第七章聚合物的结构

合集下载

【精选】聚合物的结构PPT课件

【精选】聚合物的结构PPT课件
研究掌握聚合物的聚集态结构与性能的关系,对选择合适 的加工成型条件、改进材料的性能,制备具有预期性能的聚 合物材料具有重要意义。
聚合物的聚集态结构主要包括晶态结构、非晶态结构、 液晶态结构和取向态结构。
Page 15
2.1聚合物的晶态结构
聚合物的结晶态是一种三维长程有序结构 。 a、缨状胶束模型
缨状胶束模型:结晶聚合物中晶区 与非晶区紧密混合,互相穿插,同 时存在。晶区的分子链相互平行排 列成规整结构,而非晶区分子链的 堆砌完全无序。其中晶区尺寸较小, 分子链长度远大于晶区长度,因此 一条分子链可同时穿越数个晶区和 非晶区。
➢重度:可加用甲强龙 ➢如果皮疹变得严重,推荐降低用药剂量,同时配合
使用其他药物。只有在皮肤反应持续2~4周仍无法 消除时才中断治疗,但对皮疹的治疗不能停止,因 为它可能持续很长时间
内容概要

一.介绍疾病
二.汇报病史
三.护理诊断
四. 护理措施
五. 健康指导
汇报病史
❖ 患者陈xx,女,64岁,因“确诊肺恶性肿瘤2年 余,伴咳嗽1个月”于2018年1月10日入院。

强 效果明显 少有,但独特反应
靶向治疗药物常见副反应
➢皮疹 ➢腹泻 ➢过敏 ➢出血 ➢血压升高 ➢肝功能损伤
靶向治疗药物常见副反应
最常见(发生率20%以上)的药物不良反应是腹泻和 皮肤反应(包括皮疹、痤疮、皮肤干燥和瘙痒),一般见于 服药后的第一个月内,通常是可逆性的。大约10%的患者 出现严重的药物不良反应,因药物不良反应停止治疗的患者 约有3%。
Page 11
丙烷
重叠构象
丁烷的稳定构象
交叉构象 (稳定构象)
反式交叉构象(t) 旁式交叉构象(g) 旁式交叉构象(g’)

高聚物的结构与性能—晶态聚合物的拉伸

高聚物的结构与性能—晶态聚合物的拉伸
第七章 聚合物的结构与性能
7.9 晶态聚合物的拉伸 晶态聚合物在单向拉伸时典型的应力-应变曲线如下图:
Y
s
e
未经拉伸的晶态聚合物中,其微晶排列是杂乱的,拉伸使 得晶轴与外力方向不同的微晶熔化,分子链沿外力方向取向再 重排结晶,使得取向在熔点以下不能复原,因之产生的形变也 不能复原,但加热到熔点附近形变能复原,因此晶态聚合物的 大形变本质上也属高弹性。
第七章 聚合物的结构与性能
玻璃态和晶态聚合物的拉伸过程本质上都属高弹形变,但 其产生高弹形变的温度范围不同,而且在玻璃态聚合物中拉伸 只使分子链发生取向,而在晶态聚合物中拉伸伴随着聚集态的 变化,包含结晶熔化、取向、再结晶。
ห้องสมุดไป่ตู้

聚合物结构的三个层次

聚合物结构的三个层次

1.1 聚合物结构‎的三个层次‎近程结构——系指单个大‎分子链内部‎一个或几个‎结构单元的‎化学结构和‎立体化学结‎决定聚合物性‎能的根本性‎物质基础,亦是决定远‎程结构和凝‎聚态结构的‎重要因素。

远程结构——系指由数目‎众多的结构‎单元组成的‎单个大分子‎链的长短及‎其在空间存‎在的各种形‎态(是直链还是‎有支链?是刚性的还‎是柔性的?是折叠状,还是螺旋状‎的?)。

凝聚态结构‎——系指聚合物‎在宏观上所‎表现出的分‎子凝聚结构‎类型。

包括非晶态‎、结晶态、 取向态、液晶态、织态结构,前四个描述‎是聚合物的‎堆砌方式,织态为不同‎聚合物分子‎链或与添加‎剂间的结合‎和堆砌方式‎,以结晶态和‎非晶态最常‎见。

分子链结构‎是决定聚合‎物性质最基‎本、最重要的结‎构层次。

熔点、密度、溶解性、溶液或熔体‎的粘度、粘附性能很‎大程度上取‎决于分子结‎构;而凝聚态结‎构是决定聚‎合物材料和‎制品的使用‎性能,尤其是力学‎性能的重要‎因素。

关于化学结‎构与物理结‎构的确切划‎分,普遍认同的‎是H.G.Elias ‎ 提出的界定‎原则: 化学结构:除非通过化‎学键的断裂‎,即同时生成‎新的化学键‎才能够产生‎改变的分子‎结构。

聚合物结构‎中所包括的‎结构单元的‎组成及其空‎间构型属于‎化学结构。

物理结构:将大分子内‎部、之间或者基‎团与大分子‎之间的形态‎学表述。

取向、结晶和分子‎链的构象则‎属于物理结‎构 1.2 大分子链的‎近程结构 大分子链的‎近程结构包‎括结构单元‎的化学组成‎,连接方式、结构异构、立体异构、以及共聚物‎的序列结构‎等五个主要‎方面。

1.2.1 结构单元的‎化学组成 结论1:聚合物的近‎程结构,即结构单元‎的化学组成‎和结构是决‎定其远程结‎构和凝聚态‎结构以及聚‎合物性能最‎重要的决定‎性因素。

尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三‎条主要规律‎: 1)杂链聚合物‎(多为缩合聚‎合物)与碳链聚合‎物(多为加成聚‎合物)相比较,前者的各项‎物理性能均‎优于后者; 2)在碳链聚合‎物中,侧基带有极‎性基团的P ‎V C 和带有‎苯基的PS ‎的相对密度‎和熔点均高‎于非极性和‎低位阻侧基‎的PE 和P ‎P ; 3)缩聚物尼龙‎和涤纶等的‎相对密度、熔点、强度和使用‎温度均普遍‎高于一般加‎聚物。

华理--高分子物理课后习题答案--高分子科学教程(第二版)--韩哲文

华理--高分子物理课后习题答案--高分子科学教程(第二版)--韩哲文

高分子科学教程(第二版)—高分子物理部分第7章 聚合物的结构 P2371.试述聚合物的结构特点2.简述聚合物的结构层次答:高分子结构的内容可分为链结构与聚集态结构两个组成部分。

链结构又分为近程结构和远程结构。

近程结构包括构造与构型,构造是指链中原子的种类和排列、取代基和端基的种类、单体单元的排列顺序、支链的类型和长度等。

构型是指某一原子的取代基在空间的排列。

近程结构属于化学结构,又称一级结构。

远程结构包括分子的大小与形态、链的柔顺性及分子在各种环境中所采取的构象。

远程结构又称二级结构。

聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构。

前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。

织态结构则属于更高级的结构。

3.写出聚异戊二稀的各种可能的构型和名称(只考虑头-尾键接方式)。

解:(1)1,2-聚合:全同立构1,2-聚异戊二稀;间同立构1,2-聚异戊二稀;无规立构1,2-聚异戊二稀。

(2)3,4-聚合:全同(间同,无规)立构-聚3,4-聚异戊二稀。

(3)1,4聚合:顺式(反式)1,4-聚异戊二稀。

注意:一般来说,顺式、反式聚合都是在特定的催化剂下进行的,当催化剂一定时,产物结构就一定,所以不存在无规的几何异构体。

4.已知聚乙烯试样的聚合度为4105⨯,C-C 键长为0.154nm ,键角为109.5︒,试求:(1)若把聚乙烯看作自由旋转链时的聚乙烯试样的均方末端距;(2)若聚乙烯的末端距符合高斯分布时聚乙烯试样的平均末端距和最可几末端距。

解:54101052=⨯⨯=n ;nm l 154.0=; 5.109=θ(1)22522222.4743)154.0(10225.109cos 15.109cos 1cos 1cos 1nm nl nl nl r =⨯⨯==+-⋅=+-⋅=θθ (2)由于聚乙烯的末端距符合高斯分布,因此它应该是自由结合链)(87.44154.014159.33108385nm l n r =⨯⨯⨯=⋅=π)(76.39154.03102325nm l n r =⨯⨯=⋅=*注意:末端距复合高斯分布的链为高斯链,自由结合链和等效自由结合链都是高斯链。

第七章配位聚合《配位聚合》

第七章配位聚合《配位聚合》
改变手性碳原子C*的近邻环境; 将侧基中含有手性碳原子C*的烯烃单体聚合。 改变手性碳原子C*的近邻环境 一种等量R和S的外消旋单体,聚合后得到也是 等量外消旋聚合物的混合物,无旋光活性。 采用一种光学活性引发剂,可改变R和S的比例
第七章配位聚合《配位聚合》
* CH2 CH CH3
S
R / S= 50 / 50
Ziegler催化剂马上受到意大利科学家Natta的重视, 并在此基础上1954年发展成为可使α-烯烃聚合得到立 构规整聚合物的通用催化剂(TiCl3/AlEt3)。主要是合 成等规聚丙烯,后来又扩展到环状烯烃。
第七章配位聚合《配位聚合》
这类催化剂的重要性之一在于实现了丙 烯的定向聚合,得到高分子量立构规整性 聚丙烯。这类聚合反应的链增长机理与前 述自由基、正、负离子均不同。在高分子 科学领域起着里程碑的作用,于1963年获 得诺贝尔化学奖。
14CH3OH 14CH3O- + H+
第七章配位聚合《配位聚合》
得到的聚合物无14C放射性,表明加上的是H+,而 链端是阴离子。
烯烃在金属-碳键上配位,然后发生重排和插入, 实现链增长,增长链与金属连接。这种金属-碳键 是极化的,链末端碳呈负电性,金属呈正电性, 因此,配位聚合属于配位阴离子聚合。
增长反应是经过四元环的插入过程
δ-
δ+
增长链端阴离
CH CH2 Mt 过 渡 金 属 阳 离
子对烯烃双键 β碳原子的亲 核进攻
δ+CH R
子 Mt+ 对 烯 烃 CH2δ- 双键α碳原子的
亲电进攻
插入反应包括两个同时进行的化学过程
第七章配位聚合《配位聚合》
单体的插入反应有两种可能的途径 一级插入

聚合物结构层次

聚合物结构层次
聚合物的结构层次及性质
刘亚娟
1 聚合物的结构
聚合物是由许多单个的高分子链聚集而成,因而其结 构有两方面的含义:(1)单个高分子链的结构; (2)许多高分子链聚在一起表现出来的聚集态结构。
1.1 链结构
1.1.1 近程结构 近程结构(一级结构、一次结构)
研究单个分子链的结构,包括构造和构型。
构型—指高分子链中由化学键所固定的原子在 构型 空间的几何排列。 构型不能随意改变,分子链破坏并产生重排才 能使其变化。 近程结构是构成聚合物最原始的基础,直接影 响高聚物的物理化学性能和力学性能。
(3)元素高分子——主链中含Si、P、Al、Ti、As等 元素的高分子。这类聚合物一般具有无机物的热稳定性 及有机物的弹性和塑性。 富高弹性和优异的 高低温使用性能
(4)梯形和双螺旋形高分子——分子主链不是一条 单链,而是像“梯子”和“双股螺线”结构的高分子链。
聚丙烯腈 高温环化、 脱氢
2.2 键接结构
键接结构——指结构单元在高分子链中的联结方式 (键接顺序)。
晶态结构
聚 集 态 结 构
液晶态结构 织态结构 取向态结构 非晶态结构 三级结构
描述高分 子聚集体 中的分子 之间的排 列及堆砌
更高级的结构
1.3 高分子结构层次 高分子结构层次
高分子的结构层次是紧密相联而构成的有机整体。 原子 小分子
பைடு நூலகம்聚集体
近程结构、远程 结构
聚合物制品
2 高分子链的近程结构
1.1.2 远程结构 远程结构(二级结构、二次结构)
主要指单个高分子的大小及其在空间所存在的各种 形状,单个分子链的形态构象及柔顺性。 构象—由于单键内旋转而产生的分子在空间的不 构象 同形态。

高分子物理-第七章

高分子物理-第七章
交联:橡胶交联后,应力松弛大大地被抑制,而且 应力一般不会降低到零。其原因:由于交联的存在, 分子链间不会产生相对位移,高聚物不能产生塑性 形变。
和蠕变一样,交联是克服应力松弛的重要措施。
影响应力松弛的主要因素
7.1.3 滞后和内耗
1)概述
在实际使用中,高分子材料往往受到交变应力的 作用,即外力是周期性地随时间变化 (=0sinwt),例如滚动的轮胎、传动的皮带、 吸收震动的消音器等,研究这种交变应力下的力 学行为称为动态力学行为。
a.普弹形变:当高分子材料受到应力作用时,分 子内的键角和键长会瞬时发生改变。这种形变量很 小,称为普弹形变。
b.高弹形变
2
0
E2
1 et /t'
1 et /t'
当外力作用时间和链段运动所需的松弛时间有相
当数量级时,链段的热运动和链段间的相对滑移,
使蜷曲的分子链逐步伸展开来,此时形变成为高 弹形变,用2表示。 2较大,除去外力后, 2逐 步恢复。
E ' 0 sin wt E '' 0 cos wt
此时,模量表达式正好符合数学上复数形式
E* E ' iE ''
E* (t) :复数模量,它包括两部分①实数模量或储能模量
(t)
E ' ,反映了材料形变时能量储存的大小即回弹力;②虚数模量
或损耗模量 E '' ,反映材料形变时能量损耗大小。
W
2
d
0
2 0
0
sin
wtd
0
sinwt
0 0 sin
拉伸回缩中最大储存能量 Wst
1 2
0
0
cos

第七章聚合物的结构

第七章聚合物的结构

2013-8-6
高分子课程教学
16
(2)聚甲基丙烯酸 在200 C加热降解,除小部分降解成单体外,大部分发生 脱水成环反应。 若为头尾键接: CH3 CH3
CH2 C C O CH2 OH HO C C O
CH2
CH3 C C
CH2
CH3 C C
CH2
CH3 C C
CH2
CH3 C C
CH2
O
O
以支化点密度和两相邻支化点间的链的平均分子量 来表示支化的程度,称之为支化度。
2013-8-6 高分子课程教学
21
2.交联 高分子链之间通过化学键连接成三维网状大分子时 即称为交联结构。 交联的高分子是不能溶解的; 交联高分子加热是不能融化的,但在溶剂中可以溶 涨,交联的程度越高,溶胀度越小。 交联度:通常用相邻两个交联点之间的链的平均分 子量Mc来表示。
37
(3)Z均分子量 Z量的定义: Z i Wi M i ni M i2 Z均分子量就是对Z量进行平均 统计权重是Z量,权重因子是Z量分数
M Z M i Zi
i
M i Zi
i
Zi
i

Wi M i2
Wi M i
i
i

ni M i3 ni M i2
i i
(公式不要求)
3.元素高分子
主链不含碳原子,但带有有机侧基
4.无机高分子
主链和侧基都不含碳原子
2013-8-6
高分子课程教学
10
二.结构单元的键接顺序
在缩聚和开环聚合中,单体官能团间的反应是确定 的,因此结构单元的键接方式也是明确的,但在加 聚和离子型聚合反应中,单体的键接方式可以不 同. 1.方式 如:CH2=CHR 头:有取代基的一端 尾:无取代基的一端 头-头键接: 头-尾键接:

聚合物结构的三个层次

聚合物结构的三个层次

1.1 聚合物结构的三个层次近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。

远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。

凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。

包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。

分子链结构是决定聚合物性质最基本、最重要的结构层次。

熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。

关于化学结构与物理结构的确切划分,普遍认同的是H.G .Elias 提出的界定原则:化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。

聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。

物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。

取向、结晶和分子链的构象则属于物理结构 1.2 大分子链的近程结构大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。

1.2.1 结构单元的化学组成结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。

尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律:1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。

电子教案与课件:《高分子材料概论》 第七章 聚合物共混物

电子教案与课件:《高分子材料概论》 第七章 聚合物共混物

第七章 7.2 聚合物共混物的相容性
7.2.1基本概念 相容性是聚合物共混体系的最重要特性。共混过程实施的难易、共混物的形态与性能,都与共混组分之间的相容性 密切相关。聚合物的共混物的相容性(compatibility)起源于乳液体系各组分相容的概念,是指共混物各组分彼此相互 容纳、形成宏观均匀材料的能力。不同聚合物对之间相互容纳的能力,有着很大差别。聚合物之间的互溶性 (miscibility)亦称混溶性,与低分子物中溶解度(solubility)相对应,是指聚合物之间热力学上的相互溶解性。热力 学混溶性是指在任意比例时都能形成均相体系的能力。早期的共混理论研究发现,可以满足热力学相容的聚合物配对, 实际上相当少。此后,研究者不再局限于热力学相容体系,研究内容包括相分离行为和部分相容两相体系的相界面特性
第七章 7.2 聚合物共混物的相容性
7.2.5 相容性研究方法 研究聚合物之间相容性的方法很多。前面已述及以热力学为基础的溶解度参数(δ)及Huggins—Flory相互作用参数 χ12来判断互溶性。除热力学方法外,还可用玻璃化转变温度(Tg)法、平衡熔点法、聚合物相图、红外光谱法、电镜 法、界面层厚度法、界面张力测定法、共混物薄膜透明度测定法、共同溶剂法、粘度法等来研究聚合物共混物的相容性。 7.2.5.1 玻璃化转变温度法测定聚合物-聚合物的互溶性 7.2.5.2 平衡熔点法 7.2.5.3 浊点法
第七章 7.4 聚合物共混物的性能
7.4.4 流变性能 聚合物共混物的熔体粘度一般都与混合法则有很大的偏离,常有以下几种情况。 (1)小比例共混就产生较大的粘度下降,例如聚丙烯与聚(苯乙烯-甲基丙烯酸四甲基哌啶醇酯)(PDS)共混物和 EPDM与聚氟弹性体Viton共混物的情况。 (2)由于两相的相互影响及相的转变,当共混比例改变时,共混物熔体粘度可能出现极大值或极小值。 (3)共混物熔体粘度与组成的关系受剪切应力大小的影响。 (4)单相连续的共混物熔体,例如橡胶增韧塑料熔体,在流动过程中会产生明显的径向迁移作用,即橡胶颗粒由器 壁向中心轴方向迁移,结果产生了橡胶颗粒从器壁向中心轴的浓度梯度。一般而言,颗粒越大、剪切速率越高,这种迁 移现象就越明显,这会造成制品内部的分层作用,从而影响制品的强度。

第七章配位聚合第七章配位聚合

第七章配位聚合第七章配位聚合

第七章配位聚合一、名称解释配位聚合:指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。

随后单体分子插入过渡金属(Mt)-碳(C)中增长形成大分子的过程,所以也可称作插入聚合。

络合聚合:与配位聚合的含义相同,可以互用。

络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。

定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。

异构体:分子式相同,但原子相互联结的方式或顺序不同,或原子在空间的排布方式不同的化合物叫做异构体。

构象异构:由单键内旋转造成的立体异构现象。

立体构型异构:原子在大分子中不同空间排列所产生的异构现象。

对映异构:又称手性异构,由手性中心产生的光学异构体R型和S型。

顺反异构:由双键引起的顺式和反式的几何异构,两种构型不能互变。

全同立构:将碳-碳主链拉直成锯齿形,使处在同一平面上,取代基处于平面的同侧,或相邻手性中心的构型相同。

间同立构:若取代基交替地处在平面的两侧,或相邻手性中心的构型相反并交替排列,则称为间同立构聚合物。

全同聚合指数:一致立构规整度的表示方法,指全同立构聚合物占总聚合物的分数。

立构规整度:立构规整聚合物占聚合物总量的百分数。

二、选择题1. 氯化钛是α-烯烃的阴离子配位聚合的主引发剂,其价态将影响其定向能力,试从下列3种排列选出正确的次序( A )A TiCl3(α,γ,δ) > α- TiCl3-AlEtCl2>TiCl4B TiCl2>TiCl4>TiCl3(α,γ,δ)C TiCl4>TiCl3(α,γ,δ) > TiCl22. 下列聚合物中哪些属于热塑性弹性体(d和e)(a) ISI (b)BS (c) BSB (d)SBS (e) SIS3. 下列哪一种引发剂可使乙烯、丙烯、丁二烯聚合成立构规整聚合物?(1)n-C4H9Li/正己烷(2)萘钠/四氢呋喃(3) TiCl4-Al(C2H5)3(4) α- TiCl3-Al(C2H5) 2Cl(5)π-C3H5NiCl (6) (π-C4H7)2Ni4. 下列哪一种引发剂可使丙烯聚合成立构规整聚合物?(D)(A)n-C4H9Li/正己烷(B)萘钠/四氢呋喃(C) TiCl4-Al(C2H5)3(D) α- TiCl3-Al(C2H5) 2Cl三、简答题1. 聚乙烯有几类?如何合成?结构与性能有什么不同?与生产方法有何关系?答:聚乙烯主要有三类:低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线形低密度聚乙烯(LLDPE)。

第七章 配位聚合

第七章  配位聚合

7.1 配位聚合的基本概念
1)什么是配位聚合? 配位聚合最早是Natta用Z-N引发剂引发α-烯烃 聚合解释机理时提出的新概念。 配位聚合是一种新型的加聚反应,从词义上理 解是单体与引发剂通过配位方式进行的聚合反应。 即烯类单体的C=C首先在过渡金属引发剂活性 中心上进行配位、活化,由此使单体分子相继插 入过渡金属-碳键(Mt-C)中进行链增长的过程。 ( )
高分子化学
第七章 配位聚合 (Coordination Polymerization)
乙烯、丙烯在热力学上均具聚合倾向,但在很 长一段时间内,却未能合成出高分子量的聚合物。 为什么? 为什么?
1938年,英国ICI公司在高温(180~200℃)、高压 (150~300 MPa)条件下,以O2为引发剂,合成出了低 密度聚乙烯(LDPE)。 1953年,德国化学家Ziegler发现了乙烯低压(0.2~1.5 MPa)聚合的引发剂,合成出了支链少、密度大、结晶度 高的高密度聚乙烯(HDPE)。 1954年,意大利化学家Natta发现了丙烯聚合的引发剂, 合成出了规整度很高的等规聚丙烯(iPP)。
7.4 α-烯烃的配位聚合 α-烯烃:以丙烯为代表 丙烯: 用α-TiCl3-AlEt3在30~70℃下聚合得等规聚丙 烯; 用VCl4-AlEt2Cl于-78℃下得间同聚丙烯。 等规度、分子量是评价聚丙烯性能的重要指标。
1)引发剂组分对聚丙烯I.I.的影响
主引发剂的定向能力
紧密堆积的层状结晶结构
丁二烯
1,4加成和1,2加成,得到4种立体异构,分别为: 顺式1,4;反式1,4;全同1,2;间同1,2聚丁二烯。
几何异构对聚合物的性能影响很大,如: 顺式1,4聚丁二烯是性能很好的橡胶(顺丁橡 胶); 全反式聚丁二烯则是塑料。

聚合物的结构和合成

聚合物的结构和合成

聚合物的合成应用
高分子合成材料
合成纤维:如尼龙、涤纶等,广泛应用于纺织、服装等领域 合成橡胶:如丁苯橡胶、聚氨酯橡胶等,用于制造轮胎、密封件等 工程塑料:如聚碳酸酯、聚甲醛等,用于制造机械零件、电子元件等 生物高分子材料:如聚乳酸、聚己内酯等,用于医疗、制药等领域
高分子复合材料
简介:高分子复合材料是由两种或多种材料组成,通过物理或化学方法结合,具有优异 性能的新型材料。
添加 标题
Байду номын сангаас
聚合机理:在悬浮聚合体系中,单体、引发剂、溶剂和生成的聚合物均处于分散相,聚合反应首先在分散相 中发生,生成的聚合物不溶于单体和溶剂而成为固体微粒,悬浮于体系中。随着聚合反应的进行,聚合物的 粒径逐渐增大,最终形成固体粒子。
乳液聚合
逐步聚合
定义:逐步聚合是将单体分子通过反复加成、缩聚等反应,逐步形成高分子链的过程。 特点:反应过程中,单体分子间的化学键逐渐增加,最终形成高分子链。 合成方法:逐步聚合可以采用熔融聚合、溶液聚合、乳液聚合等多种方法。 应用:逐步聚合合成的高分子材料广泛应用于塑料、纤维、橡胶等领域。
催化剂:配位聚合通常使用金属催化剂,如Ziegler-Natta催化剂和茂金属催化剂等。
应用:配位聚合在合成高性能聚合物材料、功能性聚合物和生物医用高分子等领域具有广 泛的应用。
开环聚合
定义:通过打 开环状分子的 环来生成聚合
物的过程
合成方法:通 常采用催化剂 引发聚合反应
聚合机理:环 状分子在聚合 过程中发生开 环反应,形成
聚合物的链结构是由许多重复单元通 过化学键连接而成的
聚合物的链结构可以分为线型、支链 型和网状型
线型聚合物的分子链是直链的,支链 型聚合物的分子链上带有支链,网状 聚合物的分子链之间形成交联结构

高分子-配位聚合

高分子-配位聚合

例:1,3-戊二烯
1,4-加成
CH2=CH-CH=CH-CH3
CH3
* CH2 CH C=C H H
H C=C CH2
H
* CH
CH3
顺 1,4-聚戊二烯(全同、间同)
CH3 CH2 CH CH
*
CH3 CH2 CH CH
*
CH
CH
CH2
反 1,4-聚戊二烯(全同、间同) 1,2-加成
(CH2-CH )n CH=CH-CH3
顺式 1,4-聚丁二烯 弹性体 全同 1,2-聚丁二烯 树脂 间同 1,2-聚丁二烯 树脂 * 有两种结晶变体:一种在 75 ℃以下稳定,另一种的熔融温度为 70~175℃。
立构规整度的测定
定量指标: i-PP — 全同指数(I.I.) cis-PBd — 顺1,4-含量(%) 立构规整度的测定方法 红外光谱法 (IR) 特别适用于 1,3-二烯烃聚合物的分析:1,2聚合物和3,4-聚合物、顺和反1,4-聚合物、全同和 间同 1,2-聚合物都有各自的特征吸收峰,可作为定 性和定量分析。 核磁共振法(NMR) 沸腾正庚烷萃取法 专门用于聚丙烯:将不溶于 沸庚烷的部分所占有的百分数代表等规聚丙烯的含量 (等规度)
a.第一代 Ziegler- Natta 体系 (50年代)
{ TiCl (各种晶型) + AlR , AlR Cl等
3 3 2
TiCl4(液) + AlR3(AlEt3)
PE
i-PP
特 点: 1.非均相体系,活性种位于TiCl3晶体表面; 2.活性不高,iso -PP 等规度不高(定向性差) 3.Cp2TiCl2-AlEt3用于乙烯聚合,活性低。
(1)乙烯基单体的均聚物

聚合物的结构课件

聚合物的结构课件

聚合反应的机理
01
02
03
自由基聚合机理
自由基引发剂产生自由基 活性种,与单体加成形成 增长链,不断重复此过程 形成高分子链。
离子聚合机理
正离子或负离子引发剂与 单体发生反应,形成正离 子或负离子活性种,再与 单体结合形成高分子链。
配位聚合机理
催化剂与单体发生配位反 应,形成高活性的配位络 合物,再经过电子转移和 链增长形成高分子链。
01
工业材料
聚合物广泛应用于工业领域, 如塑料、橡胶、纤维等,为现 代工业提供了重要的原材料。
02
生物医学应用
某些聚合物可作为生物材料应 用于医学领域,如人工关节、
牙齿植入物等。
03
高分子科学
聚合物的研究推动了高分子科 学的发展,为材料科学、化学 等领域提供了重要的理论和实
践基础。
聚合物的历史与发展
聚合物的聚集态结构
聚合物的聚集态结构特点
非晶态结构
聚合物的聚集态结构是指聚合物分子 在固态或熔融状态下的排列方式和相 互作用。
非晶态结构是指聚合物分子在固态下 无规则排列,形成无定形结构。非晶 态结构决定了聚合物的电学性能和热 学性能。
晶态结构
晶态结构是指聚合物分子在固态下按 照一定的规律排列,形成规则的晶体 结构。晶态结构决定了聚合物的力学 性能和光学性能。
聚合物的元素组成
01
聚合物的元素组成
由碳、氢、氧、氮、硫等元素组成,其中碳元素是最主要的组成元素,
占聚合物质量的95%以上。
02
聚合物的元素组成特点
聚合物中的碳原子通过共价键相互连接,形成了长链结构。这些长链结
构可以是线性的,也可以是支化的。
03
聚合物的元素组成与性能关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题解答第一章(P235)1.简述聚合物的结构层次答:高分子结构的内容可分为链结构与聚集态结构两个组成部分。

链结构又分为近程结构和远程结构。

近程结构包括构造与构型,构造是指链中原子的种类和排列、取代基和端基的种类、单体单元的排列顺序、支链的类型和长度等。

构型是指某一原子的取代基在空间的排列。

近程结构属于化学结构,又称一级结构。

远程结构包括分子的大小与形态、链的柔顺性及分子在各种环境中所采取的构象。

远程结构又称二级结构。

聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构。

前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。

织态结构则属于更高级的结构。

2.写出聚异戊二稀的各种可能的构型和名称(只考虑头-尾键接方式)。

解:(1)1,2-聚合:全同立构1,2-聚异戊二稀;间同立构1,2-聚异戊二稀;无规立构1,2-聚异戊二稀。

(2)3,4-聚合:全同(间同,无规)立构-聚3,4-聚异戊二稀。

(3)1,4聚合:顺式(反式)1,4-聚异戊二稀。

注意:一般来说,顺式、反式聚合都是在特定的催化剂下进行的,当催化剂一定时,产物结构就一定,所以不存在无规的几何异构体。

3.已知聚乙烯试样的聚合度为,C-C 键长为0.154nm,键角为109.5°,试求:4105×(1)若把聚乙烯看作自由旋转链时的聚乙烯试样的均方末端距;(2)若聚乙烯的末端距符合高斯分布时聚乙烯试样的平均末端距和最可几末端距。

解:;;54101052=××=n nm l 154.0=ο5.109=θ(1)22522222.4743)154.0(10225.109cos 15.109cos 1cos 1cos 1nm nl nl nl r =××==+−⋅=+−⋅=οοθθ (2)由于聚乙烯的末端距符合高斯分布,因此它应该是自由结合链)(87.44154.014159.33108385nm l n r =×××=⋅=π )(76.39154.03102325nm l n r =××=⋅=∗注意:末端距复合高斯分布的链为高斯链,自由结合链和等效自由结合链都是高斯链。

4.高分子的构型和构象有什么不同?等规聚丙烯晶体中的螺旋链属于构型范畴还是构象范畴?如果聚丙烯的规整度不高,能否通过单健内旋转来改变构象而提高其规整度?为什么?答:高分子的构型是指分子中由化学健固定的原子在空间的几何排列;高分子的构象是指由于单健内旋转而产生的分子在空间的不同形态。

高分子的构型属于高分子链的近程结构;而高分子的构象属于高分子链的远程结构。

等规聚丙烯晶体中的螺旋链是通过单健内旋转形成的而由晶格固定的形态,当晶体受热融化后,螺旋链会发生变化,因此属于构象范畴。

聚丙烯的规整度不高,不能通过单健内旋转来改变其构象而提高其规整度,因为规整度是由构型决定的,因此要改变规整度,必须通过化学健的断裂和重组。

5.假定有两种聚合物A 和B,已知5100.2×=A M ,6108.1×=B M ,在溶液中测得其均方末端距分别为:232104.6nm r A×=;242101.8nm r B ×=,扩展因子2=A α;3=B α。

试由以上数据判断哪一种聚合物链的柔顺性好?解法一:2220202ααr r r r =⇒=;M r A 20=)(16002104.6)(22232nm nm r A =×=;0894.0100.216005=×=A A )(90003101.8)(222420nm nm r B =×=;0707.0108.190006=×=B A因为,所以B 的柔顺性较好。

B A A A >解法二:26.11024101.8108.19104.6)()()()()()(546322022020202020=××××××××=⋅⋅⋅⋅=⋅==A A B B B A A B B A B B A A B A M r M r M M r r M r M r A A αα6.已知一聚合物试样中含有分子量为和的两组分,试求以下两种情况下的410510n M 、w M :(1) 两组分的分子数相同;(2) 两组分的重量相同。

解:已知:;4110=M 5210=M (1)2121==N N N N N ==211111010105442112211112111=+=+=+=+=M M M M N M N M N W W W W11102=W45422114542111018.911101011110105.521102110×=×+×=+==×=×+×=+==∑∑W M W M W M M N M N M N M M i i i w ii i n(2)2121==W W ;21W W = 11101010105452112211111=+=+=+=M M M M W M W M W N111111012=−=N45422111082.111110111010×=×+×=+==∑N M N M N M M i i i n4542211105.511110111010×=×+×=+==∑W M W M W M M ii i w7.试从分子结构分析比较下列各组聚合物的柔顺性大小:(1)聚乙烯,聚丙烯,聚丙烯腈;(2)聚氯乙稀,1,4聚2-氯丁二烯,1,4-聚丁二烯;(3)聚苯,聚苯醚,聚环氧戊烷;(4)聚氯乙烯,聚偏二氯乙烯。

解:(1)聚乙烯>聚丙烯>聚丙烯腈(2)1,4-聚丁二烯>聚1,4聚2-氯丁二烯>氯乙稀;(3)聚环氧戊烷>聚苯醚>聚苯;(4)聚偏二氯乙烯>聚氯乙烯。

8.分别叙述球晶和单晶的形成条件和特点。

答:当结晶性的聚合物从浓溶液中析出,或从熔体冷却结晶时,在不存在应力或流动的情况下,都倾向于生成球晶。

而单晶一般是在极稀的溶液中缓慢结晶时生成。

球晶的外形呈球形,在球晶中分子链通常总是沿垂直于半径的方向排列的,在偏光显微镜的两正交偏整器之间,球晶呈现特有的黑十字(即Maltese Cross )消光图像。

单晶则是一种薄片状晶体,在单晶中分子的取向与片状单晶的表面相垂直。

其 X-射线衍射图案由规则排列的衍射点组成。

9.由文献查得涤纶(聚对苯二甲酸乙二酯)树脂的结晶密度,非晶密度,内聚能33/1050.1m kg c ×=ρ33/1033.1m kg a ×=ρmol kJ E /67.66=Δ(重复单元)。

现有一块尺寸为的涤纶试样,重量为,试由以上数据计算:361051.096.242.1m −×××kg 31092.2−×(1)该涤纶树脂试样的密度和结晶度;(2)该涤纶树脂试样的内聚能密度。

解:(1) 3363/1036.11051.096.242.11092.2m kg ×=××××=−−ρ %6.17176.010)33.150.1(10)33.136.1(33==×−×−=−−=a c a v f ρρρρ%4.19194.0)()(1111==⋅=−−=−−=vc a c a c c aaw f f ρρρρρρρρρρρρ(2) 重复单元的分子量mol kg mol g M 310192/192−×==则单位体积内重复单元的摩尔数为:33333/1008.7/10192/1036.1m mol mol kg m kg ×=××−则内聚能密度(单位体积的内聚能)为:3353/473/1073.41008.767.66cm J m kJ CED =×=××=或者:ρρMM V ==1~3533/1073.4101921036.167.66~m kJ M E E CED ×=×××=⋅Δ=Δ=−ρV10.某结晶聚合物的熔点为200°C,其重复单元的摩尔融化热为mol kJ H u /37.8=Δ。

若在此聚合物中分别加入8%体积分数的两种增塑剂,两种增塑剂与该聚合物的相互作用参数分别为3.01=χ和3.02−=χ,且令聚合物重复单元与增塑剂的摩尔体积比5.0~/~1=V V u ,试求加入不同增塑剂后聚合物的熔点分别为多少?对计算结果进行比较讨论。

解:)(~11211110V V V V H R T T u u m m χ−⋅Δ=− K T m 4732732000=+=)08.01(1097.3)08.008.0(5.01037.831.811151230χχ−××=−×××=−−m m T T )08.01(1097.3002114.0)08.01(1097.3473111515χχ−××+=−×+=−−m T (1)当3.01=χ时002153.000003875.0002114.0)3.008.01(1097.3002114.015≈+=×+×+=−m TK T m 47.464=;C T m °=5.191(2)当3.01−=χ时002153.000003875.0002114.0)3.008.01(1097.3002114.015≈+=×+×+=−m TK T m 12.464=; C T m°=0.191从上面的结果可以看出,聚合物加入增塑剂后,其熔点会下降,增塑剂与聚合物之间的相互作用参数越小(相容性越好),则熔点下降越多。

11.试比较聚乙烯、脂肪族聚酰胺和脂肪族聚酯这三类结晶聚合物的熔点大小。

答:脂肪族聚酰胺的熔点最高;脂肪族聚酯的熔点最低;聚乙烯的熔点介于两者之间。

这是因为聚酰胺的分子之间有氢键形成;而聚酯中酯键的存在增加了分子的柔性。

12.简述两种测量结晶聚合物结晶度的方法。

为什么同一结晶聚合物试样用不同的方法测得的结晶度数值是不相同的?答:密度法和DSC 法均可用来测定结晶度。

其中密度法是根据晶区和非晶区比度上的差别来计算结晶度的,在测得晶区、非晶区和样品的密度c ρ、a ρ、ρ之后,按下式计算结晶度:a c aV f ρρρρ−−=视差扫描量热法是根据结晶聚合物在熔融过程中吸收的热量来测定其结晶度的。

相关文档
最新文档