模糊聚类分析的理论

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊分析的理论、方法与应用研究

摘要:二十世纪六十年代,产生了模糊数学这门新兴学科。模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展。模糊数学自身的理论研究进展迅速;模糊数学目前在自动控制技术领域仍然得到最广泛的应用,并在计算机仿真技术、多媒体辨识等领域的应用取得突破性进展;模糊聚类分析理论和模糊综合评判原理等更多地被应用于经济管理、环境科学以及医药、生物、农业、文体等领域,并取得很好效果。

关键词:模糊数学;应用;模糊评判;模糊聚类。

前言:聚类就是把具有相似性质的事物区分开加以分类。聚类分析就是用数学方法研究和处理给定对象的分类,“人以群分,物以类聚”,聚类问题是一个古老的问题,是伴随着人类产生和发展不断深化的一个问题。人类要认识世界就必须要区分不同的事物并认识事物间的,聚类就是把具有相似性质的事物区分开加以分类。经典分类学往往是从单因素或有限的几个因素出发,凭经验和专业对事物分类。这种分类具有非此即彼的特性,同一事物归属且仅归属所划定类别中的一类,这种分类的类别界限是清晰的。随着着人们认识的深入,发现这种分类越来越不适用于具有模糊性的分类间题,如把人按身高分为“高个子的人’,“矮个子的人”,“不高不矮的人”。如何判别特定的一个人的类别便产生了经典分类学解决不了的困难。模糊数学的产生为上述软分类提供了数学基础,由此产生了模糊聚类分析。我们把应用普通数学方法进行分类的聚类方法称为普通聚类分析,而把应用模糊数学方法进行分析的聚类分析称为模糊聚类分析。1965

年L. A. Zadeh创立了模糊集合论不久,E. H. Ruspinid于1969年引人了模糊划分的概念进行模糊聚类分析。I. Gitman和M. D. Levine提出了单峰模糊集方法用于处理大数据集和复杂分布的聚类。1974年J. C. Bezdek和J. C. Dunn 提出了模糊ISODATA聚类方法。随着模糊数学传人我国,模糊聚类分析也传人了我国。其应用领域已包括了天气预报、气象分析、模式识别、生物、医学、化学等诸多领域。

1.模糊理论的产生

1.1模糊数学

1.1.1模糊数学的背景

精确数学是建立在经典集合论的基础之上,一个研究的对象对于某个给定的经典集合的关系要么是属于(记为“”),要么是不属于(记为“”),二者必居其一。19世纪,由于英国数学家布尔(Bool)等人的研究,这种基于二值逻辑的绝对思维方法抽象后成为布尔代数,它的出现促使数理逻辑成为一门很有适用价值的学科,同时也成为计算机科学的基础。但是,二值逻辑无法解决一些逻辑悖论,如著名的罗素(Russell)“理发师悖论”、“秃头悖论”、“克利特岛人说谎悖论”等等悖论问题。

传统数学所赖以存在的基石是普通集合论,是二值逻辑,而它是抛弃了事物的模糊性而抽象出来的,将人脑思维过程绝对化了,数学中普通集合描述的是“非此即彼”的清晰对象,而人脑还要识别那些“亦此亦彼”的模糊现象。日常生活中各种“模糊性”现象比比皆是,逻辑悖论的发现以及海森堡(Heisenberg)测不准原理的提出导致了多值逻辑在20世纪二三十年代的诞生。罗素在说到“所有的二值都习惯上假定使用精确符号,因此它仅适用于虚幻的存在,而不适用于现实生活,逻辑比其他学科使我们更接近于天堂”时就认识到了二值逻辑的不足。波兰逻辑学家卢卡塞维克兹(Lukasiewicz)首次正式提出了三值逻辑体系,把逻辑真值的值域由{0,1}二值扩展到{0,1/2,1}三值,其中1/2表示不确定,后来他又把真值范围从{0,1/2,1}进一步扩展到[0,1]之间的有理数,并最终扩展为[0,1]区间。

1.1.2模糊数学的发展

1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。

模糊数学的研究内容主要有以下三个方面:

第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。察德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运

算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。

在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。

第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。

为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。

如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。

人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。

为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊罗基还很不成熟,尚需继续研究。

第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性

相关文档
最新文档