵母在食品工业中的应用 (30)6.2.3 废酵母在制药工业中的应用 (30)6.3 凝固物 (30)6.4 烟的危害 (31)6.5 玻璃碎片 (31)6.6 声音危害 (31)结论 (32)参考文献 (33)附录 (34)致谢 (36)第1章绪论1.1 选题依据、意义及理论经典啤酒是以麦芽为主要原料,以大米为主要辅料,添加大量酒花以及酵母发酵酿制而成的一种含有二氧化碳、起泡、低酒精度(2.5%~7.5%)的饮料。

(完整版)年产5000吨糖化酶发酵车间设计

(完整版)年产5000吨糖化酶发酵车间设计

南阳理工学院本科生毕业设计学院(系):生物与化学工程学院专业:生物工程学生: *******指导教师:***完成日期 2010 年 5 月南阳理工学院本科生毕业设计年产5000吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop总计:毕业设计(论文)28页表格: 5 个插图: 1 幅南阳理工学院本科毕业设计年产5000吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop学院(系):生物与化学工程学院专业:生物工程学生姓名:郭留洋学号:*****指导教师:******评阅教师:完成日期:2010年5月南阳理工学院Nanyang Institute of Technology年产5000吨糖化酶发酵车间的工艺设计生物工程专业郭留洋【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。

本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产5000吨糖化酶发酵车间采用3个75m3发酵罐和3个6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。

【关键字】糖化酶工厂设计深层发酵黑曲霉The Design of Annual Output of 5000 Tons ofGlucoamylase Fermentation FactoryWorkshopAbstract:Glucoamylase is the main enzyme of industrial production which is widely used in wine, glucose, fructose syrup, antibiotics, lactic acid, organic acid, monosodium glutamate, cotton and so on.The design use corn starch as main raw material, using Aspergillums Niger, and apply mechanical ventilation it that can be fermented production. This industrial workshop design can complete the process of industrial design, the accounting, equipment selection facility layout design. This workshop can make production of 5,000 tons of glucoamylase fermentation using three 75 m3 and 3 based fermentation tank 6m3 seed set and so on, The fermentation plant has a reasonable layout which according to thefactory workshop’s layout of bio-engineering principles, With drawing a flow chart and workshop’s layout, the result of industrial design provide a reference to the production of glucoamylase.Keywords:Glucoamylase Plant DesignFermentation Aspergillus Niger目录1前言 (1)1.1糖化酶的简介 (1)1.2糖化酶的应用现状 (1)1.3糖化酶在国内外的研究进展及前景 (1)1.4设计内容及意义 (3)2本论 (5)2.1糖化酶生产中所用黑曲霉的特性 (5)2.2菌种培养工艺 (5)2.2.1菌种活化 (6)2.2.2一级种子培养 (6)2.2.3二级种子培养 (6)2.3工艺计算 (6)2.3.1工艺技术指标及基础数据 (6)2.3.2发酵工艺流程图 (8)2.3.3物料衡算 (8)2.3.4热量衡算 (10)2.3.5水平衡的计算 (13)2.3.6无菌空气用量的计算 (14)2.4设备的设计与选型 (14)2.4.1发酵罐的设计与选型 (14)2.4.2种子罐的设计与选型 (17)2.5 车间布置设计 (18)2.5.1车间布置设计的目的和重要性 (18)2.5.2 车间布置的有关技术要求和参数 (19)2.5.3设备的安全距离 (19)2.5.4设备布置原则 (20)3结论 (21)参考文献 (22)致谢 (23)1前言1.1 糖化酶的简介糖化酶又称葡萄糖淀粉酶,糖化酶是一种习惯上的名称,学名为α-1,4-葡萄糖水解酶。

α淀粉酶发酵过程的优化和控制

α淀粉酶发酵过程的优化和控制

α淀粉酶发酵过程的优化和控制引言α淀粉酶是一种重要的酶类,广泛应用于食品工业、饲料工业和生物技术领域。

在发酵过程中,优化和控制α淀粉酶的活性和稳定性对产品的质量和产量具有重要影响。

本文将探讨α淀粉酶发酵过程的优化和控制的关键因素和方法。

α淀粉酶发酵过程的基本原理α淀粉酶是一种能够催化淀粉分子内部α-1,4-D-葡萄聚糖链的酶,将淀粉分解为小分子糊精和糊精淀粉,进而提高淀粉的可利用性。

α淀粉酶的发酵过程是将合适的菌种培养到一定的生长期后,通过适宜的条件下进行发酵,最终获得高活性的α淀粉酶。

α淀粉酶发酵过程的优化菌种的选择与培养在优化α淀粉酶发酵过程中,选择合适的菌种非常重要。

菌种应具有高产α淀粉酶的能力,并具有较好的稳定性和耐受性。

常见的菌种有放线菌、酵母菌和青霉菌等。

菌种的选取应基于生产需求和工艺条件,如温度、pH值和营养需求等。

菌种的培养过程需要控制合适的培养温度、培养时间和培养基组成,以达到最佳生长状态。

此外,菌种的贮存和保存也是非常重要的,可以将菌种冷冻保存或使用微生物保存方法。

发酵条件的优化发酵条件的优化对于获得高活性的α淀粉酶至关重要。

关键的发酵条件包括pH值、温度、反应时间和反应容器的通气性。

1.pH值:发酵过程中pH值的控制是确保酶活性和稳定性的关键因素。

不同菌种对pH值的要求有所不同,一般pH值在5.0-8.0之间对大多数菌株适宜。

可以通过添加缓冲液调节pH值。

2.温度:发酵温度对菌种的生长和酶的产生有直接影响。

温度过高会导致菌株死亡和酶活性降低,温度过低则会抑制酶的产生。

不同菌种对温度的适应范围也有所不同,因此需要根据菌株的要求进行调节。

3.反应时间:发酵时间的确定需要综合考虑菌种的生长速率和酶的产量。

通常,发酵时间应在菌种进入稳态生长期后进行,此时酶的产量相对较高。

4.反应容器的通气性:适当的通气可以提供菌株所需的氧气,促进菌种的生长和酶的产生。

通气过量或不足都会影响酶的产量和质量。

年产5万吨啤酒厂糖化、发酵工段课程设计报告

年产5万吨啤酒厂糖化、发酵工段课程设计报告

生物与化学工程学院课程设计报告题目年产5万吨啤酒厂糖化、发酵工段学生姓名:***专业班级:生物工程2011010502班学号:**********指导教师:***设计时间:2013.5.20~2013.5.26生物反应工程与设备课程设计任务书年产5万吨啤酒车间设计(重点为糖化、发酵车间)【摘要】:啤酒是以大麦和水为原料,并添加少量酒花,采用制麦芽、糖化、发酵等特定工艺酿造而成的是一种含有少量酒精和充足二氧化碳,具有酒花香和爽口苦味,营养丰富,风味独特的低度酿造酒。

本设计是对年产5万吨11°淡色啤酒的工厂工艺设计。

啤酒生产的工艺流程设计,工艺计算,糖化车间物料衡算(工艺技术指标及基础数据)、糖化车间热量衡算(糖化用水消耗热量、第一次米醪煮沸消耗热量、第二次煮沸前混合醪升温耗热量、第二次米醪煮沸消耗热量、洗槽水耗热量、麦汁煮沸耗热量、糖化一次总耗热量、糖化一次耗用蒸汽量、蒸汽单耗)、发酵车间耗冷量衡算(工艺耗冷量、非工艺耗冷量),设备的设计与选型(包括糖化锅、糊化锅、过滤锅、煮沸锅、回旋沉淀槽、发酵罐),并在此基础上,对啤酒生产工艺流程图和重点单体设备总装图进行简单的绘制。

【关键词】:啤酒工艺流程工艺计算设备选型Annual output of 50000 tons of beer workshop design(mainly for saccharification and fermentation workshop) 【Abstract 】: beer barley and water as raw material, and adding a small amount of hops, malt preparation, saccharification, fermentation and a specific brewing process and is a sufficient containing a small amount of alcohol and carbon dioxide, with crisp wine fragrance and bitter taste, rich nutrition, unique flavor of low-alcohol wine brewing.This design is the annual output of 50000 tons of 11 ° ale factory process design. Beer production process design, process calculation, the saccharification workshop material balance (technology index and basic data), saccharification workshop heat balance (saccharifying boiling water consumption quantity of heat, the first meters mash before the consumption quantity of heat, the second boiling mix mash temperature heat consumption, the second rice mash boiling heat consumption, the basin water heat consumption, wort boiling heat consumption, saccharification time total heat consumption, saccharification time consumed steam, the steam consumption), the fermentation workshop of cold consumption balance (the process of cold consumption, the process of cold consumption), design and selection of equipment (including mash tun, mash copper, filtration pot, boiling pans, cyclotron sedimentation tank, fermentation tank), and on this basis, the beer production process flow diagram and key equipment assembly for simple mapping.【key words 】:beer process technology calculation equipment type selection目录摘要 (2)设计任务书 (3)第一章设计概论 (5)1.1啤酒行业简介 (5)1.2设计目的 (5)1.3 设计内容 (5)1.4原料、辅料等物料的选择标准 (6)第二章工艺流程 (7)2.1 主要工艺流程图 (7)2.2 工艺要点 (8)第三章工艺计算 (10)3.1 物料平衡计算 (10)3.2 糖化车间的耗热量计算 (13)3.3 发酵车间的耗冷量计算 (19)第五章主要设备选型及计算 (24)5.1 主要设备计算 (24)5.2 设备一览表(见附录A) (28)参考文献 (28)附录 (28)课程设计体会 (30)成绩评定表 (31)第一章设计概论1.1 啤酒行业简介啤酒是以麦芽为主要原料,添加酒花,经酵母发酵酿制而成的,是一种含二氧化碳、起泡、低酒精度的饮料酒。

年产2万吨α-淀粉酶的工厂设计

年产2万吨α-淀粉酶的工厂设计

年产2万吨α-淀粉酶的工厂设计
设计年产2万吨α-淀粉酶的工厂时需要考虑以下几个方面:
1. 工厂规模:根据年产量为2万吨的目标,需要设计出相应的生产线和设备,确定工厂的规模和占地面积。

2. 原材料:α-淀粉酶是一种酶类产品,需要使用淀粉等原材料进行生产。

需要设计原材料的储存和使用方案,确保原材料充足并符合生产要求。

3. 生产工艺:根据α-淀粉酶的生产工艺,制定相应的生产流程和时间表,确保生产效率和产品质量。

4. 设备选型:根据生产流程和工艺要求,选择适合生产α-淀粉酶的设备和机器,例如反应釜、离心机、蒸汽发生器等。

5. 环保要求:生产过程中会产生废水和废气等污染物,需要设计相应的废水处理和废气处理方案,确保符合环保要求。

6. 员工和安全:工厂需要聘请专业的员工进行生产和管理,并建立安全生产制度和应急预案,确保员工的安全和生产的稳定性。

以上是设计年产2万吨α-淀粉酶的工厂需要考虑的几个方面。

需要针对具体情况进行详细的设计和计划。

年产5万吨谷氨酸发酵工厂设计开题报告综述

年产5万吨谷氨酸发酵工厂设计开题报告综述

本科毕业设计(论文)开题报告题目:年产5万吨谷氨酸工厂发酵设计开题报告课题类型:工业设计***名:***学号:**********专业班级:生物工程102学院:生物与化学工程学院***师:**开题时间:2014年3 月2014年月日一、本课题的研究意义、研究现状和发展趋势引言:谷氨酸为无色晶体或结晶性粉末,分为α、β两种晶型,通常β型稳定。

分子式:COOCCH(NC2)CH2CH2COOH分子结构如下所示:谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。

L一谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在。

多种食品以及人体内都含有谷氨酸盐,它既是蛋白质或肤的结构氨基酸之一又是游离氨基酸,L型氨基酸美味较浓。

谷氨酸(2一氨基戊二酸)有左旋体、右旋体和外消旋体。

左旋体,即L一谷氨酸,是一种鳞片状或粉末状晶体,呈微酸性,无毒。

微溶于冷水,易溶于热水,几乎不溶于乙醚、丙酮及冷醋酸中,也不溶于乙醇和甲醇。

在200℃时升华,247℃一249℃分解,密度为1.538沙衬,旋光度+37一 +38.9(25℃)。

谷氨酸的用途广泛,它本身作为药品,能治疗肝昏迷症,也可用来生产味精、食品添加剂、香料和用于生物化学的研究[1]。

1.1研究目的及意义谷氨酸发酵是通气发酵,也是我国目前通气发酵产业中,生产厂家最多,产品产量最大的产业。

该生产工艺和设备具有很强的典型性,本论文对味精发酵生产工艺及主要设备作简要介绍,以期有助于了解通气发酵工艺及主要设备的有关知识。

本设计是年产量为20000吨的味精厂,重点是产品的物料衡算,热量衡算,同时工艺流程及设备选型等设计。

本设计的重点车间为发酵工艺车间,重点设备为糖化,煮沸,发酵设备。

该论文设计的目的是从生产实际出发,确保生产的各个环节中使用较少的人力、物力、财力取得较大的经济效益。

此为本设计的指导思想,亦是本设计最主要的特点。

同时本设计从节约用地出发,充分利用厂房设备来安排产品,对于那些类型不相同,生产设备,生产条件十分相同,甚至是用同一厂房,设备来生产不同产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南阳理工学院本科生毕业设计(论文)学院(部):生物与化学工程学院专业:生物工程姓名:指导老师:完成日期2014年4月南阳理工学院本科生毕业设计(论文)年产5万吨α-淀粉酶工厂发酵车间设计The Design for Alpha Amylase Fermentation Workshop with 50000 tons Annual Production总计:毕业设计(论文) 33页表格: 5 个插图: 3 幅南阳理工学院本科毕业设计(论文)年产5万吨α-淀粉酶工厂发酵车间设计The Design for Alpha Amylase Fermentation Workshop with 50000 tons Annual Production学院(部):生物与化学工程学院专业:生物工程学生姓名:方帅学号: 1 0 5 0 1 0 5 4 0 0 4 1指导教师(职称):肖连冬(教授)评阅教师:完成日期: 2014年4月年产5万吨α-淀粉酶工厂发酵车间设计[摘要]:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。

目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。

本次设计的淀粉酶发酵工厂年产量为50000吨,以枯草芽孢杆菌(Bacillus subtilis)BF-7658为生产菌种,以玉米粉为碳源,以豆饼为氮源,采用液体深层发酵法发酵,以此为基础进行设计,确定了生产工艺流程,进行了物料衡算和热量衡算,并计算了主要设备的尺寸。

[关键词]:α-淀粉酶;生产过程设计;深层发酵法The Design for alpha Amylase Fermentation Workshop with50000 tons Annual ProductionBiological engineering FANG ShuaiAbstract:Alpha amylase widely distributed in animals, plants and microbes, hydrolysis can produce dextrin, maltose starch, oligosaccharides and glucose and so on, it is the mostwidely used in industrial production of one of the enzyme preparation. At present, the alpha amylase has been widely used in modified starch and starch sugar, baking industry, beer brewing, alcohol industry, fermentation and textile and the many industries. The design of the fermentation plant amylase, respectively, with corn flour for carbon sources, to soybean cake as nitrogen source, with BF-7658 Bacillus subtilis strains for production, the deep fermentation, by salting-out extraction technology method, with the annual production capacity of 50000 tons of amylase, 167 tons per day. At the same time make the production process flow diagram, the material balance calculations and heat balance calculations, the design and the size of the cans of fermentation tank seeds.Keywords:alpha amylase; Production process design; Deep fermentation目录1 绪论 (1)1.1Α-淀粉酶简述 (1)1.2Α-淀粉酶结构 (1)1.3Α-淀粉酶催化机制 (1)1.3.1 α-淀粉酶催化过程 (1)1.3.2 α-淀粉酶空间结构特点 (2)1.4Α-淀粉酶的理化性质 (3)1.4.1 底物特异性 (3)1.4.2 最适PH和最适温度 (3)1.4.3 金属离子对酶稳定性的影响 (3)1.5国内外主要研究机构及其研究方向 (4)2 设计说明 (4)2.1设计任务 (4)2.2设计原则 (4)2.3生产菌种选择 (5)2.4生产菌种简介 (5)2.4.1枯草芽孢杆菌简介 (5)2.4.2枯草芽孢杆菌的工业应用 (5)3 生产方法的选择 (5)3.1生产方法的选择及结果 (5)3.1.1选择生产方法的主要依据[14]: (5)3.1.2生产方法介绍及确定 (6)3.2工艺流程设计原则 (6)3.3.工艺路线选择 (6)3.3.1工艺路线简述 (6)3.3.2工艺流程简图 (6)4 工艺计算 (7)4.1物料流程及说明 (7)4.1.2 工艺技术指标及基础数据 (7)4.1.3 α-淀粉酶发酵车间的物料衡算 (8)4.1.4 年产5万t/a α-淀粉酶工厂发酵车间的物料衡算表 (9)4.2生产车间的热量衡算 (10)4.2.1 糊化用水耗热量Q1 (10)4.2.2 混合醪煮沸灭菌耗热量Q2 (10)4.3生产车间耗水量 (11)4.4耗冷量计算 (12)4.4.1发酵热计算 (12)4.4.2冷却热计算 (13)4.5无菌空气用量 (13)5 主要设备的工艺计算及选型 (13)5.1发酵罐的选型 (13)5.1.1 发酵罐选型原则 (13)5.1.2 发酵罐设计参数的确定 (14)5.1.3 发酵罐尺寸的确定 (14)5.1.4 发酵罐冷却面积的确定 (15)5.1.5 发酵罐搅拌器的设计 (16)5.1.6搅拌轴功率的计算 (17)5.2种子罐的选型 (18)5.3发酵罐换热器的选择 (20)5.3.1 冷却水耗量 (20)5.3.2 冷却面积 (20)5.3.3蛇管组数和管径的确定 (20)6 车间布置设计 (21)6.1车间设计规范和规定 (21)6.2生产车间布置设计 (21)6.2.1 车间布置设计的依据 (21)6.2.2车间布置原则 (22)6.3车间布置结果 (22)7结论 (22)参考文献 (23)鸣谢 (23)1 绪论1.1α-淀粉酶简述淀粉酶广泛存在于动物、植物和微生物中[1],在食品、发酵、纺织和造纸等工业中均有应用,尤其在淀粉加工业中,微生物淀粉酶更是应用广泛并已成功取代了化学降解法;同时,它们也可以应用于制药和精细化工等行业[2]。

根据淀粉酶对淀粉的水解方式不同[3],可将淀粉酶分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶等。

其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键[4],而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶[5]。

α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中[6],当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。

它可以由微生物发酵制备,也可以从动植物中提取。

不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。

1.2 α-淀粉酶结构从淀粉酶的发现至今α-淀粉酶的种类已经越来越多,按照使用条件可以分为中温型,高温型,耐酸耐碱型。

按生产菌不同可以分为细菌、真菌、植物和动物淀粉酶。

BF-7568是细菌淀粉酶的代表,米曲酶是真菌淀粉酶的代表。

[7]水解淀粉的酶类主要有α-淀粉酶家族(EC 3.2.1.1),β-淀粉酶家族(EC 3.2.1.2),葡萄糖糖化酶(EC 3.2.1.3),异淀粉酶(EC 3.2.1.68),环式糊精糖化酶(EC 2.4.1.19)等,[8]其中大部分淀粉水解酶都属于α-淀粉酶家族,需要指出的是,α-淀粉酶与α-淀粉酶家族是两个不同的概念,通常将作用于α糖苷键连接的葡萄糖聚糖,并且作用后能保持葡萄糖残基的c1碳原子为α淀粉酶家族。

α-淀粉酶家族明确的包含两大类酶,即葡萄糖苷水解酶和葡萄糖基转移酶,他们或者水解α-1,4键、α-1,6键,或者生成α-1,4键、α-1,6键,极少数还可作用于α-1,2键、α-1,3键,这取决于各个酶作用的特异性,根据酶的特异性,α-淀粉酶家族可分为将近30种不同专一性特征的酶类。

显然α-淀粉酶家族的概念要比α-淀粉酶大很多,只作用于α-1,4键,而且仅是水解作用,α-淀粉酶家族则有的作用于α-1,4键,有的作用于α-1,6键,有的两种糖苷键都能作用,而且既可以是水解作用,也可以是转糖基作用。

因此α-淀粉酶只是α-淀粉酶家族中的一个重要成员。

[9]1.3 α-淀粉酶催化机制1.3.1 α-淀粉酶催化过程α-淀粉酶的催化过程包括三步,共发生2次置换反应。

第一步,底物某个糖残基要先结合在酶酶活性部位的-1亚结合位点,该糖苷氧原子被充当质子供体的酸性氨基酸(如Glu)所质子化;第二步,-1亚结合位点的另一亲和氨基酸(如Asp)对糖残基的C1碳原子进行亲核攻击,与底物形成共价中间物,同时裂解C1-OR键,置换出底物的糖苷配基部分;第三步,糖苷配基离去之后,水分子被激活(可能正是被刚去质子化的Glu所激活),这个水分子再将Asp的亲和氧与糖残基的C1之间的共价键C1-Asp水解掉,置换出酶分子的Asp残基,水解反应完成。

在第二次置换反应中,如果进攻基团不是水分子,而是一个带有游离羟基的糖(寡糖)ROH,那么酶分子的Asp残基被置换出后,就发生了糖基转移反应而非水解反应。

1.3.2 α-淀粉酶空间结构特点自从DNA重组技术建立以来,许多α-淀粉酶的基因陆续被克隆,α-淀粉酶基因的核苷酸序列的测定和由此推定的氨基酸序列也逐渐被人们越来越深入地认识,人们在研究清楚α-淀粉酶的蛋白质氨基酸结构以后,已经分别从假单胞杆菌(Pseudomonas stutzeri Mo-19)米曲霉(Aspergillus oryzae)枯草杆菌(Bacillus subtilis)黄单胞菌(Xanthomonas campestuis PV,camperstris)等以及动物和植物中克隆到了α-淀粉酶基因,Tonozaka通过对不同来源的37个α-淀粉酶基因分支酶基因、异淀粉酶基因进行同源序列的比较发现,微生物与动物和植物产生的α-淀粉酶的氨基酸序列之间的同源性不超过10%,但这些淀粉酶有A B C D四个区域有高度的保守性,推测这些保守区域与其底物的结合或催化中心有关。

相关文档
最新文档