角的比较优质课件PPT
合集下载
角的比较与运算ppt课件
3. 由两个角的另一边的位置确定两个角的大小
CE和OA 重合,
E
那么∠ECD等于∠AOB,
C
D
∠ECD=∠AOB
O
A
B
探究新知
角的和与差
图中共有几个角?它们之间有什么等量关系?
有三个角,等量关系是:
C
∠AOC=∠AOB+∠BOC,
B
∠AOB=∠AOC-∠BOC,
O
A
∠BOC=∠AOC-∠AOB.
如图,填空:
O
这个 角的平分线 .
几
何
语
言
∵ OC 是 ∠AOB 的平分线.
1
∴∠AOC = ∠BOC = ∠AOB
2
或 ∠AOB = 2∠AOC = 2∠BOC.
A
C
B
探究新知
类似的,如下图,还有角的三等分线,四等分线等.
射线OB、OC是∠AOD的三等分线.
D
B
C
∵射线OB、OC是∠AOD的三等分线
∴ ∠=3∠AOC=3∠BOC=3∠BOD
1
2
∴∠COD=
E
C
D
∴∠DOE=∠COD+∠COE
3 4
1
1
= ∠AOC + ∠BOC
2
2
O
= 1 ∠AOB
2
1
A
B
1
∠AOC,∠COE= ∠BOC.
2
=
1
2
2
(∠AOC+∠BOC)
课堂小结
类比思想
比较角的大小
角的比较
写角的和与差
角的平分线
发展推理能力
观察法
度量法
角的比较和运算 课件(共20张PPT) 华师大七年级数学上册
已知角. 难点:角的平分线的应用.
线段 定义 类比
角
定义
表示 表示
大小 运算
大小 运算
叠合法 度量法 和、差、倍、分 叠合法 度量法 和、差、倍、分
合作探究
1 角的大小
类比线段长短的比较,你认为该如何比较两个角 的大小?
结论:角的大小比较:度量法、叠合法
叠
C
C
C
合
法 O'
D
O'
结B
论
D
D C
O'
第三章 图形的初步认识
3.6 角
2 角的比较和运算
华师版七年级(上)
教学目标
1. 运用类比的方法,学会比较两个角的大小,丰富对角 的大小关系的认识,会分析图中角的和差关系.
2. 借助三角板拼出不同度数的角,认识角的平分线及角 的等分线,会画角的平分线.
重点:比较角的大小,认识角的平分线,做一个角等于
B C
从一个角的顶点引出一条射线,
把这个角分成两个相等的角,这条
射线叫做这个角的平分线.
O
A
几何语言
因为 OC 是∠AOB 的角平分线, 所以∠AOC=∠BOC = 1 ∠AOB
2 或∠AOB =2∠BOC=2∠AOC
试一试
D
类比:仿照角平分线的结论,你能写出
C
B
角的三等分线的结论吗?
O
A
因为射线 OB、OC 是 ∠AOD 的三等分线,
所以 ∠AOD = 3∠AOB = 3∠BOC = 3∠COD,
∠AOB =∠BOC =∠COD = ∠AOD.
例1 如图,已知点 O 为直线 AB 上一点,OM,ON 分别 是∠AOC,∠BOC 的平分线,求∠MON 的度数. [解析] 首先应确定∠MON 的转化 问题:∠MON=∠MOC+∠CON, 再结合角平分线的定义,易得到 ∠MOC+∠CON= 1 2∠AOB.
线段 定义 类比
角
定义
表示 表示
大小 运算
大小 运算
叠合法 度量法 和、差、倍、分 叠合法 度量法 和、差、倍、分
合作探究
1 角的大小
类比线段长短的比较,你认为该如何比较两个角 的大小?
结论:角的大小比较:度量法、叠合法
叠
C
C
C
合
法 O'
D
O'
结B
论
D
D C
O'
第三章 图形的初步认识
3.6 角
2 角的比较和运算
华师版七年级(上)
教学目标
1. 运用类比的方法,学会比较两个角的大小,丰富对角 的大小关系的认识,会分析图中角的和差关系.
2. 借助三角板拼出不同度数的角,认识角的平分线及角 的等分线,会画角的平分线.
重点:比较角的大小,认识角的平分线,做一个角等于
B C
从一个角的顶点引出一条射线,
把这个角分成两个相等的角,这条
射线叫做这个角的平分线.
O
A
几何语言
因为 OC 是∠AOB 的角平分线, 所以∠AOC=∠BOC = 1 ∠AOB
2 或∠AOB =2∠BOC=2∠AOC
试一试
D
类比:仿照角平分线的结论,你能写出
C
B
角的三等分线的结论吗?
O
A
因为射线 OB、OC 是 ∠AOD 的三等分线,
所以 ∠AOD = 3∠AOB = 3∠BOC = 3∠COD,
∠AOB =∠BOC =∠COD = ∠AOD.
例1 如图,已知点 O 为直线 AB 上一点,OM,ON 分别 是∠AOC,∠BOC 的平分线,求∠MON 的度数. [解析] 首先应确定∠MON 的转化 问题:∠MON=∠MOC+∠CON, 再结合角平分线的定义,易得到 ∠MOC+∠CON= 1 2∠AOB.
角的比较与运算(新人教版)课件
角的除法定义
将一个角按照一定的比例进行缩小或扩大,形成一个新的角,这个新的角就是原 来角的比例。
03
特殊角
直角
总结词
直角是角度的一种,度数为90度。
详细描述
在几何学中,直角是一种常见的角度,其度数为90度。直角是两条线段垂直相交形成的角,具有特殊的性质和运 算规则。
平角
总结词 详细描述
钝角
总结词
角度决定几何形状
角度在几何图形中起着至关重要的作用, 不同的角度可以形成不同的几何形状。 例如,两条射线组成的角可以形成平面 几何图形,如三角形、四边形等。
VS
角度与面积的关系
在某些几何图形中,角度的大小与面积的 大小有关。例如,在扇形中,角度越大, 面积越大。
角在日常生活中的应用测量角度 Nhomakorabea导航
角在数学解题中的应用
角的比较与运算(新人教 版)课件
contents
目录
• 角的比较 • 角的运算 • 特殊角 • 角的和差公式 • 角的应用
01
角的比 较
比较大小
直角
等于90度的角。
平角
等于180度的角。
锐角
小于90度的角。
钝角
大于90度但小于 180度的角。
周角
等于360度的角。
角的度量单位
度(°) 分和秒
角的大小比较方法
01
02
03
使用量角器测量
使用叠合法比较
使用三角函数比较
02
角的运算
角的加法
角的加法定 义
角的加法性 质
角的减法
角的减法定 义
角的减法性 质
两个角相减,其度数之差等于两个角 对应边相减后,再除以边的数量所得 的商。
将一个角按照一定的比例进行缩小或扩大,形成一个新的角,这个新的角就是原 来角的比例。
03
特殊角
直角
总结词
直角是角度的一种,度数为90度。
详细描述
在几何学中,直角是一种常见的角度,其度数为90度。直角是两条线段垂直相交形成的角,具有特殊的性质和运 算规则。
平角
总结词 详细描述
钝角
总结词
角度决定几何形状
角度在几何图形中起着至关重要的作用, 不同的角度可以形成不同的几何形状。 例如,两条射线组成的角可以形成平面 几何图形,如三角形、四边形等。
VS
角度与面积的关系
在某些几何图形中,角度的大小与面积的 大小有关。例如,在扇形中,角度越大, 面积越大。
角在日常生活中的应用测量角度 Nhomakorabea导航
角在数学解题中的应用
角的比较与运算(新人教 版)课件
contents
目录
• 角的比较 • 角的运算 • 特殊角 • 角的和差公式 • 角的应用
01
角的比 较
比较大小
直角
等于90度的角。
平角
等于180度的角。
锐角
小于90度的角。
钝角
大于90度但小于 180度的角。
周角
等于360度的角。
角的度量单位
度(°) 分和秒
角的大小比较方法
01
02
03
使用量角器测量
使用叠合法比较
使用三角函数比较
02
角的运算
角的加法
角的加法定 义
角的加法性 质
角的减法
角的减法定 义
角的减法性 质
两个角相减,其度数之差等于两个角 对应边相减后,再除以边的数量所得 的商。
角的比较与运算PPT市公开课一等奖省优质课获奖课件
第8页
14.计算: (1)69°25′36″+41°42′34″=__________1_1_1_°_8;′10 (2)63°37′-31°45′22″=_________3_1_°5_1_′_3;8″ (3)23°34′15″×3=_______7_0_°_4_2_′4_5_″_; (4)58°34′16″÷4=_______1_4_°_3_8_′3_4_″_.
A.0 个 B.1 个 C.2 个 D.3 个
第6页
9.如图,假如∠AOB=∠COD,那么( B ) A.∠1>∠2 B.∠1=∠2 C.∠1<∠2 D.∠1与∠2大小不能确定 10.如图,OC是∠AOB平分线,OD是∠AOC平分线,且∠COD= 25°,则∠AOB等于( )D A.20° B.50° C.75° D.100°
第12页
18.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分 ∠BOC.
(1)求∠MON度数; (2)若∠AOB=α,其它条件不变,求∠MON度数; (3)若∠BOC=β(β为锐角),其它条件不变,求∠MON度数; (4)从上面结果中能看出什么规律?
解:(1)45°
α (2)2
第2页
知识点2:角运算 3.在15°,65°,75°,135°角中,能用一副三角尺画出来有( ) AC.1个 B.2个 C.3个 D.4个 4.如图,已知∠AOB=∠COD=90°,∠BOC=40°,则∠AOD等于 () A.D120° B.100° C.130° D.140°
第3页
5.(习题6变式)按图填空: (1)∠AOC=∠AOB+∠____B_O_C____; (2)∠BOD=∠COD+∠____B_O_C____; (3)∠AOC=∠AOD-∠___C__O_D____; (4)∠BOC=∠___A_O__D___-∠___A_O__B___-∠___C_O__D__; (5)∠BOC=∠AOC+∠BOD-∠___A__O_D____.
14.计算: (1)69°25′36″+41°42′34″=__________1_1_1_°_8;′10 (2)63°37′-31°45′22″=_________3_1_°5_1_′_3;8″ (3)23°34′15″×3=_______7_0_°_4_2_′4_5_″_; (4)58°34′16″÷4=_______1_4_°_3_8_′3_4_″_.
A.0 个 B.1 个 C.2 个 D.3 个
第6页
9.如图,假如∠AOB=∠COD,那么( B ) A.∠1>∠2 B.∠1=∠2 C.∠1<∠2 D.∠1与∠2大小不能确定 10.如图,OC是∠AOB平分线,OD是∠AOC平分线,且∠COD= 25°,则∠AOB等于( )D A.20° B.50° C.75° D.100°
第12页
18.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分 ∠BOC.
(1)求∠MON度数; (2)若∠AOB=α,其它条件不变,求∠MON度数; (3)若∠BOC=β(β为锐角),其它条件不变,求∠MON度数; (4)从上面结果中能看出什么规律?
解:(1)45°
α (2)2
第2页
知识点2:角运算 3.在15°,65°,75°,135°角中,能用一副三角尺画出来有( ) AC.1个 B.2个 C.3个 D.4个 4.如图,已知∠AOB=∠COD=90°,∠BOC=40°,则∠AOD等于 () A.D120° B.100° C.130° D.140°
第3页
5.(习题6变式)按图填空: (1)∠AOC=∠AOB+∠____B_O_C____; (2)∠BOD=∠COD+∠____B_O_C____; (3)∠AOC=∠AOD-∠___C__O_D____; (4)∠BOC=∠___A_O__D___-∠___A_O__B___-∠___C_O__D__; (5)∠BOC=∠AOC+∠BOD-∠___A__O_D____.
人教版七年级数学上册--4.3.2《角的比较》课件(共22张PPT)
已知O为直线AB上一点,OE平分∠AOC,OF 平分 ∠COB,求∠EOF的大小?
C E
解:∵ OE平分 ∠ AOC,OF平分 ∠COB
F ∴∠EOC=1/2∠AOC, ∠COF=1/2∠COB (角平分线的定义)
∵∠AOB=∠AOC+∠COB=180°
A
O
B
(平角的定义)
∴∠EOF=∠EOC+∠COF =1/2∠AOC+1/2∠COB
F E
一.复习:线段的比较方法
1.从“数” 出发,通过度量长度进行数 值大 小比较。 2.从“形”出发,利用线段移动叠合的方 法
A
BC
D
二.探索角的比较大小方法
请同学们任意画出两个角比较一下,并讨 论你们的比较方法: 你的方法有: 1. 度量法比较
2. 叠合法比较
A
D
B
C
E
F
1.度量法比较
用量角器分别测量出两个角的度数,通过 度数大小来判断两个角的大小.
F
B
A
E
D
C F
B (E)
“两重一同”
叠 合
B ( E)
A ( D ) ABC> DEF F
C
AB C< DEF A ( D)
C( F )
B ( E)
ABC = DEF A ( D)
回到开始的问题,儿子和侄子的对话中说的折扇的大 小和长短能判断角的大小吗?
结论:角的两边张开越大,角就越大,与 所画边的长短无关
C
B
O
A
∵OB平分∠ AOC(已知)
∴ ∠ AOB= ∠ BOC= ∠12 AOC
或∠ AOC= 2∠ AOB= 2∠ BOC (角平分线的定义)
3.6.2角的比较和运算 课件(共28张PPT)
【分析】 (1)中两个角有重合边和重合顶点,利用叠合法
比较一目了然,因为OD 边在∠ FOE 的内 部,所以有∠FOD <∠FOE. (2)∠DOE 明显大于 45°,而∠DOF 明显小于 45°,故有∠ DOE >∠DOF .
解: (1)∠FOD<∠FOE. (2)用含有45°角的三角尺比较,可得∠DOE> 45°,∠DOF<
概括 我们已经用无刻度的直尺和圆规按一定步骤解决了如下两个
作图问题:作一条线段等于已知线段;作一个角等于已知角.无刻 度的直尺和圆规可以用来作一些简单的图形.例如:过一点任作一 条直线;过不同的两点作一条直线;以一点为圆心任作一个圆.
正是以这些基本作图为基础,我们作出了线段和角.人们将利 用没有刻度的直尺和圆规这两种工具作几何图形的方法称为“尺 规作图”.从古至今,众多数学家对于尺规作图有着极大的兴趣, 对于哪些图形可以利用尺规作图作出、哪些图形又不可能利用尺 规作图作出的思考和研究,推动了数学的发展.
做一做
如图,∠AOB为已知角,试用直尺和圆规按下列步骤准确地 作一个角等于∠AOB. 第一步:作射线O′A′; 第二步:以点O为圆心、适当长为半径作弧,交射线OA于点C,交 射线OB于点D ; 第三步:以点O ′为圆心、线段OC长为半径作弧,交射线O′A′ 于点C′′ ; 第四步:以点C′′为圆心、线段CD长为半径作弧,交前一条弧于点D ′ ; 第五步:经过点D ′作射线O′B ′. ∠ A′O′B′ 就是所要求作的角 .
②叠合法
如图所示,把一个角放到另一个角上,使
C
它们的顶点重合,其中的一边也重合,并
A
使两个角的另一边都在重合的这一条边的 D
同侧.
E
F G(O)
显然,∠CGH>∠AOB,或∠AOB<∠CGH.
比较一目了然,因为OD 边在∠ FOE 的内 部,所以有∠FOD <∠FOE. (2)∠DOE 明显大于 45°,而∠DOF 明显小于 45°,故有∠ DOE >∠DOF .
解: (1)∠FOD<∠FOE. (2)用含有45°角的三角尺比较,可得∠DOE> 45°,∠DOF<
概括 我们已经用无刻度的直尺和圆规按一定步骤解决了如下两个
作图问题:作一条线段等于已知线段;作一个角等于已知角.无刻 度的直尺和圆规可以用来作一些简单的图形.例如:过一点任作一 条直线;过不同的两点作一条直线;以一点为圆心任作一个圆.
正是以这些基本作图为基础,我们作出了线段和角.人们将利 用没有刻度的直尺和圆规这两种工具作几何图形的方法称为“尺 规作图”.从古至今,众多数学家对于尺规作图有着极大的兴趣, 对于哪些图形可以利用尺规作图作出、哪些图形又不可能利用尺 规作图作出的思考和研究,推动了数学的发展.
做一做
如图,∠AOB为已知角,试用直尺和圆规按下列步骤准确地 作一个角等于∠AOB. 第一步:作射线O′A′; 第二步:以点O为圆心、适当长为半径作弧,交射线OA于点C,交 射线OB于点D ; 第三步:以点O ′为圆心、线段OC长为半径作弧,交射线O′A′ 于点C′′ ; 第四步:以点C′′为圆心、线段CD长为半径作弧,交前一条弧于点D ′ ; 第五步:经过点D ′作射线O′B ′. ∠ A′O′B′ 就是所要求作的角 .
②叠合法
如图所示,把一个角放到另一个角上,使
C
它们的顶点重合,其中的一边也重合,并
A
使两个角的另一边都在重合的这一条边的 D
同侧.
E
F G(O)
显然,∠CGH>∠AOB,或∠AOB<∠CGH.
6.3.2 第1课时 角的比较与运算 课件(共19张PPT) 人教版七年级数学上册
小组展示
我提问
我回答
我补充
我质疑
提疑惑:你有什么疑惑?
越展越优秀
知识点1:角的比较(重点)
方法
语言叙述
举例
度量法
先用量角器量出角的度数,再比较它们的大小
用量角器量得∠α=30°,∠β=45°,那么∠α<∠β
叠合法
把两个角的顶点和其中一边分别叠合,另一边放在叠合边的同侧,通过观察另一边的位置比较大小
6.3 角
第1课时 角的比较与运算
6.3.2 角的比较与运算
1. 通过类比线段的比较和运算,学习角的比较和运算,体会类比的思想.2.通过学生自主探究、小组讨论,理解角的大小,角的和、差,并会简单说理,体会数形结合思想,会用三角尺拼特殊角,提高学生的动手能力.
重点
难点
图片导入
有一天聪聪和明明各带了一把折扇(如下), 下面是他们的一段对话:聪聪:我的折扇张开大一些,所以我的折扇的角也大一些.明明:我的折扇长一些,所以我的折扇的角也大一些.同学们,你们认为角的大小与折扇张开程度的大小、折扇的长短是否有关?
这部Байду номын сангаас片讲述了中国登山队克服种种困难,成功从北坡登顶珠穆朗玛峰,完成人类首次北坡登顶珠峰的壮举.同学们请看,左侧是珠穆朗玛峰的南坡,右侧是北坡,为什么从北坡登顶的难度大呢?你能用数学的语言来解释一下吗?
同学们,如果你要爬上这座山顶,你会选择从哪一面上山呢?
情境导入
1.阅读课本173-174页练习前.2.比较角的大小.(1)_______法;(2)_______法. 试一试:比较两个角∠AOB,∠AOB′的大小.(1)∠AOB____∠AOB′;(2)∠AOB____∠AOB′;(3)∠AOB____∠AOB′. (填“>”“<”或“=”) 测量上面的角,验证刚才的比较是否正确
我提问
我回答
我补充
我质疑
提疑惑:你有什么疑惑?
越展越优秀
知识点1:角的比较(重点)
方法
语言叙述
举例
度量法
先用量角器量出角的度数,再比较它们的大小
用量角器量得∠α=30°,∠β=45°,那么∠α<∠β
叠合法
把两个角的顶点和其中一边分别叠合,另一边放在叠合边的同侧,通过观察另一边的位置比较大小
6.3 角
第1课时 角的比较与运算
6.3.2 角的比较与运算
1. 通过类比线段的比较和运算,学习角的比较和运算,体会类比的思想.2.通过学生自主探究、小组讨论,理解角的大小,角的和、差,并会简单说理,体会数形结合思想,会用三角尺拼特殊角,提高学生的动手能力.
重点
难点
图片导入
有一天聪聪和明明各带了一把折扇(如下), 下面是他们的一段对话:聪聪:我的折扇张开大一些,所以我的折扇的角也大一些.明明:我的折扇长一些,所以我的折扇的角也大一些.同学们,你们认为角的大小与折扇张开程度的大小、折扇的长短是否有关?
这部Байду номын сангаас片讲述了中国登山队克服种种困难,成功从北坡登顶珠穆朗玛峰,完成人类首次北坡登顶珠峰的壮举.同学们请看,左侧是珠穆朗玛峰的南坡,右侧是北坡,为什么从北坡登顶的难度大呢?你能用数学的语言来解释一下吗?
同学们,如果你要爬上这座山顶,你会选择从哪一面上山呢?
情境导入
1.阅读课本173-174页练习前.2.比较角的大小.(1)_______法;(2)_______法. 试一试:比较两个角∠AOB,∠AOB′的大小.(1)∠AOB____∠AOB′;(2)∠AOB____∠AOB′;(3)∠AOB____∠AOB′. (填“>”“<”或“=”) 测量上面的角,验证刚才的比较是否正确
角的比较PPT课件(北师大版)
2
C、∠ AOB=2 ∠ BOC
新
知 D、∠ AOC= ∠ BOC
探 究 估计∠AOB,∠DEF的度数. 学 量一量,验证你的估计. 习
获 取 新 知
总 小结
结 1.角的大小比较方法:
提 升
度量法,叠合法
2.角的平分线
形
成 体
从一个角的顶点引出的一条射 线,把这个角分成两个相等的角,
系 则这条射线叫这个角的平分线.
学 什么?
B
C
习
D
A O
获 2.如图OB是∠AOC的平分线,∠COD=2∠AOB,试说明 取 OC是哪一个角的平分线?
新
D C
知
B
O
A
探 考考你!
究 学
3.下面的式子中,能表示“OC是 ∠AOB的角 平分线”的等式是(D )
习 A、2 ∠ AOC= ∠ BOC
获 B、∠ AOC= 1 ∠ AOB
取
.
检
(2)一副三角板可以画出15°的角吗?75°呢?使 用一副三角板还可以画出哪些度数的角,这些角有什
测 么特点?
趣味三角板
5.如图,O是直线AB上的点,OD是∠AOC的平分线,
OE是∠COB的平分线,∠COD=28°.
巩 求∠EOB的度数
固A
O
C
Eห้องสมุดไป่ตู้
提 高
D
第4题
D
C BA
O
B
第5题
布 置
作
业
作
业
类
1周角=360°
比
学
习
周角>平角>钝角>直角>锐角
回 比较两条线段的长短方法是:
角的比较共10张PPT
(1)叠合法:把两个角的顶点及一边重合,另一边落 在重合边得同旁,则可比较大小.下面试举一种 例如:∠AOB与∠CED,重合顶点O、E和边OA、EC、OB、 ED落在重合边同旁. 符号语言:∵OD落在∠A0B内部,
∴∠CED<∠AOB. (2)度量法:量出两角的度数,
按度数比较角的大小.
合作探究 达成目标
达标检测 反思目标
4. 如图,OM是∠AOB的平分线,OP是∠MOB内的一条 射线,已知∠AOP比∠BOP大30°,则∠POM的度数 是___1_5_°___∠AOB是平角,∠A图OC=30°,∠BOD=
60°,OM,ON分别是∠AOC,∠BOD的平分线,
∠MON等于___1_3_5___度.
• 1.运用类比的方法,学会比较两个角的大小.
• 2.理解角的平分线的定义,并能借助角的平分线 的定义解决问题.
• 3.理解两个角的和、差、倍、分的意义,会进行 角的运算 .
创设情景 明确目标 你还记得怎样比较线段的长短吗?类似地,你能 比较角的大小吗?
观察图形上共有多少个角?在上述各角中哪些是 锐角?哪些是钝角?哪些是直角?并指出它们的 大小关系.
合作探究 达成目标
活动一:阅读教材,思考:怎样比较两个角的大 小?和比较线段的大小有何联系?
比较角的大小,有两种方法:一是用量角 器量出它们的度数,再进行比较;二是将 两个角的顶点及一条边重合,另一条边放 在重合边的同侧就可以比较大小.
合作探究 达成目标
和同伴交流,说说你对角的大小比较的两种方法 的认识.
达标检测 反思目标
1. 如图,∠AOD-∠AOC=( D )
A.∠AOC
B.∠BOC
C.∠BOD
D.∠COD
2.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,
∴∠CED<∠AOB. (2)度量法:量出两角的度数,
按度数比较角的大小.
合作探究 达成目标
达标检测 反思目标
4. 如图,OM是∠AOB的平分线,OP是∠MOB内的一条 射线,已知∠AOP比∠BOP大30°,则∠POM的度数 是___1_5_°___∠AOB是平角,∠A图OC=30°,∠BOD=
60°,OM,ON分别是∠AOC,∠BOD的平分线,
∠MON等于___1_3_5___度.
• 1.运用类比的方法,学会比较两个角的大小.
• 2.理解角的平分线的定义,并能借助角的平分线 的定义解决问题.
• 3.理解两个角的和、差、倍、分的意义,会进行 角的运算 .
创设情景 明确目标 你还记得怎样比较线段的长短吗?类似地,你能 比较角的大小吗?
观察图形上共有多少个角?在上述各角中哪些是 锐角?哪些是钝角?哪些是直角?并指出它们的 大小关系.
合作探究 达成目标
活动一:阅读教材,思考:怎样比较两个角的大 小?和比较线段的大小有何联系?
比较角的大小,有两种方法:一是用量角 器量出它们的度数,再进行比较;二是将 两个角的顶点及一条边重合,另一条边放 在重合边的同侧就可以比较大小.
合作探究 达成目标
和同伴交流,说说你对角的大小比较的两种方法 的认识.
达标检测 反思目标
1. 如图,∠AOD-∠AOC=( D )
A.∠AOC
B.∠BOC
C.∠BOD
D.∠COD
2.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,
角的比较与运算ppt课件
综合素养训练
6. [新考向 知识情境化]如图,把∠APB 放在量角器上,读
得射线PA,PB 分别经过刻度117 和153 ,把∠APB 绕
点P逆时针方向旋转到
∠A′PB ′,当∠APB′ =
∠APA
′ 时,射线PA ′
经过刻度________
45 .
综合素养训练
7. 计算:
(1)53°39 ′38 ″+26°28 ′17 ″;
因为∠BOD+∠COD+∠AOC=180°,
所以x°+90°+3x°+10°=180°.
所以x=20.所以∠BOD=20°.
综合素养训练
(2)若OE,OF分别平分∠BOD,∠BOC,求∠ EOF 的度
数.(写出必要的推理过程)
解:由(1)得∠AOC=70°,所以∠BOC=110°.
1
所以易得∠BOF=2∠BOC=55°.
所以∠ BOC=2×4 0°=8 0°.
所以∠ AOB= ∠BOC+ ∠AOC=80°+40°=120°.
因为OD 平分∠ AOB,所以∠ AOD=
∠
AOB=60°.
所以∠ COD= ∠ AOD- ∠ AOC=60°-40°=20°.
综合应用创新
方法点拨
角之间的和差倍分的度数,就是它们度
数的和差倍分.
∠DOE的度数(用含α 的代数式表示).
解:因为∠DOE=∠
COD- ∠
BOC,
所以∠DOE=90 ° - (180 °-∠ AOC)=
90 ° -90°+
∠
AOC=
∠
AOC=
角与角的大小比较ppt课件
发现折痕把角分成了两个角,这 两个角有什么关系呢?它们和原
与
来的角有着怎样的数量关系?
应
用
归纳总结 以一个角的顶点为端点的一条射线,
如果把这个角分成两个相等的角,那么这条 射线叫做这个角的平分线.
符号表示:如图,若OC是∠AOB的平分线,则 O
∠AOC=∠BOC=12∠AOB.
B C
A
【应用举例】
第4章 图形的认识
4.3.1 角与角的大小比较
创设情境导入新课 探究与应用
课堂总结反思
教 学 目
1.理解角的有关概念,会用不同的方法表示角,会用叠合法和圆规法比较两个角 的大小. 2.通过在图片、实例中找角,培养学生的观察力,能把实际问题转化为数学问题, 培养学生对数学的好奇心与求知欲.
标 3.结合图形能比较角的大小,认识角的平分线.
归纳总结
(1)用三个大写字母表示角.这三个大写字母分别表示角的顶点、两条边上的任意的点;三个 字母的顺序也有规定,表示顶点的字母必须写在中间.注意顶点的字母不一定用O,角的终边 与始边的字母也可以随意. (2)用一个大写字母表示角.要注意的是当两个或两个以上的角有同一个顶点时,不能用一个 大写字母表示. (3)用一个希腊字母表示角.方法:在角的内部靠近角的顶点处画一弧线,写上一个希腊字母,如 α,β,γ等,记作∠α,读作角α. (4)用一个阿拉伯数字表示角.方法:在角的内部靠近角的顶点处画一弧线,写上一个数字,如 1,2,3等,记作∠1,读作角1.
反
思 2.课本P166习题4.3T1、T2、T3.
课 【知识网络】 堂 总 结 反 思 角与角的大小比较
角的概念及表示方法
角的大小比较 角平分线
度量法 叠合法 圆规法
6.3.2 角的比较与运算 课件(共20张PPT)
所以∠COD=∠DOE = 30°, 所以∠BOD =∠BOC+∠COD = 40°+30°= 70°.
O
A
新知讲解 角的和差
(1) 如图①,若∠AOC=35°,∠BOC=40°,则∠AOB= 75 °.
A C
AC
OB
图①
OB
图②
(2) 如图②,若∠AOB= 60°,∠BOC=40°,则∠AOC= 20 °.
6.3.2 角的比较与运算
人教版七年级上册
教学目标
1、根据图形能判断角的和差关系. 2、能进行角的和差运算. 3、理解角平分线的概念并会应用解题.
复习旧知
1. 如图,已知线段AB、CD,你有哪些办法比较它 们的大小?
1.叠合法
2.度量法
新知导入
角的比较与计算
类比线段长短的比较,你认为该如何比较两个角的大小?
应用格式:
∵ OC 是∠AOB 的角平分线,
∴ ∠AOC =∠BOC = ∠AOB,
∠AOB =2∠BOC =2∠AOC.
B C
O
A
例题讲解
例3 如图,OB 是∠AOC 的平分线,OD 是∠COE的平分线. (1) 如果∠AOC=80°,那么∠BOC 是多少度?
解: OB 平分∠AOC, ∠AOC = 80°,
(2) 79°45′+61°48′49″;
(3) 62°24′17″×4;
(4) 102°43′÷3.
答案:(1)58°;(2)141°33′49″;(3)249°37′8″; (4)34°14′20″.
课堂总结
度量法 角的比较
叠合法 角的和差倍分关系 角的运算 角的平分线
加与减 角的计算
O
A
新知讲解 角的和差
(1) 如图①,若∠AOC=35°,∠BOC=40°,则∠AOB= 75 °.
A C
AC
OB
图①
OB
图②
(2) 如图②,若∠AOB= 60°,∠BOC=40°,则∠AOC= 20 °.
6.3.2 角的比较与运算
人教版七年级上册
教学目标
1、根据图形能判断角的和差关系. 2、能进行角的和差运算. 3、理解角平分线的概念并会应用解题.
复习旧知
1. 如图,已知线段AB、CD,你有哪些办法比较它 们的大小?
1.叠合法
2.度量法
新知导入
角的比较与计算
类比线段长短的比较,你认为该如何比较两个角的大小?
应用格式:
∵ OC 是∠AOB 的角平分线,
∴ ∠AOC =∠BOC = ∠AOB,
∠AOB =2∠BOC =2∠AOC.
B C
O
A
例题讲解
例3 如图,OB 是∠AOC 的平分线,OD 是∠COE的平分线. (1) 如果∠AOC=80°,那么∠BOC 是多少度?
解: OB 平分∠AOC, ∠AOC = 80°,
(2) 79°45′+61°48′49″;
(3) 62°24′17″×4;
(4) 102°43′÷3.
答案:(1)58°;(2)141°33′49″;(3)249°37′8″; (4)34°14′20″.
课堂总结
度量法 角的比较
叠合法 角的和差倍分关系 角的运算 角的平分线
加与减 角的计算
角的比较PPT市公开课一等奖省优质课获奖课件
第5页
B
D
O
A O′
C
②若边OB与边OD重合
则∠A0B = ∠CO ′D
第6页
B
D
O
A O′
C
②若边OB 在∠CO ′ D外部
则∠A0B > ∠CO ′D
第7页
角大小与角两边画出长短相关吗? 如图所表示,角大小与角两边画出长短没 相关系.角两边叉开得越小,角度就越小.
第8页
如图,求解以下问题(1)比较∠AOB,∠AOC,∠AOD, ∠AOE大小,并指出其中锐角、直角、钝角、平角;
AB
O
C
ED
锐角∠AOB,∠BOC,∠EOD, ∠DOC 直角∠AOC,∠EOC 钝角∠DOB,∠BOE,∠AOD
(2)试比较∠BOC和∠DOE大小.
第9页
在纸上画一个角并剪下,将它对折使其两边重合,
折痕与角两边所成两个角大小关系怎样?
B 如图所表示,因为∠BOD=∠AOD
O
D 所以射线OD平分∠AOB,
则∠COD= 45° ,
DB
∠BOC= 30° ,
C
∠AOB= 60° .
O
A
解析:由题意可知,图中等量关系为 ∠COD=3∠BOD,∠BOC=2∠BOD, ∠AOB=2∠BOC
第16页
3.如图所表示,已知直线AB,CD相交于点O,OE平
分∠COB,若∠EOB=55°,则∠BOD度数是 ( C )
∴∠AOC=60°,而∠BOC=70°
∴∠AOC≠∠BOC 故OC不是∠AOB平分线
∵∠DOC=30°,∠AOD=30° ∴∠DOC=∠AOD
∴OD是∠AOC平分线
第11页
如图所表示,(1)预计∠AOB,∠DEF度数; (2)量一量,验证你预计.