常用的几种模糊控制器
第2章 模糊控制- 控制系统
![第2章 模糊控制- 控制系统](https://img.taocdn.com/s3/m/09332e6ca98271fe910ef93b.png)
•
N
Z
P
-1
0
+1
x
输入论域的三级模糊空间分割
NB NM NS ZE PS PM PB
-1
0
+1 x
输入论域的七级模糊空间分割
16
双输入情况下, 模糊分割的例 子:
输 入 变 量 2
大 小
小 (������1 )
较大 (�中(������4 ) 中
规 则 的 形 式 : 模 糊 条 件 语 句 (IF… THEN…)。 规则制定时需考虑的因素:规则的完整 性和兼容性等。 规则的表格表示:
19
输入变量������1 ������������ 输 入 变 量 ������2 ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������
模糊控制简介
![模糊控制简介](https://img.taocdn.com/s3/m/b11592f5102de2bd9605883f.png)
න
������������ (������)������������ (������) (������, ������)
������������
模糊逻辑与近似推理
➢ 近似推理过程: 前提1(事实):������是������’ 前提2(规则):������������ ������ 是 ������,������ℎ������������ ������ 是 ������ 结论:������是������’ 这里������’和������是论域������中的模糊集合,������’和������是论域������中的模
⋯ ������������ ������2, ������������
⋱
⋮
������������ ������������, ������1 ������������ ������������, ������2 ⋯ ������������ ������������, ������������
例:������ = {子,女},������ = {父,母},模糊关系������“子女与
父母长得相似”,用模糊矩阵表示则为:
父母
������
=
子 女
0.8 0.3
0.3 0.6
模糊控制的数学基础
➢ 模糊关系合成 设������、������、������是论域, ������是������到������的一个模糊关系, ������是������到������
常用的几种模糊控制器
![常用的几种模糊控制器](https://img.taocdn.com/s3/m/401d114eb84ae45c3b358c29.png)
模糊控制与PID控制结合
为什么要将模糊控制与PID控 制结合使用?
常规PID(比例、积分、微分)控制是过程控制中 应用最广泛最基本的一种控制方式,它具有简 单、稳定性好、可靠性高的特点。而PID控制 对大部分工业控制对象,特别是对于线性定常 系统的控制是非常有效的,通常都能取得较为 满意的控制效果。PID控制的控制品质取决于 PID控制器各个参数的整定,但常规PID控制器 不能在线整定参数。而且对于非线性、时变的 复杂系统和模型不清的系统,就不能很好地加 以控制。
为什么要将模糊控制与PID控 制结合使用?
简单模糊控制器由于不具有积分环节, 因而在模糊控制的系统中很难完全消除 稳态误差,而且在变量分级不够多的情 况下,常常在平衡点附近会有小的振荡 现象。但是模糊控制系统对复杂的和模 型不清的对象却能有效地加以控制,所 以把模糊控制和PID控制结合起来,就可 以组成兼有两者优点的模糊PID控制方法。
1 精度较低
这主要是由于模糊控制表的级别有限而 造成,通过增加量化等级数目虽可提高 精度,但查询表将过于庞大。须占用较 大空间.使运算时间增加。实际上如果 模糊控制器中不引入积分机制,原则上 总是存在误差的。因为它本身就是根据 误差的大小和变化来实现控制的
2 自适应能力有限
由于简单模糊控制器中查询表一旦整定 下来后,就不再改变,量化因子和比例 因子也是如此。这样当对象参数随着环 境的变迁发生漂移时,它不能对自己的 控制规则进行有效的调整,从而使其良 好性能得不到充分发挥。
3 容易产生震荡现象
如果查询表构造不合理或量化因子和比 例因子选择不当,都会导致振荡。在仿 真过程中,特别是系统进入误差的零档 级时产生高频振荡现象更为普遍。
2 模糊控制器设计PPT课件
![2 模糊控制器设计PPT课件](https://img.taocdn.com/s3/m/069dd65976c66137ee0619c1.png)
16.07.2020
智能控制
13
下图是速度型模糊控制器的结构图(采样系统)。
图中
e(k)ry(k)
e(k) e(k) e(k 1 )
u(k)u(k) u(k 1 )
16.07.2020
智能控制
6
图 模糊控制原理框图
16.07.2020
智能控制
7
模糊控制器 (Fuzzy Controller—FC )也称 为模糊逻辑控制器(Fuzzy Logic Controller—FLC ),由于所采用的模糊控制规则是由模糊理论中模糊 条件语句来描述的,因此模糊控制器是一种语言型 控 制 器 , 故 也 称 为 模 糊 语 言 控 制 器 ( Fuzzy Language Controller—FLC)。
16.07.2020
智能控制
12
B 直接型(常规的模糊控制器)
(1) 位置式 (输出不含积分环节)
r i:IF e ( k )iA s ia n e ( k )i d B s iTH u ( k )iE C s i N
是指ri 表示第i 条控制规则。 (2) 速度式(输出含积分环节)
r i:IF e ( k )iA s ia n e ( k )id B s iTH u ( k )E iC s i N
智能控制
25
(1). 模糊化接口(Fuzzy interface)
模糊控制器的输入必须通过模糊化才能用于控制输出的求解, 因此它实际上是模糊控制器的输入接口。它的主要作用是将 真实的确定量输入转换为一个模糊量。把物理量的清晰值转 换成模糊语言变量的过程叫做清晰量的模糊化。
模糊控制系统简介
![模糊控制系统简介](https://img.taocdn.com/s3/m/90c03e294028915f814dc2e3.png)
模糊理论在模糊控制中的应用——模糊控制系统摘要:模糊控制技术对工业自动化的进程有着极大地推动作用。
本文简要的讲述了模糊控制理论的起源及基本原理,详细分析了模糊控制器的设计方法,最后就典型的模糊控制系统原理和新型模糊控制系统应用进行了分析正文:一:模糊理论1.1模糊理论概念:模糊理论(Fuzzy Theory)是指用到了模糊集合的基本概念或连续隶属度函数的理论。
它可分类为模糊数学,模糊系统,不确定性和信息,模糊决策这五个分支,它并不是完全独立的,它们之间有紧密的联系。
1.2模糊理论产生:1965年,模糊理论创始人,美国加州福尼亚大学伯克利分校的自动控制理论专家L.A.Zadeh教授发表了题为“Fuzzy Set”的论文,这标志着模糊理论的诞生。
这一理论为描述和处理事务的模糊性和系统中的不确定性,以及模拟人所特有的模糊逻辑思维功能,从定性到定量,提供了真正强有力的工具。
1966年,马里诺斯发表了模糊逻辑的研究报告,而Zadeh进一步提出了著名的模糊语言值逻辑,并于1974年进行了模糊逻辑推理的研究。
由于这一研究和观点反映了客观世界中普遍存在的事务,它一出现便显示出强大的生命力和广阔的发展前途,在自然科学,其他科学领域及工业中得到了迅速的广泛的应用。
二:模糊控制理论2.1模糊控制理论的产生:在控制技术的应用过程中,对于多变量、非线性、多因素影响的生产过程,即使不知道该过程的数学模型,有经验的操作人员也能够根据长期的实践观察和操作经验进行有效地控制,而采用传统的自动控制方法效果并不理想。
从这一点引申开来,是否可将人的操作经验总结为若干条控制规则以避开复杂的模型建造过程?模糊控制理论与技术由此应运而生。
20世纪70年代模糊理论应用于控制领域的研究开始盛行,并取得成效。
其代表是英国伦敦大学玛丽皇后分校的E.H.Mamdani教授将IF-THEN型模糊规则用于模糊推理,并把这种规则型模糊推理用于蒸汽机的自动运转中。
智能控制(研究生)习题集
![智能控制(研究生)习题集](https://img.taocdn.com/s3/m/256a6ed28ad63186bceb19e8b8f67c1cfad6ee97.png)
习题集第一章概论1.试从学科和能力两个方面说明什么是人工智能。
2.哪些思想、思潮、时间和人物在人工智能发展过程中起了重要作用?3.近年来人工智能研究取得哪些重要进展?4.为什么能够用计算机模拟人类智能?5.目前人工智能学界有哪些学派?它们的认知观为何?6.自动控制存在什么机遇与挑战?为什么要提出智能控制?7.简述智能控制的发展过程,并说明人工智能对自动控制的影响。
8.傅京孙对智能控制有哪些贡献?9.什么是智能控制?它具有哪些特点?10.智能控制器的一般结构和各部分的作用为何?它与传统控制器有何异同?11.智能控制学科有哪几种结构理论?这些理论的内容是什么?12.为什么要把信息论引入智能控制学科结构?13.人工智能不同学派的思想在智能控制上有何反映?第二章知识表示方法1.状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?2.设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?3.利用下图,用状态空间法规划一个最短的旅行路程:此旅程从城市A开始,访问其他城市不多于一次,并返回A。
选择一个状态表示,表示出所求得的状态空间的节点及弧线,标出适当的代价,并指明图中从起始节点到目标节点的最佳路径。
4.试说明怎样把一棵与或解树用来表达下图所示的电网络阻抗的计算。
单独的R、L或C可分别用R、jωL或1/jωC来计算,这个事实用作本原问题。
后继算符应以复合并联和串联阻抗的规则为基础。
5.试用四元数列结构表示四圆盘梵塔问题,并画出求解该问题的与或图。
6.用谓词演算公式表示下列英文句子(多用而不是省用不同谓词和项。
例如不要用单一的谓词字母来表示每个句子)。
A computer system is intelligent if it can perform a task which,if performed by a human, requires intelligence.7.把下列语句表示成语义网络描述:(1)All man are mortal.(2)Every cloud has a silver lining.(3)All branch managers of DEC participate in a profit-sharing plan.8.作为一个电影观众,请你编写一个去电影院看电影的剧本。
模糊控制简介
![模糊控制简介](https://img.taocdn.com/s3/m/6293873e0912a216147929fd.png)
R=(NBe × PBu ) + ( NSe × PSu ) + (0e × 0u ) + ( PSe × NSu ) + ( PBe × NSu )
NBe × PBu = (1, 0.5, 0, 0, 0, 0, 0) × (0, 0, 0, 0, 0, 0.5,1) NSe × PSu = (0, 0.5,1, 0, 0, 0, 0) × (0, 0, 0, 0,1, 0.5, 0) 0e × 0u = (0, 0, 0.5,1, 0.5, 0, 0) × (0, 0, 0.5,1, 0.5, 0, 0) PSe × NSu = (0, 0, 0, 0,1, 0.5, 0) × (0, 0.5,1, 0, 0, 0, 0) PBe × NSu = (0, 0, 0, 0, 0, 0.5,1) × (1, 0.5, 0, 0, 0, 0, 0) 0 0 0 0 0.5 1 0 0 0 0 0 0.5 0.5 0.5 0 0 0.5 0.5 1 0 0 R= 0 0 0.5 1 0.5 0 0 0 0.5 1 0.5 0.5 0 0 0 0 0 0.5 0.5 0.5 0 1 0.5 0 0 0 0 0
学习功能
数据存储 单元
y
∗ k
e
r + —
∆
∆
k
e
e
k
c
2
e
k
Байду номын сангаас
r
模糊 控制 规则
k
∆
u
u
u
u
k −1
k
+ +
被 控 对 象
y
k
六.思考
矛盾对立统一规律: 矛盾对立统一规律:两面性 • 优点:模糊逻辑本身提供了由专家构造语 优点: 言信息并将其转化为控制策略的一种系统 的推理方法, 的推理方法,因而能够解决许多复杂而无 法建立精确数学模型系统的控制问题, 法建立精确数学模型系统的控制问题,所 以它是处理推理系统和控制系统中不精确 和不确定性的一种有效方法。从广义上讲, 和不确定性的一种有效方法。从广义上讲, 模糊控制是适于模糊推理, 模糊控制是适于模糊推理,模仿人的思维 方式, 方式,对难以建立精确数学模型的对象实 施的一种控制策略。 施的一种控制策略。它是模糊数学同控制 理论相结合的产物, 理论相结合的产物,同时也是智能控制的 重要组成部分。 重要组成部分。
《基于模糊控制的高精度伺服速度控制器的设计与实现》
![《基于模糊控制的高精度伺服速度控制器的设计与实现》](https://img.taocdn.com/s3/m/250b090da55177232f60ddccda38376baf1fe0d5.png)
《基于模糊控制的高精度伺服速度控制器的设计与实现》基于模糊控制的高精度伺服速度控制器设计与实现一、引言随着工业自动化和智能制造的不断发展,对高精度伺服系统的速度控制提出了更高要求。
伺服速度控制器的性能直接影响着工业产品的制造质量和效率。
传统速度控制方法往往存在响应速度慢、精度低等问题。
为了解决这些问题,本文提出了一种基于模糊控制的高精度伺服速度控制器设计与实现方案。
二、系统概述本系统主要由伺服电机、编码器、模糊控制器和上位机组成。
其中,伺服电机负责执行速度控制任务,编码器实时反馈电机速度信息,模糊控制器负责处理反馈信息和进行控制决策,上位机负责与模糊控制器进行通信,并监控整个系统的运行状态。
三、模糊控制器的设计1. 模糊化处理模糊化处理是将电机速度的实时反馈值和目标值进行模糊化处理,将精确的数值转化为模糊语言变量。
这一过程包括确定模糊子集、论域和隶属度函数等。
2. 模糊规则库的设计根据系统特性和经验知识,设计合理的模糊规则库。
这些规则根据电机速度的实时反馈和目标值,决定下一时刻的控制策略。
3. 模糊推理机的实现模糊推理机是模糊控制器的核心部分,根据模糊规则库和实时反馈信息,进行模糊推理,得出下一时刻的控制决策。
4. 解模糊化处理解模糊化处理是将模糊推理结果转化为精确的控制量,以驱动伺服电机执行相应的动作。
四、伺服速度控制器的实现1. 硬件实现伺服速度控制器的硬件部分主要包括微处理器、编码器接口、电机驱动器等。
微处理器负责运行模糊控制器程序,编码器接口负责实时获取电机速度信息,电机驱动器根据控制决策驱动伺服电机执行相应的动作。
2. 软件实现软件部分主要包括模糊控制算法的实现、与上位机的通信等。
在微处理器上运行模糊控制算法,实时处理编码器反馈的电机速度信息,并根据模糊推理结果输出相应的控制量。
同时,与上位机进行通信,接收上位机的指令和监控系统的运行状态。
五、实验结果与分析通过实验验证了基于模糊控制的高精度伺服速度控制器的性能。
请简述模糊控制器的组成及各组成部分的用途。
![请简述模糊控制器的组成及各组成部分的用途。](https://img.taocdn.com/s3/m/715a330be418964bcf84b9d528ea81c758f52eaf.png)
模糊控制器是一种基于模糊逻辑理论的控制系统,它利用模糊集合的概念来描述模糊输入和输出,通过模糊规则和模糊推理实现对系统的控制。
模糊控制器的组成主要包括模糊化、模糊推理、解模糊和规则库四个部分,每个部分都有其独特的用途。
1. 模糊化模糊化是将系统的实际输入转化为模糊集合的过程。
在模糊控制系统中,输入往往是模糊的、不确定的,因此需要将这些模糊的输入转化为模糊集合。
模糊化的主要目的是将具体的输入转化为模糊语言值,如“很冷”、“冷”、“适中”、“热”、“很热”等,以便更好地描述系统的输入状态。
2. 模糊推理模糊推理是模糊控制器的核心部分,它用于根据模糊规则和模糊输入来得出模糊输出。
模糊推理的过程是基于一系列的模糊规则,这些规则描述了系统输入和输出之间的关系。
通过模糊推理,模糊控制器能够根据输入的模糊语言值,利用模糊规则进行推理,从而得出模糊输出的模糊语言值。
3. 解模糊解模糊是将模糊输出转化为具体的控制量的过程。
在模糊控制系统中,输出往往是模糊的语言值,需要通过解模糊将其转化为具体的控制量。
解模糊的方法有很多种,常见的方法包括最大隶属度法、加权平均法和中心平均法等。
解模糊的目的是将模糊输出转化为可以直接应用于控制系统的具体输出值。
4. 规则库规则库是模糊控制器中存储的一系列模糊规则的集合。
模糊规则描述了系统输入和输出之间的关系,它通常采用“如果…那么…”的形式来表示。
在模糊控制器中,规则库起着至关重要的作用,它包含了系统的专业知识和经验,是模糊控制器能够有效进行模糊推理的基础。
总体来说,模糊控制器的组成部分分别完成了模糊输入的转化、模糊推理的实现、模糊输出的转化和存储的模糊规则,这些部分相互协作,共同实现了对模糊、不确定系统的精确控制。
模糊控制器在工业控制、汽车控制、电力系统控制等领域有着广泛的应用,其独特的优势使其成为一种不可忽视的控制方法。
模糊控制器作为一种基于模糊逻辑理论的控制系统,在实际应用中具有诸多优势。
第三章、模糊控制系统
![第三章、模糊控制系统](https://img.taocdn.com/s3/m/1823ece8856a561252d36f00.png)
精确量(V0)
∴V0 = 5
当论域V中,其最大隶属度函数对应的输出值多于一个时, 简单取最大隶属度输出的平均即可:
即:当有(v1) µ 2)= L =µc (vJ ) 最大时 µ = (v
1 J 取v0 = ∑ v j J j =1
U 1 , U 2 , L ,U n :输出论域上模糊子集
总的模糊关系: R( 其中:
e , de , u ) = U Ri
n
当ki 取µv (vi )时
重心法
模糊化计算的其它方法:左取大、右取大等。
第二节:模糊控制系统的设计 一、模糊控制器的结构设计 模糊控制器的结构设计包括:输入输出变量选择、模糊化 算法、模糊推理规则和精确化计算方法。 一维模糊控制器 被控对象 输入输出 (按模糊控制器输入变量个数) 变量 多输入多输出 单输入单输出 二维模糊控制器 多维模糊控制器
例:x分成三档(NB、ZE、PB); y y分成两档(NB、PB); 模糊分区形式:
PB NB 0 NB ZE
R1
R2 R4
R3
PB 24
问:在此分档情况下,最大规则数为多少?
x
2 规则库 用一系列模糊条件描述的模糊控制规则就构成模糊控制规则库。 建立 规则库 选择输入变量和输出变量 建立规则(完备性、交叉性、一致性)
完备性:对于任意给定的输入均有相应的控制规则起作用。 交叉性:控制器的输出值总由数条规则来决定。 一致性:规则中不存在相互矛盾的规则。
模糊控制规则建立方法 1)专家经验法: 通过对专家控制经验的咨询形成控制规则库。 实质:通过语言条件语句来模拟人类的控制行为。
模糊控制器的基本结构和组成
![模糊控制器的基本结构和组成](https://img.taocdn.com/s3/m/a496e218e45c3b3566ec8b4e.png)
们反映了控制专家的经验和知识。
1、模糊控制器的组成
(3)模糊推理 模糊推理是模糊控制的核心,它具有模拟人的
基本模糊概念的推理能力。该推理过程是基 于模糊逻辑中的蕴含关系及推理规则来进行 的。
1、模糊控制器的组成
(4)清晰化 清晰化的作用是将模糊推理得到的控制量(模糊量)变换为实
规则库
(2)基于操作人员的实际控制过程 在许多人工控制的工业系统中,很难建立控制对象的模型,因
此用常规的控制方法来对其进行设计和仿真比较困难。而熟 练的操作人员却能成功地控制这样的系统。事实上操作人员 有意或无意地使用了一组if-then的模糊规则来进行控制,但 是他们往往并不能用语言明确地将它们表达出来,因此可以 通过记录操作人员实际控制过程时的输入和输出数据总结出 模糊控制的规则。
数据库
1)输入量变换 对于输入量的尺度变换可以是线性变换的也可以是非
线性变换的,论域可以是连续的也可以是离散的。 如果要求离散的论域,则需要将连续的论域离散化 或者量化。量化可以是均匀的也可以是非均匀的。 (P56,表2.6-2.7)
பைடு நூலகம் 数据库
2)输入和输出空间的模糊分割 模糊控制规则中前提的语言变量构成模糊输入空间,
数据库
3)完备性 对于任意的输入,模糊控制器均能给出相应的输出, 这个性质称为完备性。模糊控制的完备性取决于数 据库或规则库。对于数据库方面的要求是:对于任 意的输入,若能找到一个模糊集合,使该输入对于 该模糊集合的隶属度函数不小于 ,则称该模糊控 制器满足 完备性。
数据库
4)模糊集合的隶属度函数 (1)数值描述方法 对于论域为离散,且元素个数为有限时,模糊集合 的隶属度函数可以用向量或者表格的形式来表示。 (2)函数描述方法 对于论域为连续的情况,隶属度常常用函数的形式 来描述,最常见的有铃形函数、三角形函数等。
(完整word版)模拟控制器的设计实例——洗衣机的模糊控制
![(完整word版)模拟控制器的设计实例——洗衣机的模糊控制](https://img.taocdn.com/s3/m/f285c485910ef12d2af9e786.png)
模拟控制器的设计实例——洗衣机的模糊控制传统的洗衣机都是人们用肉眼观看后,根据人的经验来调整洗衣时间和用水量,而模糊控制就是以人对被控对象的控制经验为依据而设计的控制器,这样就能实现控制器模拟人的思维方式来控制洗衣机。
以模糊洗衣机的设计为例其控制是一个开环的决策过程,模糊控制按以下步骤进行。
1.模糊控制器的结构选用单变量二维模糊控制器。
控制器的输入为衣物的污泥和油脂,输出为洗涤时间。
2.定义输入、输出模糊集将污泥分为3个模糊集:SD(污泥少),MD (污泥中),LD (污泥多);取值范围为[0,100]。
3.定义隶属函数选用如下隶属函数()()()()()()⎪⎪⎩⎪⎪⎨⎧-=⎩⎨⎧-=-==50/5050/10050/50/50x x x x x x x μLDMD SD μμμ污泥1005010050500500≤<≤<≤≤≤≤x x x x采用三角形隶属函数可实现污泥的模糊化。
Matlab 实现污泥隶属度函数的设计,其仿真程序为0001.m Close all; N=2; x=0:0.1:100; for i=1:N+1 f(i)=100/N*(i-1); endu=trimf(x,[f(1),f(1),f(2)]); figure (1);plot(x,u); for j=2:Nu=trimf(x,[f(j-1),f(j),f(j+1)]); hold on; plot(x,u); endu=trimf(x,[f(N),f(N+1),f(N+1)]); hold on; plot(x,u); xlabel(‘x ’);ylabel(‘Degree of membership ’); 污泥程序仿真结果:00.10.20.30.40.50.60.70.80.91xD e g r e e o f m e m b e r s h i p将油脂分为三个模糊集:NG (无油脂)MG (油脂中)LG(油脂多),取值范围为[0,100] 选用如下隶属度函数()()()()()()⎪⎪⎩⎪⎪⎨⎧-=⎩⎨⎧-=-==50/5050/10050/50/50y y y y y y y LGMG NG μμμμ油脂1005010050500500≤<≤<≤≤≤≤y y y y采用三角形隶属函数实现油脂的模糊化。
关于模糊PID控制器的应用设计
![关于模糊PID控制器的应用设计](https://img.taocdn.com/s3/m/956d74c985868762caaedd3383c4bb4cf7ecb707.png)
关于模糊PID控制器的应用设计模糊PID控制器是一种能够对系统进行自动调节的控制器,它能够根据系统的不确定性和非线性特性进行自适应调节,从而实现更精确的控制。
模糊PID控制器的应用非常广泛,可以用于各种工业过程的控制,例如温度控制、速度控制和压力控制等。
在设计模糊PID控制器的应用时,需要进行以下几个步骤:1.系统建模:首先需要对所控制的系统进行建模,包括收集和分析系统的输入输出数据。
通过这些数据可以获得系统的数学模型,有助于后续的控制器设计。
2. 设计模糊控制器:设计模糊控制器的关键是确定输入和输出的隶属函数,以及规则库。
输入隶属函数一般包括误差(e)、误差变化率(de)和输出变化率(du)等,输出隶属函数则表示系统的控制输出。
规则库是根据经验确定的,它包含了一系列的if-then规则,用于决定输出量。
例如,如果误差较大且误差变化率较小,则输出量增大。
3.系统优化:通过实际控制试验,对模糊PID控制器进行调试和优化。
调试的目标是使系统的性能达到设计要求,例如精度、稳定性和响应速度等。
4.系统应用:将优化后的模糊PID控制器应用于实际系统,观察和分析控制效果。
如果效果良好,则可以继续应用到实际工程中。
模糊PID控制器的应用可以提供精确的控制效果,并且对于一些非线性系统和不确定性的系统具有良好的鲁棒性。
例如,在温度控制中,模糊PID控制器可以自动调节加热功率和冷却功率,使得温度能够稳定地控制在设定值附近。
在速度控制方面,模糊PID控制器可以根据不同的工况和负载变化自动调整电机的转速,确保控制精度和性能。
然而,模糊PID控制器也存在一些局限性。
首先,模糊PID控制器的设计需要大量的经验和试验,对于一些复杂的系统,设计可能较为困难。
其次,模糊PID控制器对于系统的建模要求较高,需要事先对系统有一定的了解和分析。
综上所述,模糊PID控制器是一种实用的控制器,具有广泛的应用前景。
在应用设计过程中,需要进行系统建模、模糊控制器设计、系统优化和系统应用等步骤,并注意控制器设计的可行性和稳定性。
模糊控简介及模糊控制器的设计
![模糊控简介及模糊控制器的设计](https://img.taocdn.com/s3/m/cc067ba10029bd64783e2cd2.png)
目录摘要 (1)1 模糊控制简介 (1)1.1 模糊控制方法的研究现状 (2)1.2 模糊控制的特点 (2)1.3模糊控制的研究对象 (3)1.4模糊控制的展望 (3)2 模糊控制器的结构与工作原理 (4)2.1基本结构与组成 (4)2.2一般模糊控制器各主要环节的功能 (4)2.3隶属函数的确定原则和基本确定方法 (5)2.4模糊条件语句与模糊控制规则 (6)2.5模糊量的判决方法 (6)2.6模糊控制规则的设计和模糊化方法 (8)2.7解模糊化 (8)3 模糊控制器的设计 (9)4 关于模糊(及智能)控制理论与技术发展的思考 (11)参考文献 (12)摘要摘要:本文主要介绍了模糊控制系统的研究现状、特点,以及模糊控制器的结构与工作原理。
同时对模糊控制器的设计进行了介绍和分析,对于其基本步骤和过程进行陈述,最后就模糊(及智能)控制理论与技术发展进行总结性的思考。
关键词:模糊控制;模糊控制器;模糊量;模糊化方法引言模糊控制是近代控制理论中的一种基于语言规则与模糊推理的高级控制策略和新颖技术,它是智能控制的一个重要分支,发展迅速,应用广泛,实效显著,引人关注[13]。
随着科学技术的进步,现代工业过程日趋复杂,过程的严重非线性、不确定性、多变量、时滞、未建模动态和有界干扰,使得控制对象的精确数学模型难以建立,单一应用传统的控制理论和方法难以满足复杂控制系统的设计要求。
而模糊控制则无需知道被控对象的精确数学模型,且模糊算法能够有效地利用专家所提供的模糊信息知识,处理那些定义不完善或难以精确建模的复杂过程。
因此,模糊控制成为了近年来国内外控制界关注的热点研究领域。
1 模糊控制简介模糊控制是一种以模糊集合论、模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。
显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。
本章着重介绍模糊控制的基本思想、模糊控制的基本原理、模糊控制器的基本设计方法和模糊控制系统的性能分析。
计算机控制技术 第六章 模糊控制技术
![计算机控制技术 第六章 模糊控制技术](https://img.taocdn.com/s3/m/da438685daef5ef7ba0d3cc3.png)
(a11 b11 ) (a12 b21 )
(a11 b12 ) (a12 b22 )
4、模糊矩阵
已知 A 0.7 0.1 0.4
~
则
0.5 0.3 0.1 0.2 0.6 0.4 0.0 0.1 B ~ 0.0 0.3 0.6 0.3
相应的“隶属函数曲线图”如下:
H ( x)
~
H
~
20
25
30
40
45
温度( ℃ )
同样有:
“稍热”、“热”
LH
~
H
~
20 25 30 35 40 45 从上图可看出:
温度( ℃ )
① 同一论域(温度)中可定义多个模糊变量。
② 定义的方法和依据带有主观性(专家的经验)。
(2)模糊集合的表示方法
第六章 模糊控制技术
在日常生活中,人们通常用“较少”、“较多”、“小一 些”、“很小”等等模糊语言来进行控制。 比如:当我们拧开水阀向水桶放水时: * 桶里没有水或水较少时,应开大水阀;
* 桶里水较多时,水阀应拧小一些;
* 水桶快满时,应把阀门拧很小; * 水桶里的水满时,应迅速关掉水阀。
经典控制理论:PID、DDC
② 序对法
A {(u1 , x1 ), (u2 , x2 ),, (un , xn )}
~
如: “青年” {(0.018, 15) , (0.105, 20), , }
~
③ 向量法
A (u1 , u2 ,un )
~
如: “青年” (0.018, 0.105, )
~
④ 解析法
③ 典型的隶属函数 (a) 三角形 1
自适应模糊pid直流无刷电机调速系统设计
![自适应模糊pid直流无刷电机调速系统设计](https://img.taocdn.com/s3/m/2962c7ff64ce0508763231126edb6f1aff007135.png)
自适应模糊PID直流无刷电机调速系统设计1. 概述在现代工业生产中,电机调速系统的设计和应用已成为一个重要的研究课题。
直流无刷电机具有体积小、效率高、响应快等优点,被广泛应用于各种领域。
而PID控制器作为一种经典的控制器,具有稳定性好、鲁棒性强等特点。
然而,传统PID控制器在面对系统参数变化、非线性系统等问题时存在一定局限性。
本文提出了一种自适应模糊PID直流无刷电机调速系统设计,旨在提高控制系统的鲁棒性和适应性。
2. 直流无刷电机调速系统的基本结构直流无刷电机调速系统通常由电机、传感器、控制器和执行机构等组成。
其中,控制器起着决定性的作用,它接收传感器反馈的信息,并根据事先设定的控制策略调节执行机构,从而实现对电机速度的精确控制。
常见的控制器包括PID控制器、模糊控制器、自适应控制器等。
3. 自适应模糊PID控制器的原理自适应模糊PID控制器是一种结合了模糊控制和PID控制的新型控制器。
它可以根据系统的实时状态和参数变化,自动调整控制参数,从而提高控制系统对变化环境的适应能力。
其基本原理是将模糊逻辑推理和PID控制相结合,通过模糊化、模糊推理和解模糊等过程,得到控制量的输出,并根据输出调整PID控制器的参数,使控制系统更加灵活和鲁棒。
4. 自适应模糊PID直流无刷电机调速系统设计在设计自适应模糊PID直流无刷电机调速系统时,首先需要对电机和传感器进行建模和参数识别,以获取系统的动态特性和非线性特性。
根据系统的特性和要求,设计模糊控制器的模糊集、模糊规则库和解模糊方法,确定模糊控制的范围和边界。
接下来,结合PID控制器的特点和系统的动态响应,设计合适的PID参数整定方法,并将PID控制器与模糊控制器相结合,形成自适应模糊PID控制器。
通过仿真和实验验证,对系统的性能进行评估和优化。
5. 实验结果与分析通过对自适应模糊PID直流无刷电机调速系统的设计和实验,我们得到了以下实验结果和分析:(1) 自适应模糊PID控制器能够有效地克服系统参数变化和非线性因素的影响,使系统具有更好的鲁棒性和适应性。
模糊PID控制器应用于恒温恒湿控制系统
![模糊PID控制器应用于恒温恒湿控制系统](https://img.taocdn.com/s3/m/d164d63ceef9aef8941ea76e58fafab069dc44dc.png)
模糊PID控制器应用于恒温恒湿控制系统恒温恒湿控制系统是一种常见的控制系统。
在领域中,这种系统通常用于控制温度和湿度,例如实验室、电子仪器房等。
恒温恒湿控制系统的稳定性和精度直接影响到其应用效果。
因此,利用PID控制器来控制恒温恒湿控制系统一直是研究的重点。
但是,在一些非线性、耦合的系统中,PID控制器存在着一些不足之处。
为了克服这些不足,研究人员开始应用模糊PID控制器来控制恒温恒湿控制系统。
一、PID控制器的不足PID控制器广泛应用于许多领域中。
它们通过计算误差的比例、积分和微分,将一个物理变量的实际值与设定值相比较,来实现对控制系统的控制。
但是,在非线性或者耦合系统中,PID控制器存在一些不足。
例如,当控制器出现模型误差时,PID控制器的效果会受到影响;当系统存在过冲或者振荡时,PID控制器也会出现困难。
二、模糊PID控制器的优点模糊PID控制器是指将模糊控制与PID控制相结合的一种控制方式。
在模糊PID控制器中,模糊控制器负责对系统的非线性或者耦合特性进行处理,而PID控制器负责保持系统稳定。
模糊PID控制器的优点主要体现在以下几方面:(1)鲁棒性强。
模糊PID控制器不需要对系统的动态方程建立严格的数学模型,因此具有较好的鲁棒性,可以应对模型误差等问题。
(2)处理非线性问题。
模糊控制器是一种基于经验的控制方式,可以处理非线性问题。
因此,模糊PID控制器比PID控制器更适合处理一些非线性或者耦合系统。
(3)控制效果更好。
在一些非线性或者耦合系统中,模糊PID控制器比PID控制器更能保持系统稳定,控制效果更好。
三、模糊PID控制器在恒温恒湿控制系统中的应用恒温恒湿控制系统通常包括温度和湿度两个物理变量。
在恒温恒湿控制系统中,PID控制器广泛应用于控制温度和湿度。
然而,在一些非线性或者耦合系统中,PID控制器的效果并不理想。
因此,在最近的研究中,模糊PID控制器开始被应用于恒温恒湿控制系统中。
模糊控制应用实例
![模糊控制应用实例](https://img.taocdn.com/s3/m/e6d8d428a88271fe910ef12d2af90242a995ab42.png)
模糊控制应用实例模糊控制是一种部分基于逻辑的控制方法,它通过将模糊集合理论应用于控制系统中的输入和输出来模拟人类决策的过程。
与传统的精确控制方法相比,模糊控制更适合于处理模糊的、不确定的和复杂的系统。
在现实世界中,模糊控制广泛应用于各个领域,例如工业自动化、交通控制、飞行器导航等。
在本文中,我将介绍几个模糊控制的应用实例,以帮助读者更好地了解其实际应用价值。
1. 交通信号灯控制系统交通信号灯控制是一个典型的实时决策问题,涉及到多个信号灯的切换以及车辆和行人的流量控制。
传统的定时控制方法往往无法适应实际交通状况的变化,而模糊控制可以根据不同时间段和交通流量的变化,动态地调整信号灯的切换时间和优先级,以实现交通拥堵的缓解和行车效率的提高。
2. 温度控制系统在许多工业生产过程中,温度的精确控制对产品质量和产量的影响非常重要。
模糊控制可以根据温度传感器采集到的实时数据,结合事先建立的模糊规则库,调整加热或制冷设备的输出,以实现温度的稳定和精确控制。
与传统的PID控制方法相比,模糊控制对于非线性和时变的系统具有更好的适应性和鲁棒性。
3. 汽车制动系统汽车制动系统是保证驾驶安全的重要组成部分,而制动力的控制是其关键。
模糊控制可以根据制动踏板的压力以及车辆的速度和加速度等信息,动态地调整制动力的输出,以实现舒适而有效的制动。
模糊控制还可以考虑路面的湿滑情况和车辆的负荷情况等因素,自适应地调整制动力的分配,提高制动系统的性能和安全性。
4. 智能家居系统智能家居系统通过感应器、执行器和控制器等组件,实现对家庭设备和环境的智能控制。
模糊控制可以根据家庭成员的习惯和偏好,结合各种传感器采集到的数据,自动地调节室内温度、湿度、光线等参数,提高居住舒适度并节约能源。
在夏天的炎热天气中,模糊控制可以根据室内外温度、湿度和人体感觉来控制空调的开关和风速,实现智能舒适的环境控制。
总结回顾:模糊控制在各个领域都有着广泛的应用。
它通过基于模糊集合理论的推理和决策方法,实现对复杂系统的智能控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑ppt
5
常用的几种模糊控制器
模糊控制与PID控制结合 带有修正因子的自寻优模糊控制器 语言变量基本论域量化曲线自调整控制
器设计 自适应模糊控制
可编辑ppt
6
模糊控制与PID控制结合
可编辑ppt
7
为什么要将模糊控制与PID控
制结合使用?
常规PID(比例、积分、微分)控制是过程控制中 应用最广泛最基本的一种控制方式,它具有简 单、稳定性好、可靠性高的特点。而PID控制 对大部分工业控制对象,特别是对于线性定常 系统的控制是非常有效的,通常都能取得较为 满意的控制效果。PID控制的控制品质取决于 PID控制器各个参数的整定,但常规PID控制器 不能在线整定参数。而且对于非线性、时变的 复杂系统和模型不清的系统,就不能很好地加 以控制。
可编辑ppt
10
Fuzzy-PID复合控制
PI调节器的积分作用从理论上可使系统的稳态 误差控制为零,有着很好的消除稳态误差的作 用。当误差在某一个阈值以外时,可采用PI控 制,以提高系统的响应速度和稳态性能;
当误差在阈值以内时,采用模糊控制可以提高 系统的阻尼性能,减小超调,获得更好的瞬态 性能。
可编辑ppt
9
Fuzzy-PID复合控制
Fuzzy—PID复合控制方法的出发点主要 是因为模糊控制器本身消除系统稳态误 差的性能比较差,难以达到较高的控制 精度和较好的跟踪性能。要提高模糊控 制器的精度和跟踪性能,就必须对语言 变量取更多的语言值,但同时增加了推 理规则的数量和增大了计算量,不能满 足实时控制的要求。
可编辑ppt
18
可编辑ppt
19
控制系统单位阶跃响应
修正因子的自寻优方法可以应用于被控过程模型不 精确且控制规则不完善的系统。应用中可选择一个 初始控制规则,然后再依一定指标函数优化修正因 子,最终得到在该指标下的一组优化控制规则。
当被控过程参数发生变化时,也可通过在线自调整, 获得适应于变化参数后的优化控制规则。
基本模糊控制器所存在的问题
可编辑ppt
1
模糊控制在工程应用中的困惑
模糊控制利用隶属度函数和模糊合成法则等思想, 巧妙地综合了人们的直觉经验。从而在其他经典控 制理论和现代控制理论不太奏效的场合,能够实现 较满意的控制。
模糊控制必须具有较完善的控制规则,但模糊控制 综合定量知识的能力较差。一张较理想的模糊控制 表必须通过反复精心整定才能投入使用。对于某些 复杂的工业过程,有时难以总结出较完整的经验。
可编辑ppt
22
非 线 性 量 化 曲 线
可编辑ppt
23
非线性的量化曲线的作用
控制器在E较大时对过程粗调,在E较小 时对过程改变量 化曲线形状具有改变控制器规则的功能。 因此非线性的量化曲线设计通常被采用。
可编辑ppt
8
为什么要将模糊控制与PID控 制结合使用?
简单模糊控制器由于不具有积分环节, 因而在模糊控制的系统中很难完全消除 稳态误差,而且在变量分级不够多的情 况下,常常在平衡点附近会有小的振荡 现象。但是模糊控制系统对复杂的和模 型不清的对象却能有效地加以控制,所 以把模糊控制和PID控制结合起来,就可 以组成兼有两者优点的模糊PID控制方法。
对这种形式的控制方案实验研究表明,它比
单个的模糊控制器和单个的PID调节器均有更
好的控制性能。 可编辑ppt
13
模糊自整定参数PID控制
利用模糊控制规则,并根据不同的误差 情况,在线自整定(自校正、自调整) PID 控制器的参数,可组成模糊自整定参数 PID控制。
可编辑ppt
14
参数Kp、Ki和Kd的自整定要求
设定值附近出现振荡,Kd的取值要适当。
可编辑ppt
15
带有修正因子的自寻优 模糊控制器
可编辑ppt
16
带有修正因子的自寻优模糊控制器
修正因子α 控制规则: UiE(1i)CE 寻优指标函数 Jte(t)d(t) 寻优规则:优选修正因子使指标函数达到最小
可编辑ppt
17
自寻优模糊控制器示例
可编辑ppt
20
语言变量基本论域量化曲线 自调整控制器设计
可编辑ppt
21
语言变量基本论域量化曲线 自调整控制器设计
量化曲线y=f(x)是指语言变量y在其基本 论域[—L,+L]内的数量值yi(i=1,2,…, l)和其论域元素xj(j=0,l,…,m)之间的 函数关系曲线。量化曲线y=f(x)的形状 是可以选择的,不一定是线性的。
可编辑ppt
3
2 自适应能力有限
由于简单模糊控制器中查询表一旦整定 下来后,就不再改变,量化因子和比例 因子也是如此。这样当对象参数随着环 境的变迁发生漂移时,它不能对自己的 控制规则进行有效的调整,从而使其良 好性能得不到充分发挥。
可编辑ppt
4
3 容易产生震荡现象
如果查询表构造不合理或量化因子和比 例因子选择不当,都会导致振荡。在仿 真过程中,特别是系统进入误差的零档 级时产生高频振荡现象更为普遍。
这种模糊控制与PI控制相结合的控制方式称为 模糊-PI双模控制,其结构如下图所示。
可编辑ppt
11
Fuzzy-PID复合控制
可编辑ppt
12
模糊-I复合控制
该系统的控制作用是模糊控制器的控制作用 和I调节器控制作用的和,这相当于一个具有
变参数的比例微分控制作用和不变参数的积 分控制作用的PID调节器。
量化因子和比例因子的选择也影响着整个系统的品 质,并且当对象动态特性发生变化,或者受到随机
干扰的影响都会影响模糊控制的效果。以上问题都 将导致模糊控制器存在一些缺陷。
可编辑ppt
2
1 精度较低
这主要是由于模糊控制表的级别有限而 造成,通过增加量化等级数目虽可提高 精度,但查询表将过于庞大。须占用较 大空间.使运算时间增加。实际上如果 模糊控制器中不引入积分机制,原则上 总是存在误差的。因为它本身就是根据 误差的大小和变化来实现控制的
当误差较大时,应取较大的Kp和较小的Kd, 以使系统有较短的响应时间,同时为了避免
响应出现较大的超调.应对积分作用加以限 制,通常是去掉积分作用,即取Ki=0;
当误差中等时,应取较小的Kp,以使系统具 有较小的超调,Kd和Ki的取值要适当;
当误差较小时,应取较大的Kp和Ki,以使系 统具有较好的稳态性能,同时为避免系统在