集合的概念导学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、课前预习新知

(一)、预习目标:

初步理解集合的概念,了解属于关系的意义,知道常用数集及其记法

(二)、预习内容:

阅读教材填空:

1、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(简称)。构成集合的每个对象叫做这个集合的。

2、集合与元素的表示:集合通常用来表示,它们的元素通常用来表示。

3、元素与集合的关系:

如果a是集合A的元素,就说,记作,读作。

如果a不是集合A的元素,就说,记作,读作。

4.常用的数集及其记号:

(1)自然数集:,记作。

(2)正整数集:,记作。

(3)整数集:,记作。

(4)有理数集:,记作。

(5)实数集:,记作。

二、课内探究新知

(一)、学习目标

1.通过实例了解集合的含义,体会元素与集合的“属于”关系.

2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.

学习重点:集合的基本概念与表示方法.

学习难点:元素与集合关系的表示.

(二)、学习过程

1、核对预习学案中的答案

2、思考下列问题

(1)某学校数控班学生的全体;

(2)正数的全体;

(3)平行四边形的全体;

(4)数轴上所有点的坐标的全体.

每个例子中的“全体”是由哪些对象构成的?这些对象是否确定?它们表示的是集合吗?你能举出类似的几个例子吗?

④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?

⑤世界上最高的山能不能构成一个集合?

⑥世界上的高山能不能构成一个集合?

⑦问题⑥说明集合中的元素具有什么性质?

⑧由实数1、2、3、1组成的集合有几个元素?

⑨问题⑧说明集合中的元素具有什么性质?

⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?

3、集合元素的三要素是、、。

4、例题

例题1.判断下列语句能否构成一个集合,并说明理由.

(1)小于10的自然数的全体;

(2)某校高一(2)班所有性格开朗的男生;

(3)英文的26个大写字母;

(4)非常接近1的实数.

变式训练1

判断下列语句是否正确:

(1)由2,2,3,3构成一个集合,此集合共有4个元素;

(2)所有三角形构成的集合是无限集;

(3)周长为20cm的三角形构成的集合是有限集;

(4)如果a?Q,b?Q,则a+b?Q.

例题2.用符号“?”或“?”填空:

(1)1N,0N,-4N,0.3N;

(2)1Z,0Z,-4Z,0.3Z;

(3)1Q,0Q,-4Q,0.3Q;

(4)1R,0R,-4R,0.3R.

变式训练2

用符号“?”或“?”填空:

(1)-3N;(2)3.14Q;(3)Z;(4)-R;(5)R;(6)0Z.

5、课堂小结

三、当堂检测

判断下面说法是否正确、正确的在()内填“√”,错误的填“×”

(1)所有在N中的元素都在N*中()

(2)所有在N中的元素都在Z中()

(3)所有不在N*中的数都不在Z中()

(4)所有不在Q中的实数都在R中()

(5)由既在R中又在N*中的数组成的集合中一定包含数0()

(6)不在N中的数不能使方程4x=8成立()

相关文档
最新文档