[笔记]结构自振周期是结构自由振动的周期
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[笔记]结构自振周期是结构自由振动的周期predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
卓越周期分级
卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.
几种周期及相关概念
自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。
场地卓越周期Ts:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。
这一被加强的地震波的周期称为该场地土的卓越周期。
场地卓越周期只反映场地的固有特征,不等同于设计特征周期。
其由场地的覆盖土层厚度和土层剪切波速计算求的。
场地脉动周期Tm:应用微震对场地的脉动、又称为“常时微动”进行观测所得到的振动周期。
测试应在环境十分安静的情况下进行,场地的震动类似人体的脉搏,所以称为“脉动”。
场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关联,又不完全相同。
场地卓越周期、特征周期对建筑物的影响
自振周期避开特征周期可以减小地震作用。
当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小。
当结构的自振周期小于0.1s 时,地震作用会随其自振周期的增大而急剧增大。
实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于6.0s。
自振周期与场地的卓越周期相等或接近时地震时可能发生共振,震害比较严
重,反之震害就小,国内外根据震害研究表明,在大地震时,由于土壤发生大变形
或液化,土的应力——应变关系为非线性,导致土层剪切波速Vs发生变化。
因
此,在同一地点,
地震时场地的卓越周期将因震级大小、震源机制、震中距离的变化而变化。
如果仅从数值上比较,场地脉动周期Tm最短,卓越周期Ts其次,特征周期Tg
最长
结构自振周期是结构自由振动的周期;结构基本周期是结构自振周期中最长(数
值最大)的那个;场地卓越周期是场地自振周期中最容易被(地震)激励起的周期;场
地特征周期(设计特征周期)是设计地震反应谱曲线上平台段结束(最右端)的同期值.
确定场地卓越周期T 的方法及分类为: 第一, 当场地内有强震记录时, 通过频
谱分析确定地震动卓越周期, 这里称之为记录卓越周期, 以T r 表示。
第二, 由
常时微动测试分析确定, 称为测试卓越周期, 以T m 表示。
第三, 根据场地分层
剪切波速测试结果按公式(1) 计算之, 称为波速卓越周期, 以T V 表示。
笔者记为: T r 是真实反应地震动的卓越周期, 即工程抗震所需的场地卓越周
期真值; T m 是接近场地固有周期的卓越周期; T v 是与场地固有周期相比有一定
误差(有时相当大) 的卓越周期。
因此, 当工程场地范围内有适宜的强震记录时,
抗震设计应首先选用T r, 其次可选用T m , 尽量避免选用T v (除非地基土层基
本满足均匀平行的条件)。
由于适宜的强震记录不易获得, 且因地层结构及局部地
形地貌的改变有较大的变化, 所以工程应用中多由常时微动测试分析确定卓越周
期。
(1)象搞高层建筑、桥梁等,地质或岩土工程师会被要求提供场地的卓越周
期,一般也是参考地区经验值。
比较粗略,但偏安全。
(2)地震烈度达到7度,结
构设计一般要进行动力分析。
提供的东西多啦,地质人员需要做专门的谱分析。
建
议地震反应谱和动幅值[其实是把典型地震谱按工程区的地震加速度放大或缩小,关键还是地震风险分析的可靠性和典型强震历时曲线的选取起作用]。
很幸运,本人2003年亲自搞过大坝地震风险性概率分析[即国内的超越概率],国内一般是委托国家地震局权威机构进行,但我参与的国际项目要求地质人员就应该会[实际上没几个人会,连大学的教授明白的也不多,除非专门研究地震的专业人士]。
很骄傲,报告pass啦。
有人研究这个的可以交流交流。
场地卓越周期是场地土的基本周期,通过地脉动的测量资料可以求得场地土的卓越周期;
场地的特征周期是在抗震规范中给出的地震影响曲线中特征点的对应周期,地震影响曲线是设计反应谱理论的一种表达形式,特征点是人为设定的设计控制值,不仅与场地条件有关,而且还与设计地震的假定有关。
对土的动力特性的测定,除了抗震设计之外,还有其他的许多用途;即使是抗震设计,也有各种方法,抗震规范中的设计反应谱理论也仅是最常用的一种常规方法,对于重要的工程也还需要作地震反应分
析。
抗震规范中,在地震影响曲线上的特征周期的选用是一种通过处理的经验设计方法,配合这种方法需要测定波速或者根据经验方法来确定场地的类型。
卓越周期是强震记录的基本周期,或指场地土的基本周期;也可认为是“场地脉动时的主导周期”
篇新闻报道
本报日前报道的一住宅与周边工厂设备发生“共振”,以致居家出现摇晃现象,今后有望在上海新建楼盘内得到根本解决。
记者昨天从市地震工程研究所获悉,上海已经完成《上海市地震安全性评价细则》的制定,规定凡建设高过百米、面积在10万平方米的楼房,都得先在建址把“地脉”。
市地震工程研究所所长、研究员沈建文告诉记者,去年开始,市计委、地震局、法制办就联合起草了《上海市地震安全性评价细则》,到目前为止,已完成相关内容的制定。
其中对建100米高、面积在10万平方米的工程,提出了明确要求:即在项目立项审批的同时,必须对建设地进行钻孔探测,取得相关地脉动数据,并认定不妨碍建成后使用,方由设计单位设计建筑方案。
其实每幢建筑物都有其振动频率,但通常情况下,人们在绝大多数楼房中根本感觉不到振动存在,只有在建筑物振频与外界合拍,即叠加
时,产生“共振”,并且“共振”频率超过一定数值时,人才会明显感到不适。
市地震局刘昌森研究员说,我们要做的,就是避免“共振”的产生及达到一定数值。
沈建文称,随着上海城市地下轨道交通的快速建设,在周边盖房建楼,前期测“地脉”不仅必需,而且非常必要。
因为,虽然上海的住宅及楼房设计标准很高,一般建设桩基都深达地下16米以上,结构也没问题,偶然出现的住宅间歇性“共振”,应该不会动摇整幢楼的根基,但从人的居住舒适度来说,毕竟还是个事儿。
据市地震工程研究所从事这项测试的周江南介绍,测试“地脉”主要有两种形式:一种是专为重大工程或高精密度厂房建设,提供地震安全性评价报告,这项测试比较复杂,在测试时,必须在在建址处两个对应点,向地下各打两个深100米的孔,反复测量这一地区波速、地频数据,以保证工程建设,这一测试的花费约在3,6万元。
另一种是一般性楼房的建设所做的地下测试,称作“地脉动”,这种测试较简单,按打一个孔需6千元费用计算,费用为1万元左右。
记者在采访中了解到,建楼先把“地脉”在上海的生命性工程中已经实施。
市地震局研究员、市建委工程招投标专家刘昌森告诉记者,国家甲类建筑,即上海重大工程:越江隧道、跨海河大桥、金茂大厦、东方明珠或建精密仪器厂等,都曾事先在建址做过严密的地震安全评价。
但是此前沪上房地产开发项目及商务楼盘建设,能事先在建设地把“脉”的,基本是凤毛鳞角。
业内人士分析其中的原因,一个是开发商根本不知道怎么回事,另一个则是怕手续烦琐,前期费用无形增加。
?新闻回放
位于漕宝路的新建住宅小区“兰馨苑”3幢高楼发生莫名其妙的摇晃,经地震专家多方检测,原来是这几幢高楼与附近一家石材二的锯石机发生了“共振”。
这一罕见现象给我国城市住宅建设环境标准提出了新课题。
地脉动测试一般规定
适用于周期在0.1,1.0s,振幅小于3μm的地脉动测试,为工程抗震和隔振设计提供场地的卓越周期和脉动幅值。
测试结果应包括下列内容:
(1)测试资料的数据处理方法及分析结果; (2)脉动时程曲线;
(3)富氏谱或功率谱图;
(4)测试成果表。
设备和仪器
1、地脉动测试系统应符合下列要求: (1)通频带应选择为1 ,40HZ,信噪比应大于80dB;
(2) 低频特性应稳定可靠,系统放大倍数不应小于106;
(3)测试系统应与数据采集分析系统相配接。
2、传感器除应符合本规范第
4.2.3条外,也可采用频率特性和灵敏度等满足测试要求的加速度型传感器;对地下脉动测试用的速度型传感器、通频带应为1, 25HZ,并应严格密封防水。
3、放大器应符合下列要求:
(1)当采用速度型传感器时,放大器应符合本规范第4.2.4条的要求;
(2)当采用加速度型传感器时,应采用读通道适调放大器。
4、信号采集与分析系统宜采用多通道,模数转换器(A/D)位
数不宜小于12位;曲线和图形显示不宜低于图像清晰度指标(VGA),并应具有抗混淆滤波功能,低通滤波宜为80dB/oct,计算机内存不应
小于4.0MB,并应具有加窗功能和时域、频域分析软件。
5、测试仪器应每年在标准振台上进行系统灵敏度系数的标定,以确定灵敏度系数随频率变化的曲线。
测试方法
1、每个建筑场地的地脉动测点,不应少于2个;也可根据工程需要,增加测点数量。
2、当记录脉动信号时,在距离观测点100m范围内,应无人为振动干扰。
3、测点宜选在天然土地基上及波速测试孔附近,传感器应沿东西、南北、竖向三个方向布置。
4、地下脉动测试时,测点深度应根据工程需要进行布置。
5、脉动信号记录时,应根据所需频率范围设置低通道滤波频率和采样频率,采样频率宜取50 , 100HZ,每次记录时间不应少于15min,记录次数不得少于2次。
数据处理,宜作富氏谱或功率谱分析;每个样本数据宜采用1024个点;采样间隔宜取0.01,0.02s,并应按下列公式计算:T=1/f 式中 T——场地卓越周期(s); ƒ——卓越频率(HZ)。
3、卓越频率应按下列规定确定:
(1)按谱图中最大峰值所对应的频率确定;
(2)当谱图中出现多峰的峰值相差不大时,可在谱分析的同时,进行相关或互谱分析,以便对场地脉动卓越频率进行综合评价。
4、脉动幅值的确定应符合下列规定:
(1)脉动幅值应取实测脉动信号的最大幅值;
(2)确定脉动信号的幅值时,应排除人为干扰信号的影响。
场地卓越周期:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。
这一被加强的地震波的周期称为该场地土的卓越周期。
结构自振周期:自振周期是结构的动力特性之一。
单质点体系在谐波的作用下,都会按一定形状作同频率同相位的简谐运动,其相应的周期就称为自振周期。
当建筑物的自振周期与场地土卓越周期接近时,其地震反应就大,反之则小。
设计特征周期Tg:抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值,应根据其所在地的设计地震分组和场地类别确定。
当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小。
当结构的自振周期小于0.1s时,地震作用会随其自振周期的增大而急剧增大。
实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于6.0s。
基本振型:单质点体系在谐波的作用下的振型称为基本振型。
任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
1、卓越周期是老早以前的提法,原意指的是引起建筑场地振动最
显著的某条或某类地震波的一个谐波分量的周期,该周期与场地
覆土厚度及土的剪切波速有关。
对同一个场地而言,不同类型的
地震波会得出不同的卓越周期,因此概念上存在矛盾。
现在地震
工程界已彻底摒弃这种提法;
2、场地与场地土是两个完全不同的概念,你所说的应是场地;
3、现在确定地震影响系数用的是场地特征周期。
即首先根据场地
覆土厚度及土的剪切波速确定建筑物的场地类别,并据此查表得
场地特征周期,最后由设计地震分组和场地特征周期确定抗震设
计所用的地震影响系数。
1.卓越周期的定义
地震发生时,由震源发出的地震波传至地表岩土体,迫使其振动,由于表层岩土体对不同周期的地震波有选择放大作用,某种岩土体总是以某种周期的波选择放大得尤为明显而突出,使地震记录图上的这种波记录得多而好。
这种周期即为该岩土体的特征周期,也叫做卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
2. 几种周期及相关概念
自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地
震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。
图地震影响系数曲线
场地卓越周期Ts:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。
这一被加强的地震波的周期称为该场地土的卓越周期。
场地卓越周期只反映场地的固有特征,不等同于设计特征周期。
其由场地的覆盖土层厚度和土层剪切波速计算求的。
场地脉动周期Tm:应用微震对场地的脉动、又称为“常时微动”进行观测所得到的振动周期。
测试应在环境十分安静的情况下进行,场地的震动类似人体的脉搏,所以称为“脉动”。
场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关联,又不完全相同。
3.几种周期的计算方法
3.1特征周期的计算
特征周期值Tg是根据设计地震分组及场地类别据建筑抗震设计规范中表
5.1.4-2查取值。
3.2场地卓越周期的计算
根据日本学者对土层剪切波速vs与地脉动测试对比研究,提出对于单一土层的地基,场地卓越周期可由表土层剪切波速计算得出:其计算公式如下: T= ?4hi/vsi,
式中:
hi——第i层土的厚度(m);
vsi第i层土的剪切波速(m,s);
n ——土层数
对于多层土的卓越周期根据国外有关规范按下式计算:
Ts= 32?(hi(Hi-1+Hi))/vsi
式中:
Hi——天然地面至第i层土地面的深度,计算地基卓越周期时,从基础底面算起。
vsi——第i层实测剪切波速
Hi-1——建筑物基地至i-1层底面的距离
hi——第i层的厚度
显然,表土层愈厚,其剪切波速度愈低(即土层愈松软),则卓越周期愈长。
3.3场地脉动周期Tm的计算
是地脉动测试所获得的波群波形,通过傅里叶谱分析,在频谱图中幅值最大的那一根谱线所对应的频率即为所测场地微振动信号的卓越频率,并由此计算出卓越周期即脉动卓越周期。
地脉动是由随机振源(包括自然因素,如地震、风振、火山活动、海洋波浪等;人为因素,如交通、动力机器、工程施工等)激发并经场地不同性质的岩土层界面多次反射和折射后传播到场地地面的振动川,是地面的一种稳定的非重复性随机波动。
同时,地脉动不同的频幅变化和作用历程,会引起岩土体的不同响应。
地脉动测试场地卓越周期计算公式如下:
T=1/f
式中:
Tm——场地卓越周期(s)
ƒ——卓越频率(HZ)。
国内的相关研究表明:地脉动是一种以剪切波为主的体波,剪切波在覆盖层中的传播时间与地脉动卓越周期密切相关,能够较的反应地脉动卓越周期大小,覆盖层厚度,剪切波在覆盖层中的等效剪切波速,剪切波在软土层中的等效剪切波速和软土层的厚度是影响地脉动卓越周期的重要因素,其中最主要的影响因素是剪切波在覆盖层中的等效剪切波速。
在场地条件条件较好,波速测试较为理想的情况下脉动卓越周期与通过剪切波速数据计算的场地卓越周期基本一致,但在场地条件较差,覆盖层土质不均的及其它因素的影响,脉动卓越周期与通过剪切波速计算的场地卓越周期存在较大差异。
一般认为对于重要工程,最好通过地脉动测试来确定场地脉动卓越周期。
4.场地卓越周期、特征周期对构(建)筑物的影响
自振周期避开特征周期可以减小地震作用。
当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小。
当结构的自振周期小于0.1s 时,地震作用会随其自振周期的增大而急剧增大。
实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于6.0s。
自振周期与场地的卓越周期相等或接近时地震时可能发生共振,震害比较严重,反之震害就小,国内外根据震害研究表明,在大地震时,由于土壤发生大变形或液化,土的应力——应变关系为非线性,导致土层剪切波速Vs发生变化。
因此,在同一地点,地震时场地的卓越周期将因震级大小、震源机制、震中距离的变化而变化。
如果仅从数值上比较,场地脉动周期Tm最短,卓越周期Ts其次,特征周期Tg 最长
(1)规范定义
卓越周期:随机振动过程中出现概率最多的周期。
常用以描述地震震动或场地特性。
(2)确定方法
岩土勘察中场区土的卓越周期一般物探方法,通过土层的剪切波速来
确定了。
一般是场地土越软弱、厚度越大,卓越周期越长。
ljmtidilgw
2007-12-09 20:21:20
楼主说的深度如何确定,一般根据钻探资料确定场地基本岩性(是砂砾石、粘土或复杂沉积建造,),没有钻孔资料,则根据区域地质志、临近地区地质剖面等来粗略估算。
卓越周期的估算方法:
T=4H/Vs
T --- 场地卓越周期
H --- 沉积层厚度
Vs --- 土的平均剪切波速
有了上面公式,大家可以粗略估算了牧马人。