第三章Z变换(数字信号处理)共74页文档
z变换公式
z变换公式在信号处理领域中,z变换是一种将离散时间序列转换为复频域的工具。
它在数字信号处理、控制系统分析和通信工程等领域中广泛应用。
本文将详细介绍z变换的概念、特性以及常见的z变换公式。
一、z变换的概念z变换是对离散时间信号进行频域分析的一种方法。
它类似于傅里叶变换,但傅里叶变换只适用于连续时间信号,而z变换适用于离散时间信号。
通过将离散时间序列表示为z的幂级数形式,可以将离散时间信号在复频域中进行表示和分析。
z变换的定义如下:X(z) = Z{x(n)} = ∑[ x(n) * z^(-n)] (1)其中,x(n)是离散时间序列,X(z)是x(n)的z变换。
二、z变换的特性与傅里叶变换类似,z变换也具有线性性、时移性、共轭性和卷积性质。
下面对每个特性进行详细讨论。
1. 线性性z变换具有线性性质,即对于任意常数a和b以及离散时间序列x1(n)和x2(n),有以下公式成立:Z{a * x1(n) + b * x2(n)} = a * X1(z) + b * X2(z) (2)其中,X1(z)和X2(z)分别是x1(n)和x2(n)的z变换。
2. 时移性z变换具有时移性质,即对于离散时间序列x(n - k),其z变换为Z{x(n - k)} = z^(-k) * X(z)。
3. 共轭性z变换具有共轭性质,即如果x(n)的z变换为X(z),则x*(-n)的z 变换为X*(1/z*),其中,*表示共轭。
4. 卷积性质z变换具有卷积性质,即对于离散时间序列x1(n)和x2(n)的卷积序列y(n) = x1(n) * x2(n),其z变换为Y(z) = X1(z) * X2(z),其中,*表示乘法运算。
三、常见的z变换公式根据z变换的定义和特性,可以得到一些常见的z变换公式,下面将逐个进行介绍。
1. 常数序列对于常数序列x(n) = C,其z变换为X(z) = C * (1 - z^(-1)) / (1 - z^(-1))。
数字信号处理双语-Z变换.
6
• The set R of values of z for which its z-transform converges is called the Region Of Convergence (ROC)收敛域.
• X(z) converges if and only if
x[k]zk M
• H(z) is called as the transfer function传递函数 of system.
5ቤተ መጻሕፍቲ ባይዱ
Z transform of sequence
• For a given sequence x[n], its z-transform is
defined as
X (z) Z{x[n]} x[n]zn
3.5 Summary
1
Homework
• pp. 127-131 • 3.1 b f g • 3.2 • 3.6 b c
• 3.8 • 3.19 b • 3.20 a
2
3.0 Introduction
• Advantages of Z transform – It suits for more sequence analysis than Fourier transform. For many cases, we could have Z transforms for sequences when their Fourier transfroms do not exsist. – It is more convenient than Fourier transform in many analytical problem.
frequency, that is, z e jω , then
数字信号处理3z变换的基本性质与定理
dz
dz n
n
dz
x(n)(n)zn1 z1 nx(n)zn
n
n
z1ZT [nx(n)]
ZT [nx(n)] z dX (z) dz
Rx z Rx
课件
6
5、共轭序列
若 ZT [x(n)] X (z) Rx z Rx 则 ZT [x*(n)] X *(z* ) Rx z Rx
n
n
x(n)( z 1 ) n
n
X
1 z
1
1
1
Rx
z
Rx
Rx
z
Rx
课件
8
7、初值定理
对于因果序列x(n),有 lim X (z) x(0)
z
证:因为x(n)为因果序列
X (z) x(n)zn x(n)zn
n
n0
x(0) x(1)z1 x(2)z2 K
lim X (z) x(0) z
课件
15
例:已知LSI系统的单位抽样响应:
h(n) bnu(n) abn1u(n 1),
求系统输入x(n) anu(n)的响应。 解:X (z) ZT [x(n)] ZT [anu(n)] z
za
za
H (z) ZT [h(n)] ZT [bnu(n) abn1u(n 1)]
ZT [bnu(n)] aZT [bn1u(n 1)]
则 ZT [nx(n)] z d X (z)
dz
Rx z Rx
同理: ZT [n2 x(n)] ZT [n nx(n)]
z d {ZT[nx(n)]} dz
z
d dz
z
dX (z) dz
课件
5
第三章 Z变换
0 | z | Rx 2 0 | z | Rx 2
j Im[ z ]
左边序列 ROC示意图
Re[ z ]
Rx 2
3.2.5 双边序列的ROC
如果序列在整个区间都有定义,则称之为双边序列或无始无 终序列。
X(z)
如果
n
x (n )z n x (n )z n
n 0
n
1 z | z | 1 1 1 z z 1
1
|z| > 1
序列的单边ZT可以用双边ZT表示
Z[x(n)] Z B [x(n)u(n)]
而且,一个序列是因果序列的充要条件是
x ( n ) = x (n ) u ( n )
一个序列是反因果序列的充要条件是
x ( n ) = x (n ) u (— n — 1 )
(3)n1≥0, n2>0 时,收敛域为 0 < | z | ≤ ∞ ( |z|=0
除外)
3.2.2 有限长序列的ROC
X(z)
n n1
x (n )z n
n2
(1) n1<0,n2>0 时,收敛域为 0 < | z | <∞( |z|=0, ∞ 除外) (2)n1<0, n2 ≤ 0 时, 收敛域为 0 ≤ | z | < ∞ ( |z|=∞ 除外) (3)n1≥0, n2>0 时,收敛域为 0 < | z | ≤ ∞ ( |z|=0 除外)
a n , (n 0) x 1 (n ) 0, (n 0)
的ZT为:
X1 ( z)
n
x ( n) z
1
n
a z
第三章 Z变换
a
ax b
的和,使各分式具有 (x A)k或 (x2 Ax B)k
的形式 ,其中x2+Ax+B是实数范围内的不可约 多项式,而且k是正整数。这时称各分式为原分
式的“部分分式”。
通常,X(z)可 表成有理分式形式:
M
X
(z)
B(z) A( z )
如收敛域为|z|>Rx+, x(n)为因果序列,则X(z)展
成Z的负幂级数。
若 收敛域|Z|<Rx-, x(n)必为左边序列,主要展成
Z的正幂级数。
例:
试用长除法求 X (z)
z2
,1 z 4
(4 z)(z 1) 4
的z反变换。
4
解:收敛域为环状,极点z=1/4对应因果序 列,极点z=4对应左边序列(双边序列)
的z, 级数必绝对收敛。 |z_|为最小收敛半径。
j Im[ z]
Re[ z]
z
(2).有限长序列
x (n)
.
x(n), x(n) 0,
n1 n n2 其他n
.
n1
0
.
n2
n
n2
X (z) x(n)zn ,若 x(n)zn ,n1 n n2; nn1
n
n1
第二项为有限长序列,其收敛域 0 z ;
第一项为z的正幂次级数,根据阿贝尔定理,
其收敛域为 0 z Rx ; Rx为最大收敛半径 . 故收敛域为0 z Rx
j Im[ z]
Re[ z]
z Rx
(5)双边序列
x(n)
数字信号处理第三章5抽样z变换—频域抽样理论
即可由频域采样X ( k )不失真地恢复原信号 x ( n ) ,否则产生时域混叠现象。
2012-10-11
数字信号处理
用频域采样 X ( k ) 表示 X ( z )的内插公式
M 点 有 限 长 序 列 x ( n ), 频 域 N 点 等 间 隔 抽 样 , 且 N M
M 1
X (z)
1 N
N 1
X (k )
1 WN 1W
Nk k N
z z
N 1
1 z N
N N 1
k 0
1W
k 0
X (k )
k N
z
1
数字信号处理
内 插 公 式 : X (z)
1 z N
N N 1
1W
k 0
X (k )
k N
N 1
z
1
内 插 函 数 : k (z)
x(n)为无限长序列—混叠失真
x(n)为有限长序列,长度为M
1) N M , 不 失 真 2) N M , 混 叠 失 真
2012-10-11 数字信号处理
频率采样定理
若序列长度为M,则只有当频域采样点数:
N M
时,才有
x N ( n ) R N ( n ) ID F S [ X ( k )] R N ( n ) x ( n )
x(n ) z
n
n0
N 1
x(n ) z
nk N
n
n0
1 n0 N 1 N
N 1
N 1
X ( k )W
N 1
k 0
n z
第三章 Z变换ppt课件
(5)有限长序列
an, 0nN-1,
x[n]= 0,
其它
z变换:
N -1
N -1
X (z)= an 0
n=0
1- az-1
= 1-az-1
N
=
1 z N -1
z N -a N z-a
,
收敛域的条件:
N -1
az -1
n
<
n=0
有限长序列的收敛域:整个z平面(z = 0和z = ∞由具体序列定)
傅立叶变换是z平面单位圆上的z变换 傅立叶变换的周期性解释
z变换的收敛域: (region of convergence, ROC) 对给定的序列x[n], 所有满足下列不等式的z值
x[n] z n ,
n
x[n]rn ,
n
傅立叶不收敛
z变换收敛
若z = z1在ROC内,︱z︱= ︱z1︱的值也一定在ROC内, 表示收敛域的形状:
查表求得:
其它几种情况: (1)M ≥ N
Br 系数通过长除法获得。对应的z反变换为:Brδ[n-r] (2)M ≥ N,且有多重极点
若X(z)有一个s阶极点:z = di (其余极点均为一阶) 则X(z)可以展开为:
Cm系数:
几点说明: (1)
项对应于 (dk)nu[n]
取决于收敛域
(dk)nu[n1]
3.0 引言
连续时间信号与系统: 时域频域(傅立叶变换);复频域(s域,拉氏变换) 离散时间信号与系统: 时域频域(傅立叶变换);复频域(z域,z变换) 引入z变换的主要原因:
傅立叶变换的收敛性(更广泛的信号) z变换概念的方便性(分析研究信号、系统) 傅立叶变换与z变换的关系: 推广形式(数学、物理意义上) 分析上的全面性(稳态、动态、瞬态、静态)
Z变换
0< z ≤∞
n1 ≥ 0 n2 ≤ 0
嘉兴学院
0≤ z <∞
数字信号处理
16
2. z变换的收敛域
有限长序列收敛域 除外) , 除外 (n1<0,n2>0;z=0,z=∞除外)
嘉兴学院
数字信号处理
2. z变换的收敛域
(2)右边序列 ) 在
17
n ≥ n1 时 x ( n ) 有值,在 n < n1 时 x ( n ) = 0 有值,
嘉兴学院
数字信号处理
z = re
jω
jω
|r =1 = e
∞
jω
7
ω = ΩTs = 2π f f s
X (e ) =
n =−∞
∑ x ( n )e
− jω n
离散时间序列的 傅里叶变换, 傅里叶变换, DTFT
z 平面
Im[z]
z 平面
Re[z]
Im[z]
r =1
0
Re[z]
0
嘉兴学院
数字信号处理
数字信号处理
23
2. z变换的收敛域
(4)双边序列 ) 在n为任意值 时 ,x(n)皆有值的序列 ,可以看成 为任意值 皆有值的序列 可以看成: 双边序列=右边序列+ 双边序列=右边序列+左边序列
X (z) =
n = −∞
∑
∞
x(n) z
−n
=
∑
∞
x(n) z
收 敛 域
−n
+
n=0
n = −∞
∑
收 敛 域
8
连续时间信号
X (s) =
∆
∫
∞
jΩ
第三章--Z变换(数字信号处理)
综合以上二步可得 x(n) anu(n)
例 3.7已知 换x(n)。
第三章 序列的Z变换
X (z)
1 a2 (1 az)(1 az1) ,
a
1,
求其反变
解: 该例题没有给定收敛域, 为求出唯一旳原序 列x(n), 必须先拟定收敛域。 分析X(z), 得到其极点 分布如图3.5所示。 图中有二个极点z=a和z=a-1, 这么 收敛域有三种选法, 它们是
n n1
设x(n)为有界序列, 因为是有限项求和, 除0与∞
两点是否收敛与n1、 n2取值情况有关外, 整个z平面均 收敛。 假如n1<0, 则收敛域不涉及∞点; 如n2>0, 则 收敛域不涉及z=0点; 假如是因果序列, 收敛域涉及
z=∞点。 详细有限长序列旳收敛域表达如下:
第三章 序列的Z变换
第三章 序列的Z变换
n 0, x(n) Re s[F (z), a] Re s[F (z), a1]
a(
(1 a2 z a)(
)zn z
a
1
)
(
z
a
)
za
(1 a2 )zn a(z a)(z a1) (z
a1)
z a 1
an (an ) an an
最终将x(n)表达成
nn1
nn1
n0
第一项为有限长序列, 设n1≤-1, 其收敛域为0≤|z|< ∞。 第二项为因果序列, 其收敛域为Rx-<|z|≤∞, Rx是第二项最小旳收敛半径。 将两收敛域相与, 其收 敛域为Rx- <|z|<∞。 假如x(n)是因果序列, 收敛域定为Rx- <|z|≤∞。 推论:如序列x(n)旳Z变换旳收敛域包括∞点,则x(n) 是因果序列
《数字信号Z变换》课件
理解z变换的性质和应用
了解z变换的性质,如线性性、时移性 、频域平移性等,以及在信号处理、 控制系统等领域的应用。
02
CHAPTER
Z变换定义与性质
Z变换的定义
1 2
离散时间信号的Z变换
将离散时间信号的序列通过复变量z的幂次进行 线性组合,得到新的函数。
定义方式
将离散时间信号的序列x[n]表示为z的幂次的线性 组合,即X(z)=∑ x[n]z^(-n)。
计算精度问题
对于非常大的序列,MATLAB可能会遇到计算精度问题,导致结果 不准确。
学习曲线陡峭
对于初学者来说,需要花费一定的时间和精力来学习和掌握 MATLAB编程和Z变换的基本概念。
THANKS
谢谢
例如,通过Z变换分析一阶差分方程的解, 可以得到系统的传递函数,进而分析系统的 性能。
系统的稳定性分析
系统稳定性的定义
01
系统稳定性是指在输入信号消失后,输出信号能够逐渐消失,
而不是无限增长或振荡。
Z变换在分析系统稳定性中的作用
02
通过Z变换,我们可以得到系统的传递函数,进而分析系统的极
点和零点分布,判断系统的稳定性。
Z变换在分析系统极点和零点中的实例
例如,通过Z变换分析一阶差分方程的解,可以得到系统的极点和零点分布,进而了解 系统在不同频率下的响应特性。
04
CHAPTER
Z变换与傅立叶变换的关系
傅立叶变换与Z变换的联系
傅立叶变换是Z变换的一种特殊形式 ,当Z变换的收敛域为无穷大时,Z变 换就退化为傅立叶变换。
zplane:绘制Z平面的极 点、零点和轨迹。
invztrans:计算Z变换的 逆变换。
tfplot:绘制传递函数的 标准形式。
数字信号处理z变换
X (s) X ( j) x(t)e jdt
s j
拉普拉斯变换演变为傅里叶变换
– 0 ,s平面的左半面,对应 r eT 1,单位圆内
– 0 , s平面的右半面,对应 r eT 1,单位圆外
z变换与拉氏变换的映射关系
映射
1)s平面上的虚轴 z平面上的单位圆r=1
映射
2)s平面上的左半平面 z平面上的单位圆内r<1
X (z) x(n)zn n
与z变换的定义一致
拉普拉斯复变量 s j , 2 f 对应连续系统及连续 信号的角频率,单位是弧度/秒
z esTs e( j)Ts eTs e jTs
令 r eTs Ts
则 z re j
对应离散系统和离散信号的圆周频率,单位是弧度
X (z) x(n)(re j )n x(n)rn e jn
例1 已知f (t) eatu(t),(a 0) 和F( j) 1
,求f (t )拉普拉
j a
斯变换
F(s) F( j) 1 js s a
收敛域如图a),包括虚轴
例2 求t的指数函数 f (t) eatu(t) ,(a为任意常数)的拉普拉
斯变换
F (s) eatestdt e(sa)tdt
X (z) x(n)zn n0
显然,仅当 x(n) 0, n 0 时,双边和单边z变换才相等。
X (z) 2z 11.5z1 z2 0.5z3
由拉普拉斯变换到z变换
x(nTs ) 是由连续信号x(t)经抽样得到的
x(nTs ) xa (t) (t nTs ) xa (nTs ) (t nTs )
又z esTs ,
其中Ts为序列时间间隔
2
s
序列的Z变换(数字信号处理)
nn1
设x(n)为有界序列, 由于是有限项求和, 除0与∞
两点是否收敛与n1、 n2取值情况有关外, 整个z平面均 收敛。 如果n1<0, 则收敛域不包括∞点; 如n2>0, 则 收敛域不包括z=0点; 如果是因果序列, 收敛域包括
z=∞点。 具体有限长序列的收敛域表示如下:
11
第三章 序列的Z变换
例 3.3求x(n)=anu(n)的Z变换及其收敛域
解:
X (z)
n
anu(n)zn
n0
anzn
1 1 azn
在收敛域中必须满足|az-1|<1, 因此收敛域为|z|>|a|。
3. 左序列
左序列是在n≤n2时, 序列值不全为零, 而在n>n2, 序列值全为零的序列。 左序列的Z变换表示为
1
x(n)Z n x(n)Z n x(n)Z n
nn1
nn1
n0
第一项为有限长序列, 设n1≤-1, 其收敛域为0≤|z|< ∞。 第二项为因果序列, 其收敛域为Rx-<|z|≤∞, Rx是第二项最小的收敛半径。 将两收敛域相与, 其收 敛域为Rx- <|z|<∞。 如果x(n)是因果序列, 收敛域定为Rx- <|z|≤∞。 推论:如序列x(n)的Z变换的收敛域包含∞点,则x(n) 是因果序列
例 3.1 x(n)=u(n), 求其Z变换。
解:
X (z)
u(n)zn zn
n
n0
X(z)存在的条件是|z-1|<1, 因此收敛域为|z|>1,
X
(
z)
1
1 z
1
|z|>1
5
《z变换的性质》课件
z变换在信号处理中的应用
01
z变换在信号处理中有广泛的应用,例如系统分析和设计、滤波 器设计、频谱分析等。
02
通过分析系统的z变换特性,我们可以了解系统的频率响应和稳
定性,从而优化系统的性能。
详细描述
微分性质描述了信号的一阶导数对z变换结果的影响。在信号处理中,微分性质可以用来分析和处理信号的导数 ,从而更好地理解信号的特性。例如,在控制系统和滤波器设计中,微分性质可以帮助我们设计和分析信号处理 算法。
积分性质
总结词
积分性质是指若信号x(n)进行z变换得到 X(z),则x(n)的积分进行z变换的结果是 1/(1-z)。
控制工程
在控制工程领域,z变换用于分析和设计控制系统的稳定性、性能指标等,为控制系统设计和优 化提供理论支持。
z变换的应用领域
数字信号处理
在数字信号处理中,z变换用于 频谱分析、滤波器设计、频域信
号处理等方面。
控制系统
在控制系统中,z变换用于系统 稳定性分析、控制器设计、状态
估计等方面。
通信工程
在通信工程中,z变换用于调制 解调、信道均衡、信号检测等方
数学基础
基于复数和离散时间函数的数学基础,z变换通过将离散时 间信号映射到复平面的函数,提供了一种方便的数学工具。
z变换的重要性
系统分析
z变换是分析离散时间系统的基本工具,通过它可以将离散时间系统的动态行为表示为复平面上 的函数,进而分析系统的稳定性、频率响应等特性。
信号处理
在信号处理领域,z变换用于分析离散时间信号的频谱、滤波、调制等处理过程,实现信号的频 域分析和处理。
数字信号处理2-Z变换
线性 ax(n)+by(n) aX(z)+bY(z)
移位 x(n-a)
z-aX(z)
尺度 anx(n) 相移 ejbnx(n)
反褶 x(-n)
X(z/a) X(1/z)
乘n nx(n)
-zdX(z)/dz
共轭 x*(n) x*(-n)
卷积 x(n)*h(n)
X*(z*) X*(1/z*)
X(z)H(z)
z
z n0
z
26
Z变换旳性质: 共轭对称性
序列
Z变换
x(n)
x(0) liXm(Xz)(z)
Rx
z
Re[x(n)]
x(0) li[mXX(z()z+)X*(z*)]/2 Rx z0
jIm[x(n)]
[X(z)-X*(z*)]/2 Rx
x() lim[( z 1) X ( z)]
[x(n)+x*(-n)]/2
收敛域与极点
X(z)收敛域以极点为边界,收敛域内没有极点
4
正、逆Z变换:收敛域
不同类型序列Z变换旳收敛域
x(n)类型 有限长
右边 因果
左边 逆因果
双边
x(n)定义域 n [n1, n2 ] X(z)收敛域
n1 0, n2 n1 > - , n2 0
z (0, ] z [0, )
n1 >- , n2
1 0.5z1
0.5 z 1 0.5z1 0.25z2
0.25 z 2 0.25z2 0.125z3
0.125z3
X1(z)
X2(z)
4.合并:
X1(z) 2z 2z2 2z3 2z4... X 2 (z) 1 0.5z1 0.25z2 16 z3...
数字信号处理基础-Z变换
区间内, n1 区间内,有非零的有限值的序列 x(n)
X ( z ) = ∑ x ( n) z − n
n1 ≤ n ≤ ∞
lim
n →∞ n →∞
n
x ( n) z
−n
<1
Rx1
圆外为 收敛域
j Im[z ]
lim n x(n) = Rx1 < z z > Rx1
收敛半径
Re[z ]
k k k →∞ −1
< 1或 z < 2
z < lim 2 = 2
k k k →∞
第二项仅含有Z的负幂的无穷级数 1 −k lim k ( z ) < 1或 z > lim k k →∞ k →∞ 3
k
∴ F ( z )的绝对收敛域为 2 > z >
光机电一体化技术研究所
1 3
∞
n
圆内为收敛域, 圆内为收敛域, 若 n2 > 0 则不包括z=0点 则不包括 点
j Im[z ]
lim
n
n →∞ n n →∞
x ( − n) z < 1 x ( − n) < z 1 lim n x(− n)
n →∞ −1
Rx2
•
Re[z ]
lim
z >
= Rx2
收敛半径
光机电一体化技术研究所
1.根据级数理论
*比项法:设
ρ < 1,级数收敛。 ρ > 1,级数发散。 ρ = 1,不能肯定。 * 捡根法(柯西准则 )
lim
n→ ∞
a n +1 =ρ an
设: lim a = ρ
数字信号处理z变换
−n
< ∞,
• 所以X(z)在|z|=R上收敛。 • 由此可进一步证明,在R圆以外,即
R<|z|<∞,x(Z)也必收敛。 • 再看第二项,由于n>n2≥0,|Z|>R,因 此|z|-n<R-n,
• 因此
n = n1
∑ x ( n) z
∞
−n
= ∑ x ( n) z
n = n1
n2
−n
+
n = n2 +1
– P60 – P158 2.33 4.1 4.3 4.6
• 2版
– P73 – P103 2.76 3.1 3.3 3.4
3.3 z反变换
• 3.3.1 观察法 • 3.3.2 部分分式展开法 • 3.3.3 幂级数展开法
3.3.1 观察法
• 公式 • z变换
1 a u[ n] ← ⎯→ , −1 1 − az
x[n] = a u[n]
n
X ( z) =
n =−∞
∑ a u[n]z
n
∞
−n
= ∑ (az )
n =0
∞
−1 n
∑ (az
n =0
∞
−1 n
) <∞
– 收敛域
az
−1
<1
收敛域内
1 z z >a = X ( z ) = ∑ (az ) = 1 − az −1 z − a n =0
−1 n ∞
• 零点 0 • 极点 a • 当 a >1
n n
– 利用 例3.1 3.2的结论
1 ⎛ 1⎞ ⎜ − ⎟ u[n ] ↔ 1 −1 ⎝ 3⎠ 1+ z 3 1 ⎛1⎞ − ⎜ ⎟ u [ − n − 1] ↔ 1 −1 ⎝2⎠ 1− z 2
MATLAB 第3章 Z变换
x(n) z x(n) z n
n n n1 n 0
1
0 Z Rx Z
其中:Rx-为收敛域的最小半径。 数字信号处理
右边序列的 收敛域
Rx Z
第三章 Z变换
jIm[z]
Rx -
o
Re[z]
图3-3 右边序列及其收敛域 (n1<0, |z|=∞除外)
数字信号处理
第三章 Z变换
三.几种序列的收敛域
(1)有限长序列:
x ( n), n1 n n2 x ( n) 其他n 0,
其z变换为
收敛域为
0 z
图3-2 有限长序列及其收敛域 (n1 0, n2 0;z 0, z 除外)
数字信号处理
第三章 Z变换
第三章 Z变换
二.Z变换的收敛域 1.收敛域的定义:对任意给定序列x(n),使其z
变换收敛的所有z值的集合称为X(z)的收敛域。
2. 收敛条件:X ( z )
n
x(n) z n 的级数收敛的充
分必要条件是满足绝对可和的条件,即要求
n | x ( n ) z | M
数字信号处理
第三章 Z变换
例3-2 x(n)=anu(n), 求其z变换及收敛域。
解 这是一个因果序列,其z变换为
X ( z) a z
n 0
n n
1 z (az ) 1 1 az za n 0
1 n
|z|>|a|
这是一个无穷项的等比级数求和,只有在 |az-1|<1 即 |z|>|a|处收敛如图3-4所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这种单边Z变换的求和限是从零到无限大, 因此对于因 果序列, 用两种Z变换定义计算出的结果是一样的。 本书中如不另外说明, 均用双边Z变换对信号进行分 析和变换。
(3.1)式Z变换存在的条件是等号右边级数收敛, 要 求级数绝对可和, 即
x(n)zn
(3.3)
n
使(3.3)式成立, Z变量取值的域称为收敛域。 一
第三章 序列的Z变换
3.2 序列特性对收敛域的影响
序列的特性决定其Z变换收敛域。
1. 有限长序列
如序列x(n)满足下式:
x(n) x(n)=
n1≤n≤n2
0
其它
第三章 序列的Z变换
即序列x(n)从n1到n2序列值不全为零, 此范围之 外序列值为零, 这样的序列称为有限长序列。 其Z
变换为
n2
X(z) x(n)zn
X (z)n R N (n)znN n 0 1zn1 1 z z N 1
这是一个因果的有限长序列, 因此收敛域为0<z≤∞。 但由结果的分母可以看出似乎z=1是X(z)的极点, 但同时分子多项式在z=1时也有一个零点, 极零点 对消, X(z)在单位圆上仍存在, 求RN(n)的FT, 可 将z=ejω代入X(z)得到, 其结果和例题2.2.1中的结果 (2.3.5)公式是相同的。
般收敛域用环状域表示
R x z R x
第三章 序列的Z变换 图 3.1 Z变换的收敛域
第三章 序列的Z变换
常用的Z变换是一个有理函数, 用两个多项式之比表示
X (z) P(z) Q(z)
分子多项式P(z)的根是X(z)的零点, 分母多项式 Q(z)的根是X(z)的极点。 在极点处Z变换不存在, 因 此收敛域中没有极点, 收敛域总是用极点限定其边界。
nn1
设x(n)为有界序列, 由于是有限项求和, 除0与∞
两点是否收敛与n1、 n2取值情况有关外, 整个z平面均 收敛。 如果n1<0, 则收敛域不包括∞点; 如n2>0, 则 收敛域不包括z=0点; 如果是因果序列, 收敛域包括
z=∞点。 具体有限长序列的收敛域表示如下:
第三章 序列的Z变换
n1<0, n2≤0时, 0≤z<∞ n1<0, n2>0时, 0<z<∞ n1≥0, n2>0时, 0<z≤∞ 例 3.2求x(n)=RN(n)的Z变换及其收敛域 解:
n2
X(z) x(n)zn
n
第三章 序列的Z变换
当 n2≤0
n 2
n 2
n 2
X (Z ) x (n )Z n x (n )Z n x (n )R n
n
n
n
当 n2>0
n2
0
n2
x(n)Z n x(n)Z n x(n)Z n
n
n
n 1
第二项为有限长序列, 在整个Z平面收敛( z=∞点 不收敛)。 第一项根据前式的论述,当
第三章 序列的Z变换
2. 右序列
右序列是在n≥n1时,序列值不全为零,而其它n<n1,序 列值全为零。
X(Z) x(n)Zn nn1
ROC: 分析:
Z Rx
当 n1 ≥0时
X (Z ) x (n )Z n x (n )Z n x (n )R n
n n 1
n n 1
n n 1
对比序列的傅里叶变换定义, 很容易得到FT和ZT 之间的关系, 用下式表示:
X(ej)X(z)zej
(3.4)
第三章 序列的Z变换
式中z=e jω表示在z平面上r=1的圆, 该圆称为单位圆。 (3.4)式表明单位圆上的Z变换就是序列的傅里叶变换。 如果已知序列的Z变换, 可用(3.4)式, 很方便的求出 序列的FT, 条件是收敛域中包含单位圆。
Z R 时收敛 因此左序列的收敛域是半径为R+的圆内区域
第三章 序列的Z变换
例 3.4求x(n)=-anu(-n-1)的Z变换及其收敛域。
1
X(z) anu(n1)zn anzn
n
n
anzn
n1
X(z)存在要求|a-1 z|<1, 即收敛域为|z|<|a|
X(z)1 aa 1 z 1z11 az1, za
第三章 序列的Z变换
1
x(n)Zn x(n)Zn x(n)Zn
nn 1
nn 1
n0
第一项为有限长序列, 设n1≤-1, 其收敛域为0≤|z|< ∞。 第二项为因果序列, 其收敛域为Rx-<|z|≤∞, Rx是第二项最小的收敛半径。 将两收敛域相与, 其收 敛域为Rx- <|z|<∞。 如果x(n)是因果序列, 收敛域定为Rx- <|z|≤∞。 推论:如序列x(n)的Z变换的收敛域包含∞点,则x(n) 是因果序列
例 3.1 x(n)=u(n), 求其Z变换。
解:
X(z) u(n)zn zn
n
n0
X(z)存在的条件是|z-1|<1, 因此收敛域为|z|>1,
X
(z)
1 1 z1
|z|>1
第三章 序列的Z变换
由x(z)表达式表明, 极点是z=1, 单位圆上的Z变 换不存在, 或者说收敛域不包含单位圆。 因此其傅里 叶变换不存在, 更不能用(3.4)式求FT。 该序列的FT不 存在, 但如果引进奇异函数δ(ω), 其傅里叶变换可以 表示出来(见表2.3.2)。 该例同时说明一个序列的傅里 叶变换不存在, 在一定收敛域内Z变换是存在的。
第三章 序列的Z变换
例 3.3求x(n)=anu(n)的Z变换及其收敛域 解:
X (z) n a n u (n )z nn 0a n z n 1 1 a z n
在收敛域中必须满足|az-1|<1, 因此收敛域为|z|>|a|。 3. 左序列
左序列是在n≤n2时, 序列值不全为零, 而在n>n2, 序列值全为零的序列。 左序列的Z变换表示为
第三章 序列的Z变换
4. 双边序列
一个双边序列可以看作一个左序列和一个右序列 之和, 其Z变换表示为
X (z)
x(n)zn X1(z) X2(z)
n
X1(z)
x(n)zn,
n1
0 Z Rx
X 2 (z)
ቤተ መጻሕፍቲ ባይዱ
x(n)zn,
n n 1
Rx Z
第三章 序列的Z变换
X(z)的收敛域是X1(z)和X2(z)收敛域的公共收敛区 域。 如果Rx+>Rx-, 其收敛域为Rx- <|z|< Rx+ , 这是一 个环状域, 如果Rx+ < Rx- , 两个收敛域没有公共区域, X(z)没有收敛域, 因此X(z)不存在。