多肽和蛋白质类药物发展过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多肽和蛋白质类药物的发展过程
药物佐剂学
随着蛋白组学计划的逐步深入,蛋白质结构与功能关系逐渐被***,近年来越来越多的多肽及蛋白质类物质在诊断、治疗或作为疫苗预防各种疾病方面发挥着重要作用。与小分子药物相比,多肽及蛋白质类大分子药物稳定性差、易于被酶降解、故生物半衰期短;而扩散差、分配系数小,又使其难以通过生物屏障及脂质膜[1],所以,如何将这些生物技术类物质有效地送达人体相应部位,一直是制剂研究面临的重大课题。/i ekww^54
目前,生物技术类药物大多以注射用溶液或冻干粉针剂应用于临床,但常需要频繁给药,致使病人的顺应性较差,且治疗费用较高。而将大分子药物通过可生物降解微球系统给药,不仅能有效防止生物大分子在体内很快被降解,还能将药物定向送达体内有效部位,并通过可生物降解聚合物的降解达到缓释长效目的。现已有的多肽及蛋白质类药物微球制剂主要有:注射用缓释制剂,口服及鼻腔吸入剂等。随着对这类微球制剂研究的深入,制备过程中蛋白质的稳定性差、包封率低、载药量小、且易于产生聚集而使其生物活性降低并可能引起免疫反应、体外释放时具有明显突释效应等问题严重影响着这类制剂的发展。本文将就目前多肽及蛋白质类微球制剂的应用、制备方法、出现的问题及常用的各种增加稳定性、减少其突释效应的物理化学方法进行综述。?sBbe @OC?
AmmU oS\
1、多肽及蛋白质微球制剂的主要类型BV pRk UC"
1.1 注射剂? YO$NYwE
采用可生物降解聚合物为骨架材料,将多肽及蛋白质药物制成微球制剂用于肌肉或皮下注射,给药后随着聚合物的降解,药物以扩散、溶蚀方式释放,可达到缓释长效的目的[2]。 tu6Q7CjW8
),肌肉注射后可缓释1或2个月。 这类制剂中,只有10个氨基酸的LHRH 类似物微球的研究最为成功,第一个多肽微球产品——曲普瑞林于1986年问世,随后亮丙瑞林、布舍瑞林、高舍瑞林、那法瑞林等长效微球制剂相继上市。2000年美国Genentech公司推出了重组人生长激素(rhGH)PLGA微球(Nutropin p; V H g
1.2 口服制剂a:(.{z?nM
多肽及蛋白质类药物应用于口服须克服两大障碍,一是抑制胃肠道各种酶对其降解,二是选用合适的制剂形式及载体材料使药物透过生物屏障。粒径范围处于1-1000nm的毫微粒制剂是目前研究最多的口服多肽制剂,但毫微粒的表面带电荷情况及聚合物疏水性能均影响多肽在小肠部位的吸收。 s - H e
近年来的研究主要在对毫微粒表面进行修饰,如在毫微粒表面连接各种生物粘附材料,如脱乙酰壳多糖、Carbopol®等。Kawashima等研究者[3]采用乳化溶剂扩散法在降钙素的PLGA毫微粒表面覆盖一层粘附材料脱乙酰壳多糖后,与原PLGA毫微粒相比,虽然药物扩散形式没有显著改变,但能明显降低血钙水平,且能维持48小时。Lubben等报道[1],脱乙酰壳多糖及其衍生物能有效提高亲水性大分子物质的吸收,因其能增加细胞间的紧密连接的开放而有利于药物的细胞旁转运。 P` -K? k<
另外,将毫微粒的疏水性聚合物骨架上连接亲水性聚合物侧链,可大大提高多肽药物的吸收,这可能是由于亲水性聚合物能打开小肠上皮细胞间的紧密连接。'v"{frh
1.3 鼻腔吸入剂=A, 6KY=E
将多肽及蛋白质类药物以微球制剂的形式在鼻腔给药可提高这类药物的吸收及生物利用度,这在胰岛素、降钙素、人生长激素等微球制剂中都得到了证实。尽管微球对多肽及蛋白类药物的这种促吸收机理尚不确定,但一般认为,微球与鼻粘膜直接接触而吸水溶胀,使上皮细胞脱水导致紧密连接开放,使多肽及蛋白质易于透过[4]。mqg[2VT RP
目前,将疫苗通过鼻腔给药产生局部免疫反应又是研究的一个热点。微球包载疫苗在鼻腔内给药,通过适当的佐剂(如肠毒素衍生物)、渗透促进剂(如环糊精、胆酸盐,表面活性剂、阳离子聚合物、溶血磷脂酰胆碱等)将抗原递呈至含有抗体生成细胞的淋巴组织,如鼻相关淋巴组织,可使疫苗在鼻腔引起局部免疫反应,能有效地抵抗外来物的侵蚀。动物实验及前期临床实验已证实了其有效性。Singh 等报道[5],将含粘膜佐剂(LTK63)的流感疫苗的酯化透明质酸微球给大鼠、兔子和小猪滴鼻第0和第28天,与流感疫苗溶液及通过肌注途径获得免疫相比,通过微球在鼻腔内给药获得免疫,能显著提高血浆IgG反应,具有更高的血细胞凝集抑制滴度。6_# >s1`R
t 6u01r{~`
2、多肽及蛋白质类药物微球的制备P2S$Dk_<\X
2.1 常用材料X=< -rFW
用于制备多肽或蛋白质类药物的微球材料主要有两大类:可生物降解聚合物(biodegredable polymer)和及生物粘附材料(bioadhesive material)。
S ; vE %
生物粘附材料是一类能对粘膜产生粘附作用的材料,主要有Carbopol®、脱乙酰壳多糖(chitosan)、羟丙基纤维素(HPC)、羧甲基纤维素钠(CMC-Na)等,这类材料主要用在口服及鼻腔给药的微球制剂。qn+ b *4
可生物降解聚合物是指一些能在水、酶作用下降解的高分子聚合物,包括天然和人工合成两类。前者包括明胶、葡聚糖、白蛋白、脱乙酰壳多糖、海藻酸钠、透明质酸钠等;后者主要有聚乳酸羟基乙酸嵌段共聚物(PLGA)、聚乳酸(PLA)、聚乳酸聚氧乙烯嵌段共聚物(PELA)、聚丙稀酸酯(PEC)[6]等。其中应用最广泛、研究最多的是PLGA,它不仅具有生物相容性、无免疫应答和降解产物毒性小的优点,而且可通过调节两个单体比例(PLAGA)及聚合条件改变聚合物在体内降解速度的特点[7],但其亲脂性强、对水溶性药物(包括多肽蛋白质及疫苗)的亲和力不高。PELA是一种新型的可生物降解聚合物,由PLA和PEG(5-50%)通过开环聚合反应制得。将亲水性的PEG链接到疏水性的PLA网状结构表面,提高了PLA对亲水性物质如多肽蛋白质等的亲和力,从而提高了这类物质的包封率、降低了药物的突释效应而获得稳定而持续的释放效果。l0 m\-2Ttf
聚合物分子量大小和浓度对微球的表面形态和内部结构也有影响。分子量大、浓度高,其溶液的粘度增加,形成的微球粒径较大、表面孔隙少,药物释放相对较慢,突释效应也相对较小。但聚合物分子量大,其所形成的初乳稳定性差,聚合物乳滴易于合并。z@nJ- *'U8
通过化学聚合方法将聚合物与某一功能团共价结合,可改变聚合物的疏水性或亲水性、以及聚合物链的流动性和弹性,从而达到提高被包封药物稳定性、改善药物释放的目的。Zambaux等报道[8],将PLA与单甲氧基聚环氧乙烷(MPEO)以一定比例(75/25)共价结合,再与PLA混合用复乳法制备具有抗凝作用的蛋白C微球,由于MPEO提高了PLA链亲水性、降低了PLA玻璃化转变温度,从而增加了PLA链流动性和弹性,而蛋白C的包封率又与聚合物中的疏水作用有关,所以按一定比例将PLA与PMEO-PLA混合作为膜材料制备微球,则既提高了蛋白C的包封率,又减少了水和蛋白C的扩散,从而减少了药物突释效应。 EPQ