九年级上册数学知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学知识点总结归纳
1 第二十一章一元二次方程
第二十二章二次函数
第二十三章旋转
第二十四章圆
第二十五章概率初步
第二十一章 一元二次方程
知识点1:一元二次方程的概念
一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.
一般形式:ax 2
+bx+c=0(a ≠0)。注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。 知识点2:一元二次方程的解法
1.直接开平方法:对形如(x+a )2
=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。 X+a=±
b
∴1x =-a+b 2x =-a-b
2.配方法:用配方法解一元二次方程:ax 2
+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2
=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.
3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程
的求根公式是a
ac b b x 242-±-=(b 2-4ac ≥0)。步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2
-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.
因式分解的方法:提公因式、公式法、十字相乘法。 5.一元二次方程的注意事项:
⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2
-4ac <0,则方程无解.
⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2
=3(x +4)中,不能随便约去x +4。
⑷ 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的
一般顺序是:开平方法→因式分解法→公式法. 6.一元二次方程解的情况
⑴b 2
-4ac ≥0⇔方程有两个不相等的实数根;
⑵b 2
-4ac=0⇔方程有两个相等的实数根;
⑶b 2
-4ac ≤0⇔方程没有实数根。
解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b 2
-4ac 解题。主要用于求方程中未知系数的值或取值范围。
知识点3:根与系数的关系:韦达定理
对于方程ax 2
+bx+c=0(a ≠0)来说,x1 +x2 =—a b ,x1●x2= a c
。
利用韦达定理可以求一些代数式的值(式子变形),如212
2122212)(x x x x x x -+=+
2
121211
1x x x x x x +=+。
解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。 知识点4:一元二次方程的应用 一、考点讲解:
1.构建一元二次方程数学模型,常见的模型如下:
⑴ 与几何图形有关的应用:如几何图形面积模型、勾股定理等;
⑵ 有关增长率的应用:此类问题是在某个数据的基础上连续增长(降低)两次得到新数据,常见的等量关系是a(1±x )2=b ,其中a 表示增长(降低)前的数据,x 表示增长率(降低率),b 表示后来的数据。注意:所得解中,增长率不为负,降低率不超过1。
⑶ 经济利润问题:总利润=(单件销售额-单件成本)×销售数量;或者,总利润=总销售额-总成本。 ⑷ 动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程。
2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性. 一元二次方程与实际问题 1、 病毒传播问题 2、 树干问题
3、 握手问题(单循环问题)
4、 贺卡问题(双循环问题)
5、 围栏问题
6、 几何图形(道路、做水箱)
7、 增长率、降价率问题
8、 利润问题(注意减少库存、让顾客受惠等字样) 9、 数字问题 10、折扣问题
第二十二章 二次函数
一、二次函数概念:
1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.
2. 二次函数2y ax bx c =++的结构特征:
⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.
二、二次函数的基本形式
1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。