第一章算法初步课时练习题及答案

合集下载

算法初步练习题及答案(ABC组)

算法初步练习题及答案(ABC组)

1a = 3b = a a b =+ b a b =- PRINT a ,bIF 10a < THEN 2y a =*else y a a =*第一章:算法初步[基础训练A 组] 一、选择题1.下面对算法描述正确的一项是:( )A .算法只能用自然语言来描述B .算法只能用图形方式来表示C .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同 2.用二分法求方程022=-x 的近似根的算法中要用哪种算法结构( )A .顺序结构B .条件结构C .循环结构D .以上都用 3.将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是 ( )4.计算机执行下面的程序段后,输出的结果是( )A .1,3B .4,1C .0,0D .6,0 5.当3=a 时,下面的程序段输出的结果是( )A .9B .3C .10D .6二、填空题1.把求 2按从大到小进行排序时,经过第一趟排序后得到的新数列为 。

3.用“秦九韶算法”计算多项式12345)(2345+++++=x x x x x x f ,当x=2时的值的过程中,要经过 次乘法运算和 次加法运算。

4.以下属于基本算法语句的是 。

① INPUT 语句;②PRINT 语句;③IF-THEN 语句;④DO 语句;⑤END 语句; ⑥WHILE 语句;⑦END IF 语句。

5.将389化成四进位制数的末位是____________。

三、解答题1.把“五进制”数)5(1234转化为“十进制”数,再把它转化为“八进制”数。

2.用秦九韶算法求多项式x x x x x x x x f ++++++=234567234567)(当3=x 时的值。

3.编写一个程序,输入正方形的边长,输出它的对角线长和面积的值。

4.某市公用电话(市话)的收费标准为:3分钟之内(包括3分钟)收取0.30元;超过3分钟部分按0.10元/分钟加收费。

设计一个程序,根据通话时间计算话费。

高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 1.1.1 Word版含答案

高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 1.1.1 Word版含答案

第一章算法初步1.1.1算法的概念课时目标通过分析解决具体问题的过程与步骤,体会算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法.112世纪的指的是用阿拉伯数字进行算术运算的过程算法数学中的通常是指按照一定规则解决某一类问题的明确和有限的步骤算法现代算法通常可以编成计算机程序,让计算机执行并解决问题2.计算机解决任何问题都要依赖于算法,只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.一、选择题1.下面四种叙述能称为算法的是()A.在家里一般是妈妈做饭B.做米饭需要刷锅、淘米、添水、加热这些步骤C.在野外做饭叫野炊D.做饭必须要有米答案 B解析算法是解决一类问题的程序或步骤,A、C、D均不符合.2.下列对算法的理解不正确的是()A.算法有一个共同特点就是对一类问题都有效(而不是个别问题)B.算法要求是一步步执行,每一步都能得到唯一的结果C.算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法D.任何问题都可以用算法来解决答案 D3.下列关于算法的描述正确的是()A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果答案 C解析算法与求解一个问题的方法既有区别又有联系,故A不对;算法能重复使用,故B不对;每个算法执行后必须有结果,故D不对;由算法的有序性和确定性可知C正确.4.计算下列各式中S 的值,能设计算法求解的是( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+… ③S =12+14+18+…+12n (n ≥1且n ∈N *) A .①② B .①③ C .②③ D .①②③答案 B解析 因为算法的步骤是有限的,所以②不能设计算法求解.5.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法答案 B解析 算法具有不唯一性,对于一个问题,我们可以设计不同的算法.6.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .满足条件的n 是( )A .质数B .奇数C .偶数D .约数答案 A解析 此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.二、填空题7.已知直角三角形两条直角边长分别为a ,b .写出求斜边长c 的算法如下:第一步,输入两直角边长a ,b 的值.第二步,计算c =a 2+b 2的值.第三步,________________.将算法补充完整,横线处应填____________.答案 输出斜边长c 的值8.下面给出了解决问题的算法:第一步:输入x .第二步:若x ≤1,则y =2x -1,否则y =x 2+3.第三步:输出y .(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.答案 (1)求分段函数y =⎩⎪⎨⎪⎧2x -1(x ≤1),x 2+3(x >1)的函数值 (2)1 9.求1×3×5×7×9×11的值的一个算法是:第一步,求1×3得到结果3;第二步,将第一步所得结果3乘5,得到结果15;第三步,____________________;第四步,再将105乘9得到945;第五步,再将945乘11,得到10 395,即为最后结果.答案 将第二步所得的结果15乘7,得结果105三、解答题10.已知某梯形的底边长A B =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法. 解 第一步,输入梯形的底边长a 和b ,以及高h .第二步,计算a +b 的值.第三步,计算(a +b )×h 的值.第四步,计算S =(a +b )×h 2的值. 第五步,输出结果S .11.函数y =⎩⎪⎨⎪⎧ -x +1 (x >0)0 (x =0)x +1 (x <0),写出给定自变量x ,求函数值的算法. 解 算法如下:第一步,输入x .第二步,若x >0,则令y =-x +1后执行第五步,否则执行第三步.第三步,若x =0,则令y =0后执行第五步,否则执行第四步.第四步,令y =x +1;第五步,输出y 的值.能力提升12.某铁路部门规定甲、乙两地之间旅客托运行李的费用为:c =⎩⎪⎨⎪⎧0.53×ω, ω≤50,50×0.53+(ω-50)×0.85, ω>50. 其中ω(单位:kg)为行李的质量,如何设计计算托运费用c (单位:元)的算法.解 第一步,输入行李的质量ω.第二步,如果ω≤50,则令c=0.53×ω,否则执行第三步.第三步,c=50×0.53+(ω-50)×0.85.第四步,输出托运费c.13.从古印度的汉诺塔传说中演变了一个汉诺塔游戏:(1)有三根杆子A,B,C,B杆上有三个碟子(大小不等,自上到下,由小到大),如图.(2)每次移动一个碟子,小的只能叠在大的上面.(3)把所有碟子从A杆移到C杆上.试设计一个算法,完成上述游戏.解第一步,将A杆最上面碟子移到C杆.第二步,将A杆最上面碟子移到B杆.第三步,将C杆上的碟子移到B杆.第四步,将A杆上的碟子移到C杆.第五步,将B杆最上面碟子移到B杆.第六步,将B杆上的碟子移到C杆.第七步,将A杆上的碟子移到C杆.1.算法的特点(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且能得到确定的结果,而不应当是模棱两可的.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决.2.算法与数学问题解法的区别与联系(1)联系算法与解法是一般与特殊的关系,也是抽象与具体的关系.(2)区别算法是解决某一类问题所需要的程序和步骤的统称,也可理解为数学中的“通法通解”;而解法是解决某一个具体问题的过程和步骤,是具体的解题过程.。

第一章算法初步课时作业题12份带答案和解释

第一章算法初步课时作业题12份带答案和解释

适用精选文件资料分享第一章算法初步课时作业题12 份(带答案和解说)第一章算法初步 (A) ( 时间: 120 分钟满分:150分)一、选择题( 本大题共 12 小题,每题 5 分,共 60 分) 1 .程序框图中的功能是() A .算法的初步与结束 B .算法输入和输出信息C.计算、赋值 D.判断条件能否成立 2 .用二分法求方程x2-10=0 的近似根的算法中要用哪一种算法结构() A.序次结构 B .条件结构 C.循环结构 D.以上都用 3 .已知变量 a,b 已被赋值,要交换 a、b 的值,采纳的算法是 () A.a=b,b=a B.a=c,b=a,c=b C.a=c,b=a,c=a D.c=a,a=b,b=c 4.阅读以下图所示的程序框图,运行相应的程序,输出的结果是 () A .1 B.2 C.3 D.4 5.给出程序以以下图所示,若该程序履行的结果是3,则输入的 x 值是 () INPUT xIF x>=0 THENy=xELSEy=- xEND IFPRINT yENDA.3 B.- 3 C.3 或- 3 D.0 6 .以下给出的输入语句、输出语句和赋值语句: (1)输出语句 INPUT a,b,c (2)输入语句 INPUT x=3 (3)赋值语句3=A (4) 赋值语句A=B=C 则此中正确的个数是 () A.0 个 B .1 个 C.2 个 D.3 个 7 .在算法的逻辑结构中,要求进行逻辑判断,并依据结果进行不一样办理的是哪一种结构() A.序次结构 B .条件结构和循环结构 C.序次结构和条件结构 D.没有任何结构 8 .阅读下边的程序框图,则输出的S等于() A.14 B.20 C.30 D.55 9.将二进制数 110 101(2) 转变成十进制数为 () A.106 B.53 C.55 D.108 10.两个整数 1 908 和 4 187 的最大合约数是 () A.51 B.43 C.53 D.67 11 .运转下边的程序时, WHILE循环语句的履行次数是 () N =0WHILE N<20N=N+1N=N*NWENDPRINTNEND A.3 B.4 C.15 D.19 12 .以下图是把二进制数 11111(2) 化成十进制数的一个程序框图,判断框内应填入的条件是() A .i>5 B .i ≤4 C. i>4 D .i ≤5 题号 1 2 3 4 5 6 7 8 910 11 12答案二、填空题 ( 本大题共 4 小题,每题 5 分,共 20 分) 13 .假如 a=123,那么在履行 b=a/10 -a\10 后,b 的值是 ________. 14 .给出一个算法:依据以上算法,可求得f( -1) +f(2) =________. 15 .把 89 化为五制数是 ________.16 .行下的程序框,出的 T=________.三、解答 ( 本大共 6 小,共 70 分) 17 .(10 分) 分用相除法和更相减求282 与 470 的最大公数.18.(12 分 ) 画出算 12+32+52+⋯+ 9992 的程序框,并写相的程序. 19 .(12 分) 已知函数 f(x) =x2-1 ,2x2-,每入的一个 x ,都获得相的函数.画出程序框并写出程序. 20 .(12 分) 用秦九韶算法算f(x) =2x4+3x3+5x-4 在 x=2 的.21.(12 分 ) 高一 (2) 班共有 54 名同学参加数学,已有54 名同学的分数,一个将成秀同学的均匀分出的程序( 定 90 分以上秀 ) ,并画出程序框.22.(12 分) 已知函数 f(x) =x2-5,写出求方程 f(x) =0 在[2,3] 上的近似解 ( 精确到 0.001) 的算法并画出程序框.第一章算法初步(A) 1.B 2.D 3.D [ 由句知 D.] 4.D [ 初, S=2,n=1. 行第一次后, S=- 1,n=2,行第二次后, S=12,n=3,行第三次后, S=2,n=4. 此吻合条件,出 n=4.] 5.C [ 算法的函数 y=|x| ,已知 y=3, x=± 3.] 6 .A [(1) 中出句使用 PRINT; (2) 中入句不吻合格式 INPUT“提示内容”;量; (3) 中句 A=3; (4) 中句出两个号是的. ] 7 .B [ 条件构就是理遇到的一些条件判断.算法的流程依据条件能否成立,有不一样流向,而循构中必定包括条件构. ] 8 .C [ 由意知: S=12+22+⋯+ i2 ,当 i =4循程序止,故 S=12+22+32+42=30.] 9.B [110 101(2)=1×25+1×24+0×23+1×22+0×2+1×20= 53.] 10.C [4 187=1 908×2+ 371,1 908=371×5+ 53,371=53×7,从而,最大公数53.] 11 .A [ 解程序,可采纳一一列的形式:第一次, N=0+1=1;N=1×1= 1;第二次, N=1+1=2;N=2×2=4;第三次, N=4+1=5;N=5×5= 25. 故 A.] 12 .C [S=1×24+1×23+1×22+1×21+ 1=(((2×1+1) ×2+1) ×2+1) ×2+1( 秦九韶算法 ) .循体需行 4 次后跳出,故 C.] 13 .0.3 解析∵a=123,∴a/10 =12.3 又∵a\10 表示 a 除以 10 的商,∴a\10=12. ∴b= a/10 -a\10 =12.3 -12=0.3. 14 .0 分析 f(x) =4x,x≤0,2x,x>0 ,∴f( -1) +f(2) =- 4+22=0. 15.324(5) 16.30分析依据程序框图挨次履行为 S =5,n=2,T=2; S =10,n=4,T=2+4=6; S =15,n=6,T=6+6=12; S =20,n=8,T=12+8=20; S =25,n=10,T=20+10=30>S,输出 T=30. 17 .解展转相除法: 470 =1×282+ 188,282 =1×188+ 94,188 =2×94,∴282 与 470 的最大合约数为 94. 更相减损术: 470 与 282 分别除以 2 得 235 和 141. ∴235- 141=94, 141 -94=47, 94 -47=47,∴470 与 282 的最大合约数为 47×2=94. 18.解程序框图以以下图:程序:S=0i =1WHILE i< =999 S=S+i ∧2 i =i +2WENDPRINTSEND19.解程序框图:程序为:20.解f(x) 改写为 f(x)=(((2x+3)x+0)x+5)x-4,∴v0=2,v1=2×2+ 3=7, v2 =7×2+ 0=14, v3 =14×2+ 5=33, v4 =33×2- 4=62,∴f(2) =62. 21 .解程序以下:程序框图以以下图: S =0M=0i =1DO INPUT x IF x>90THEN M=M+1S=S+x ENDIFLOOPUNTIL i>54P =S/MPRINTPEND22 .解本题可用二分法来解决,设 x1=2,x2=3,m=x1+x22. 算法以下:第一步:x1=2,x2=3;第二步:m=(x1 +x2)/2 ;第三步:计算 f(m) ,假如 f(m) =0,则输出 m;假如 f(m)>0 ,则 x2=m,不然 x1=m;第四步:若 |x2 -x1|<0.001 ,输出 m,不然返回第二步.程序框图以以下图:。

算法初步测试题及答案

算法初步测试题及答案

算法初步测试题及答案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22第一章 算法初步一、选择题1.看下面的四段话,其中是解决问题的算法的是( ).A .把高一5班的同学分成两组,高个子参加篮球赛,矮个子参加拔河比赛B .把高一5班的同学分成两组,身高达到170 cm 的参加篮球赛,不足170 cm 的参加拔河比赛C .把a ,b 的值代入x =ab ,求方程ax =b 的解D .从2开始写起,后一个数为前一个数与2的和,不断地写,写出所有偶数2.任何一个算法都必须有的基本结构是( ). A .顺序结构 B .条件结构 C .循环结构D .三个都有3.右边的程序框图(如图所示),能判断任意输入的整数x 的奇偶性:其中判断框内的条件是( ).A .m =0B .x =0C .x =1D .m =14.给出以下一个算法的程序框图(如图所示),该程序框图的功能是( ). A .求输出a ,b ,c 三数的最大数 B .求输出a ,b ,c 三数的最小数 C .将a ,b ,c 按从小到大排列 D .将a ,b ,c 按从大到小排列5.右图给出的是计算21+41+61+ … +201的值的 一个程序框图,其中判断框内应填入的条件是( ).A .i >10B .i <10C .i >20D .i <206.直到型循环结构为( ).ABC D7.下列给出的赋值语句中正确的是( ).A.4=M B.M=-MC.2B=A-3 D.x+y=08.右边程序执行后输出的结果是( ).A.-1 B.0 C.1 D.29.我国古代数学发展曾经处于世界领先水平,特别是宋、元时期的“算法”,其中可以同欧几里德辗转相除法相媲美的是( ).A.割圆术B.更相减损术C.秦九韶算法D.孙子乘余定理10.下面是一个算法的程序.如果输入的x的值是20,则输出的y的值是( ).A.100 B.50 C.25 D.150二、填空题11.下列关于算法的说法正确的是. (填上正确的序号)①某算法可以无止境地运算下去②一个问题的算法步骤不能超过1万次③完成一件事情的算法有且只有一种④设计算法要本着简单方便可操作的原则12.下列算法的功能是 .S1输入A,B; (A,B均为数据)S2A=A+B;S3B=A-B;S4A=A-B;S5输出A,B.13.如图,输出的结果是 .14 如图,输出的结果是 .15 已知函数y=⎩⎨⎧-+,x,x232流程图表示的是给定x值,求其相应函数值的算法.请将该流程图补充完整.其中①处应填,②处应填.若输入x=3,则输出结果为 .x≤3316.如图,输出结果为 .三、解答题17.某小区每月向居民收取卫生费,计费方法是:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.18.编写程序,计算一个学生数学、语文、英语三门课的平均成绩.19.假定在银行中存款10 000元,按%的利率,一年后连本带息将变为11 125元,若将此款继续存人银行,试问多长时间就会连本带利翻一番请用直到型和当型两种语句写出程序.20.用辗转相除法求91和49的最大公约数.第一章算法初步参考答案一、选择题1.解析:A.何为高个子,何为矮个子,标准不明确.C.当a=0时公式是无效的.D.非有限步可以完成.只有B符合算法的三个要求,所以答案是B.解:选B.2.A 解析:顺序结构是最简单的结构,也是最基本的结构.3.A 解析:x除以2,如余数为0,则x为偶数;余数不为0,则x为奇数.4.B 解析:从程序框图可知:输出的是三个数中的最小值.5.A 解析:这是一个10项求和问题.6.B 解析:直到型循环在执行了一次循环体之后,对控制循环条件进行判断,当条件不满足时反复做,满足则停止.7.B 解析:依据赋值语句的概念,选B是正确的.8.B 解析:程序执行后输出的结果是0,故选B.9.B10.D 解析:∵20>5,∴y=20×=150,∴选 D.二、填空题11.答案:④.解析:由算法的特点所确定.12.答案:实现数据A,B的互换.解析:利用赋值语句的意义与题中算法的步骤进行分析.13.答案:12. 解析:m=2,p=7,m=12.4455x=10 000 r =/100x =10 000 y =014.答案:105. 解析:T =1,I =1,T =1,I =3,不满足条件;T =3,I =5,不满足条件;T =15,I =7,不满足条件;T =105,I =9,满足条件.输出T .15.答案:① x ≤3;② y =-3x 2;5. 解析:根据给出函数的解析式分析可填出.16.答案:9. 解析:逐个取值计算. 三、解答题17.解析:根据题意,可考虑用条件结构来进行算法设计.解:算法步骤:第一步,输入人数x ,设收取的卫生费为m (元).第二步,判断x 与3的大小.若x >3,则费用为m =5+(x -3)×;若x ≤3,则费用为m =5.第三步,输出m .18.分析:先写出算法,画出程序框图,再进行编程. 程序框图: 程序:19.解:用当型 用直到型20.解析:由 91=49×1+42,得 42=91-49×1.因为余数42≠0,所以由辗转相除法,得 49=42×1+7,即 7=49-42×1; 42=7×6, 即 0=42-7×6.所以,91和49的最大公约数等于7.。

人教版高中数学必修三第一章算法初步1.2.1课时作业含答案

人教版高中数学必修三第一章算法初步1.2.1课时作业含答案

1.2基本算法语句1.2.1 输入语句、输出语句和赋值语句课时目标 掌握三种语句的定义,了解它们的一般格式和作用,借助三种语句完成算法到程序语句的转化.1.输入语句(1)格式:INPUT “提示内容”;变量 (2)功能:输入提示内容要求的相应信息或值.2.输出语句(1)格式:PRINT “提示内容”;表达式.(2)功能:⎩⎪⎨⎪⎧ ①输出常量、变量的值和系统信息;②进行数值计算并输出结果.3.赋值语句(1)格式:变量=表达式.(2)功能:将表达式所代表的值赋给变量.一、选择题1.在INPUT 语句中,如果同时输入多个变量,变量之间的分隔符是() A .逗号 B .分号C .空格D .引号答案 A2.下列关于赋值语句的说法错误的是( )A .赋值语句先计算出赋值号右边的表达式的值B .赋值语句是把左边变量的值赋给赋值号右边的表达式C .赋值语句是把右边表达式的值赋给赋值号左边的变量D .赋值语句中的“=”和数学中的“=”不完全一样答案 B解析 赋值语句的作用是把右边表达式的值赋给赋值号左边的变量.3( )INPUT “x =”;xy =x 2x x *+*PRINT yENDA .1B .-3C .-1D .1或-3答案 D解析 由题意得:x 2+2x =3.解方程得:x =1或-3.4.下列给出的赋值语句中正确的是()A.4=M B.M=-MC.B=B=3 D.x+y=0答案B解析赋值语句的格式为:变量=表达式,是将右边表达式的值赋给左边的变量,赋值时左右两端不能对换,也不能进行字符运算.故选B.5.下列程序段执行后,变量a,b的值分别为()a=15b=20a=a+bb=a-ba=a-bPRINT a,bA.20,15 B.35,35C.5,5 D.-5,-5答案A解析∵a=15,b=20,把a+b赋给a,因此得出a=35,再把a-b赋给b,即b=35-20=15.再把a-b赋给a,此时a=35-15=20,因此最后输出的a,b的值分别为20,15.()6A.2 B.“x=”;xC.“x=”;2 D.x=2答案D二、填空题7.下面一段程序执行后的结果是________.A=2A=A 2A=A+6PRINT AEND答案10解析先把2赋给A,然后把A*2=4赋给A,即B的值为4,再把4+6=10赋给A,所以输出的为10.8.A=11B=22A=A+BPRINT“A=”;APRINT “B=”;BEND该程序的输出结果为______________.答案 A =33,B =229.下面所示的程序执行后,若输入2,5,输出结果为________. INPUT a ,bm =aa =b b =mPRINT a ,bEND答案 5,2三、解答题10.编写一个程序,要求输入两个正数a ,b 的值,输出a b 和b a 的值.解 INPUT “a ,b =”;a ,bPRINT “a b =”;a ^b PRINT “b a =”;b ^aEND11.试设计一个程序,已知底面半径和高,求圆柱体表面积.(π取3.14)解INPUT “R=,H=”;R ,HA=2*3.14*R *HB=3.14*R *RS=A+2*BPRINT “S=”;SEND能力提升12.编写一个程序,求用长度为L 的细铁丝分别围成一个正方形和一个圆时所围成的正方形和圆的面积.要求输入L 的值,输出正方形和圆的面积,并画出程序框图.(π取3.14)解 由题意知,正方形的边长为L 4,面积S 1=L 216; 圆的半径为r =L 2π,面积S 2=π(L 2π)2=L 24π. 因此程序如下:INPUT “L =”;LS1=(L*L)/16S2=(L*L)/(4*3.14)PRINT “正方形面积为”;S1PRINT “圆面积为”;S2程序框图:13.给出如图所示程序框图,写出相应的程序.解程序如下:INPUT“x,y=”;x,yx=x/2y=3*yPRINT x,yx= x – yy = y –1PRINT x,yEND1.输入语句要求输入的值只能是具体的常数,不能是变量或表达式(输入语句无计算功能),若输入多个数,各数之间应用逗号“,”隔开.2.输出语句可以输出常量,变量或表达式的值(输出语句有计算功能)或字符,程序中引号内的部分将原始呈现.3.赋值语句的作用是先算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值.4.赋值号两边的内容不能对调,如a=b与b=a表示的意义完全不同.赋值号与“等于”的意义也不同,若把“=”看作等于,则N=N+1不成立,若看作赋值号,则成立.5.赋值语句只能给一个变量赋值,不能接连出现两个或多个“=”.附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

人教版高中数学必修三第一章算法初步1.2.2课时作业含答案

人教版高中数学必修三第一章算法初步1.2.2课时作业含答案

1.2.2条件语句课时目标 1.理解条件语句.2.能够用条件语句编写条件结构的程序.条件语句的格式、功能及与条件结构的对应关系.格式一格式二条件语句IF条件THEN语句体END IFIF条件THEN语句体1ELSE语句体2END IF语句功能首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END IF之后的语句首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2对应条件结构框图一、选择题1.条件语句属于算法中的哪个基本逻辑结构()A.顺序结构B.条件结构C.循环结构D.以上都不对答案 B解析条件语句是处理条件结构的算法语句.2.下列关于条件语句的说法正确的是()A.条件语句中必须有ELSE和END IFB.条件语句中可以没有END IFC.条件语句中可以没有ELSE,但是必须有END IFD.条件语句中可以没有END IF,但是必须有ELSE答案 C解析由于条件语句有2种不同的格式,一种格式中没有ELSE,但两种格式都有END IF,故A、B、D错误,C正确.3.阅读下列程序,INPUT“x=”;4IF x>3 THENy=x*xELSEy=2*xEND IFPRINT yEND则该程序运行后,变量y的值为()A.4 B.16 C.6 D.8答案B解析因x=4满足“x>3”的条件,所以执行的是THEN后面的y=4×4=16.4.当a=3时,所给出的程序输出的结果是()INPUT aIF a<10 THENy=2*aELSEy=a*aEND IFPRINT yENDA.9 B.3 C.10 D.6答案 D解析因3<10,所以y=2×3=6.5.程序:INPUT a,b,cm=aIF b>m THENm=bEND IFIF c>m THENm=cEND IFPRINT mEND若执行程序时输入10,12,8,则输出的结果为()A.10 B.12 C.8 D.14答案 B解析本程序的功能是筛选出a、b、c中的最大值,故输出的m的值为12.二、填空题6.下面给出的是条件语句编写的程序,该程序的功能是求函数________的函数值.INPUT xIF x<=3THENy=2*xELSE IFPRINT yEND答案 f(x)=⎩⎪⎨⎪⎧2x , x ≤3x 2-1, x>3解析 该程序的主要功能是对分段函数f(x)求值.当x ≤3时,y =2x ;当x>3时,y =x 2-1.所以函数为f(x)=⎩⎪⎨⎪⎧2x , x ≤3x 2-1, x>3.7.如下图所给出的是一个算法的程序.如果输出的y 的值是20,则输入的x 的值是________.INPUT xIF x <=5 THEN y =10*x ELSEy=2.5*x + 5 END IF PRINT y END答案 2或6解析 当x ≤5时,10x =20,即x =2; 当x >5时,2.5x +5=20,解出x =6.8.为了在运行下面的程序之后得到输出y =25,键盘输入x 应该是________. INPUT x IF x<0 THEN y =(x +1)*(x +1)ELSEy =(x -1)*(x -1)END IF PRINT y END答案 -6或6解析 程序对应的函数是y =⎩⎪⎨⎪⎧(x +1)2, x <0,(x -1)2,x ≥0. 由⎩⎪⎨⎪⎧ x <0(x +1)2=25,或⎩⎪⎨⎪⎧x ≥0(x -1)2=25, 得x =-6,或x =6. 三、解答题9.已知函数y =⎩⎪⎨⎪⎧x 2+1 (x ≤2.5),x 2-1 (x >2.5),根据输入x 的值,计算y 的值,设计一个算法并写出相应程序.解 算法分析:第一步,输入x 的值.第二步,判断x 的范围:若x >2.5,则用y =x 2-1求函数值. 若x ≤2.5,则用y =x 2+1求函数值. 第三步,输出y 的值. 程序如下:INPUT “x =”;x IF x>2.5 THEN y =x^2-1ELSEy =x^2+1END IFPRINT “y =”;y END10.已知程序:INPUT “x =”;x IF x<-1 THEN y =4*x -1ELSEIF x>=-1 AND x<=-1 THENy=-5 ELSE y=-4*x -1 END IF END IF PRINT y END说明其功能并画出程序框图. 解 该程序的功能为求分段函数 y =⎩⎪⎨⎪⎧4x -1, (x<-1),-5, (-1≤x ≤1),-4x -1, (x>1)的值.程序框图为:能力提升11.儿童乘坐火车时,若身高不超过1.1 m ,则无需购票;若身高超过1.1 m 但不超过1.4 m ,可买半票;若超过1.4 m ,应买全票.试写出一个购票算法程序. 解 程序如下:INPUT“身高h=”;hIF h<=1.1THENPRINT“免费乘车”ELSEIF h<=1.4THENPRINT“半票乘车”ELSEPRINT“全票乘车”END IFEND IFEND1.使用条件语句时应注意的问题(1)条件语句是一个语句,IF,THEN,ELSE,END IF都是语句的一部分.(2)条件语句必须是以IF开始,以END IF结束,一个IF必须与一个END IF相对应.(3)如果程序中只需对条件为真的情况作出处理,不用处理条件为假的情况时,ELSE分支可以省略,此时条件语句就由双支变为单支.(4)为了程序的可读性,一般IF、ELSE与END IF顶格书写,其他的语句体前面则空两格.2.计算机能识别的数学符号:加号“+”减号“-”乘号“*”如a乘以b写作:a*b除号“/”如a除以b写作:a/b乘方“ ^ ”如a的平方写作:a^2大于或等于“≥”写作:>=不等式“≠”写作:< >附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。

高中数学人教A版必修三课时习题:第1章 算法初步 1.1.2.1含答案

高中数学人教A版必修三课时习题:第1章 算法初步 1.1.2.1含答案

1.1.2 程序框图与算法的基本逻辑结构第1课时顺序结构课时目标1.理解程序框图的概念.2.能用程序框图表达算法的顺序结构.识记强化1.任何一种算法都是由三种基本逻辑结构组成的,它们是顺序结构、条件结构、循环结构.2.顺序结构是任何一个算法都不可缺少的基本结构,它是由若干个依次执行的步骤组成的.课时作业一、选择题1.程序框图中“▱”表示的意义是( )A.框图的开始或结束B.数据的输入或结果的输出C.赋值、执行计算的传送D.根据给定条件判断答案:B解析:掌握构成程序框图的图形符号及其作用.2.程序框图中表示判断框的是( )A.矩形框B.菱形框C.圆形框D.椭圆形框答案:B解析:矩形框是处理框;连结点用小圆圈但没有圆形框;没有椭圆形框;只有圆角方形框表示起止框.3.下列关于程序框图的说法,正确的是( )A.程序框图和流程图不是一个概念B.程序框图是描述算法的语言C.程序框图可以没有输出框,但必须要有输入框给变量赋值D.程序框图虽可以描述算法,但不如用自然语言描述算法直观答案:B4.以下给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②输入框只能紧挨着放在开始框后,输出框只能紧挨着放在结束框前;③判断框是唯一具有超过一个出口的程序框;④对于一个程序来说,判断框内的条件表述方法是唯一的.其中正确说法的个数是( )A.1 B.2 C.3 D.4答案:B解析:①③正确.5.阅读如图所示程序框图,若输入x为3,则输出的y的值为( )A.40 B.30 C.25 D.24答案:A6.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A .4,6,1,7B .7,6,1,4C .6,4,1,7D .1,6,4,7 答案:C解析:由题意可知⎩⎪⎨⎪⎧a +2b =14,2b +c =9,2c +3d =23,4d =28.解得a =6,b =4,c =1,d =7. 二、填空题7.在画程序框图时,框图一般按________、________的方向画.在程序框图中,图形符号↓的名称是________,表示的意义是________.答案:由上到下 由左到右 流程线 执行方向 8.以下给出对程序框图的几种说法: ①任何一个程序框图都必须有起止框;②输入框只能紧接开始框,输出框只能紧接结束框; ③判断框是唯一具有超出一个退出点的符号;④对于一个问题的算法来说,其程序框图判断框内的条件的表述方法是唯一的. 其中正确说法的个数是________个. 答案:2解析:①③正确.因为任何一个程序框图都有起止框;输入框、输出框可以在程序框图中的任何需要位置;判断框有一个入口、多个出口;判断框内的条件的表述方法不唯一.9.图(1)、图(2)中程序框图的运行结果分别是________、________.答案:(1)52(2)2R解析:(1)根据a =2,b =4,代入公式S =a b +b a即可;(2)将R 的值(已输入)代入公式b =R /2,求出b 的值再代入a =2b 即可. 三、解答题10.一次考试中,某同学的语文、数学、英语、物理、化学的成绩分别是a ,b ,c ,d ,e ,设计一个计算该同学的总分和平均分的算法,并画出程序框图.解:算法步骤如下:第一步:输入该同学的语文、数学、英语、物理、化学的成绩:a ,b ,c ,d ,e . 第二步:计算S =a +b +c +d +e . 第三步:计算ω=S5.第四步:输出S 和ω. 程序框图如图.11.已知函数f (x )=x 2-3x -2,求f (3)+f (-5)的值,设计一个算法并画出算法的程序框图.解:第一步:求f (3)的值. 第二步:求f (-5)的值.第三步:将前两步的结果相加,存入y . 第四步:输出y 的值.程序框图如图.能力提升12.如图,输出的结果是________.答案:12解析:由程序框图知,当m=2时,p=2+5=7,m=7+5=12.13.如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?(4)在(2)的条件下按照这个程序框图输出的f(x)值,当x的值大于2时,x值大的输出的f(x)值反而小,为什么?(5)在(2)的条件下要想使输出的值等于3,输入的x的值应为多大?(6)在(2)的条件下要想使输入的值与输出的值相等,输入的x的值应为多大?解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题;(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4.所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的y值为3;(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)max=4,所以要想使输出的值最大,输入的x的值应为2;(4)因为f(x)=-(x-2)2+4,所以函数f(x)在[2,+∞)上是减函数.所以在[2,+∞)上,x值大的对应的函数值反而小,从而当输入的x的值大于2时,x值大的输出的f(x)值反而小;(5)令f(x)=-x2+4x=3,解得x=1或x=3,所以要想使输出的值等于3,输入的x的值应为1或3;(6)由f(x)=x,即-x2+4x=x,得x=0或x=3,所以要想使输入的值和输出的值相等,输入的x的值应为0或3.。

第一章 算法初步 1.1.2第3课时有详细答案

第一章 算法初步 1.1.2第3课时有详细答案

1.1.2 程序框图与算法的基本逻辑结构 第3课时 循环结构、程序框图的画法课时目标1.掌握两种循环结构的程序框图的画法. 2.能进行两种循环结构程序框图间的转化. 3.能正确设置程序框图,解决实际问题.1.循环结构的定义在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.2.常见的两种循环结构 名称结构图特征直到型循 环结构先执行循环体后判断条件,若不满足条件则执行循环体,否则终止循环当型循 环结构先对条件进行判断,满足时执行循环体,否则终止循环一、选择题1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( ) A .分支型循环 B .直到型循环 C .条件型循环 D .当型循环 答案 D2.下列关于循环结构的说法正确的是( ) A .循环结构中,判断框内的条件是唯一的B .判断框中的条件成立时,要结束循环向下执行C .循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D .循环结构就是无限循环的结构,执行程序时会永无止境地运行下去答案 C解析由于判断框内的条件不唯一故A错;由于当型循环结构中,判断框中的条件成立时,执行循环体故B错;由于循环结构不是无限循环的,故C正确,D错.3.如图所示是一个循环结构的算法,下列说法不正确的是()A.①是循环变量初始化,循环就要开始B.②为循环体C.③是判断是否继续循环的终止条件D.①可以省略不写答案 D4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4? B.k>5?C.k>6? D.k>7?答案 A解析由题意k=1时S=1,当k=2时,S=2×1+2=4;当k=3时,S=2×4+3=11,当k=4时,S=2×11+4=26,当k=5时,S=2×26+5=57,此时与输出结果一致,所以此时的k值为k>4.5.如果执行下面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360C.240 D.120答案 B解析①k=1,p=3;②k=2,p=12;③k=3,p=60;④k=4,p=360.而k=4时不符合条件,终止循环输出p=360.6.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1) B.S=S*x n+1C.S=S*n D.S=S*x n答案 D解析赋值框内应为累乘积,累乘积=前面项累乘积×第n项,即S=S*x n,故选D.二、填空题7.下图的程序框图输出的结果是________.答案 20解析 当a =5时,S =1×5=5;a =4时,S =5×4=20; 此时程序结束,故输出S =20.8.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为x 1,…,x n (单位:吨).根据如图所示的程序框图,若n =2,且x 1,x 2分别为1,2,则输出的结果S 为________.答案 14解析 当i =1时,S 1=1,S 2=1; 当i =2时,S 1=1+2=3,S 2=1+22=5, 此时S =12(5-12×9)=14.i 的值变成3,从循环体中跳出输出S 的值为14.9.按下列程序框图来计算:如果x =5,应该运算________次才停止. 答案 4解析 x n +1=3x n -2,x 1=5,x 2=13,x 3=37,x 4=109,x 5=325>200,所以运行4次. 三、解答题10.画出计算1+12+13+…+1999的值的一个程序框图.解 由题意知:①所有相加数的分子均为1. ②相加数的分母有规律递增.解答本题可使用循环结构,引入累加变量S 和计数变量i ,S =S +1i ,i =i +1,两个式子是反复执行的部分,构成循环体.11.求使1+2+3+4+5+…+n >100成立的最小自然数n 的值,画出程序框图. 解 设累加变量为S , 程序框图如图.能力提升12.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分以上)的成绩,试设计一个算法,并画出程序框图.解算法步骤如下:第一步,把计数变量n的初始值设为1.第二步,输入一个成绩r,比较r与60的大小.若r≥60,则输出r,然后执行下一步;若r<60,则执行下一步.第三步,使计数变量n的值增加1.第四步,判断计数变量n与学生个数50的大小,若n≤50,返回第二步,若n大于50,则结束.程序框图如图.1.循环结构需要重复执行同一操作的结构称为循环结构,即从某处开始,按照一定条件反复执行某一处理步骤.反复执行的处理步骤称为循环体.(1)循环结构中一定包含条件结构;(2)在循环结构中,通常都有一个起循环计数作用的变量,这个变量的取值一般都含在执行或中止循环体的条件中.2.三种基本结构的共同特点(1)只有一个入口.(2)只有一个出口,请注意一个菱形判断框有两个出口,而一个条件结构只有一个出口,不要将菱形框的出口和条件结构的出口混为一谈.(3)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它.如图1中的A,没有一条从入口到出口的路径通过它,就是不符合要求的程序框图.(4)结构内不存在死循环,即无终止的循环.像图2就是一个死循环.在程序框图中是不允许有死循环出现的.。

《第一章 算法初步》试卷及答案_高中数学必修3_人教B版_2024-2025学年

《第一章 算法初步》试卷及答案_高中数学必修3_人教B版_2024-2025学年

《第一章算法初步》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、一个算法正确的执行是算法执行过程中每一步的操作都满足:A、有穷性B、确定性C、可行性D、输入输出的确定性2、一个算法的正确性可以用以下哪个指标来衡量?A、算法的效率B、算法的易懂性C、算法的简洁性D、算法的正确性3、下列语句表示的是一种算法,那么这个算法的功能是 ( )A、输入一个数据B、输出一个数据C、输入并输出一个数据D、先输入一个数据,进行运算后再输出结果4、下面哪个是算法的特征?A. 计算规律简单B. 只能用标准的计算器步骤C. 需要多个步骤完成D. 步骤随机改变5、在以下选项中,不属于算法四大特点的是()A、有穷性B、确定性C、可扩展性D、可行性6、下列算法执行后的输出结果是()A. 12B. 24C. 36D. 487、若编程实现下列算法:第一步:设定初始值 a = 5, b = 10;第二步:if (a > b) then a = a - 2 else b = b + 3; 第三步:输出 a 和 b 的值;则程序的输出结果是:A. a = 3, b = 13B. a = 3, b = 10C. a = 5, b = 13D. a = 5, b = 108、阅读下面的算法语句,执行后输出的S值为多少?S = 0 I = 1 While I <= 10 S = S + I I = I + 2 Wend Print SA、25B、26C、50D、55二、多选题(本大题有3小题,每小题6分,共18分)1、在算法设计中,以下是哪些算法分类属于算法设计的基本方法?()A、分治法B、动态规划C、贪心法D、回溯法E、分支限界法2、已知算法A的步骤如下:(1)输入一个正整数n;(2)计算n的阶乘;(3)输出结果。

请从以下选项中选择正确的算法描述:A. 递归算法B. 非递归算法C. 算法A是求阶乘的正确方法D. 算法A不是求阶乘的正确方法E. 上述选项均正确3、以下关于算法的功能描述,哪些是正确的?()A、算法可以简化问题解的计算过程B、算法一定能找到解决问题的所有可能解C、算法能够被计算机程序化实现D、算法的步骤必须是明确的,不能含糊其辞三、填空题(本大题有3小题,每小题5分,共15分)1、在算法设计中,一个基本操作序列可以表示为______ ,其中n为基本操作重复执行的次数。

最新高一数学题库 必修3算法初步练习题及答案

最新高一数学题库 必修3算法初步练习题及答案

第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。

高一数学算法初步练习题及答案

高一数学算法初步练习题及答案

第一章算法初步算法与程序框图算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同;结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤;从下列选项中选最好的一种算法【】洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话;其中不是解决问题的算法是【】A.从济南到北京旅游;先坐火车;再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值;先计算1+2=3;再计算3+3=6;6+4=10;10+5=15;最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题;①输入x;输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中;求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。

新人教版必修3算法初步练习题及答案

新人教版必修3算法初步练习题及答案

第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。

新高中数学第一章算法初步1-1算法与程序框图1-1-1算法的概念课时作业新人教B版必修3

新高中数学第一章算法初步1-1算法与程序框图1-1-1算法的概念课时作业新人教B版必修3

新高中数学第一章算法初步1-1算法与程序框图1-1-1算法的概念课时作业新人教B版必修31.1.1算法的概念A级基础巩固一、选择题1.下列语句中是算法的是导学号 95064017( A )A.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1B.吃饭C.做饭D.写作业[解析]选项A是解一元一次方程的具体步骤,故它是算法,而B、C、D是说的三个事实,不是算法.2.计算下列各式中的S值,能设计算法求解的是导学号 95064018( B )①S=1+2+3+ (100)②S=1+2+3+…+100+…;③S=1+2+3+…+n(n≥1,且n∈N).A.①②B.①③C.②D.②③[解析]由算法的确定性、有限性知选B.3.早上从起床到出门需要洗脸、刷牙(5 min),刷水壶(2 min),烧水(8 min),泡面(3 min),吃饭(10 min),听广播(8 min)几个过程,下列选项中最好的一种算法是导学号 95064019( C )A.第一步,洗脸刷牙;第二步,刷水壶;第三步,烧水;第四步,泡面;第五步,吃饭;第六步,听广播B.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭;第五步,听广播C.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭同时听广播D.第一步,吃饭同时听广播;第二步,泡面;第三步,烧水同时洗脸刷牙;第四步,刷水壶[解析]因为A选项共用时36 min,B选项共有时31 min,C选项共用时23 min,选项D 的算法步骤不符合常理,所以最好的一种算法为C 选项.4.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2,在写求此方程组解的算法时,需要我们注意的是导学号 95064020( C )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠0[解析] 由二元一次方程组的公式算法即知C 正确. 5.下面是对高斯消去法的理解: ①它是解方程的一种方法; ②它只能用来解二元一次方程组; ③它可以用来解多元一次方程组;④用它来解方程组时,有些方程组的答案可能不准确. 其中正确的是导学号 95064021( A ) A .①② B .②④ C .①③D .②③[解析] 高斯消去法是只能用来解二元一次方程组的一种方法,故①②正确. 6.一个算法步骤如下: S1 S 取值0,i 取值2;S2 如果i ≤10,则执行S3,否则执行S6; S3 计算S +i 并将结果代替S ; S4 用i +2的值代替; S5 转去执行S2; S6 输出S .运行以上步骤输出的结果为导学号 95064022( B ) A .25 B .30 C .35D .40[解析] 按算法步骤一步一步地循环计算替换,该算法作用为求和S =2+4+6+8+10=30.二、填空题7.已知直角三角形两条直角边长分别为a 、b ,求斜边长c 的算法如下:导学号 95064023S1 输入两直角边长a 、b 的值.S2 计算c=a2+b2的值;S3 ____________.将算法补充完整,横线处应填__输出斜边长c的值__.[解析]算法要有输出,故S3应为输出c的值.8.一个算法步骤如下:导学号 95064024S1 S取值0,i取值1;S2 如果i≤12,则执行S3,否则执行S6;S3 计算S+i并将结果代替S;S4 用i+3的值代替i;S5 转去执行S2;S6 输出S.运行以上步骤输出的结果为S=__22__.[解析]由以上算法可知:S=1+4+7+10=22.三、解答题9.某年青歌赛流行唱法个人组决赛中,某歌手以99.19分夺得金奖.青歌赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.导学号 95064025[解析]S1 先假定其中一个为“最高分”;S2 将第二个分数与“最高分”比较,如果它比“最高分”还高,就假定这个分数为“最高分”;否则“最高分”不变;S3 如果还有其他分数,重复S2;S4 一直到没有可比的分数为止,这时假定的“最高分”就是所有评委打分中的最高分.10.一个人带三只狼和三只羚羊过河,只有一条船,同船最多可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法.导学号 95064026[解析]算法如下:S1 人带两只狼过河;S2 人自己返回;S3 人带一只羚羊过河;S4 人带两只狼返回;S5 人带两只羚羊过河;S6 人自己返回;S7 人带两只狼过河;S8 人自己返回;S9 人带一只狼过河.B级素养提升一、选择题1.算法:S1 输入n;S2 判断n是否是2.若n=2,则n满足条件;若n>2,则执行S3;S3 依次从2到n-1检验能不能整除n,若不能整除n,则满足条件.上述满足条件的数是导学号 95064027( A )A.质数B.奇数C.偶数D.4的倍数[解析]根据算法可知,如果n=2直接就是满足条件的数.n不是2时,验证从2到n -1有没有n的因数,如果没有就满足条件.显然,满足这个算法中条件的数是质数.故选A.2.现用若干张扑克牌进行扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是导学号 95064028( B )A.4 B.5C.6 D.8[解析]按各放3张,可以算出答案是5,各放x张答案也是一样的.二、填空题3.下面算法运行后输出结果为__720__.导学号 95064029S1 设i=1,P=1;S2 如果i≤6则执行S3,否则执行S5;S3 计算P×i,并将结果代替P的值;S4 用i+1的值代替i的值,转去执行S2;S5 输出P.[解析]该算法包含一个循环结构,计数变量i的初值为1,每次循环它的值增加1.由1变到6.P 是一个累乘变量,每一次循环得到一个新的结果,并用新的结果替代原值.第一次循环i =1,P =1.第二次循环i =2,P =2.第三次循环i =3,P =6.第四次循环i =4,P =24.第五次循环i =5,P =120.第六次循环i =6,P =720.4.下面是解决一个问题的算法:导学号 95064030 S1 输入x ;S2 若x ≥4,转到S3;否则转到S4; S3 输出2x -1; S4 输出x 2-2x +3.当输入x 的值为__1__输出的数值最小值为__2__.[解析] 所给算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1 (x ≥4)x 2-2x +3 (x <4)的函数值的问题当x ≥4时,f (x )=2x -1≥2×4-1=7;当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2.所以f (x )min =2,此时x =1.即当输入x 的值为1时,输出的数值最小,且最小值是2.三、解答题5.设计一个算法,求表面积为16π的球的体积. 导学号 95064031 [解析] S1 取S =16π; S2 计算R =S4π(由于S =4πR 2);S3 计算V =43πR 3;S4 输出运算结果.6.设火车托运行李,当行李重量为m (kg)时,每千米的费用(单位:元)标准为y =⎩⎪⎨⎪⎧0.3m (m ≤30 kg )0.3×30+0.5(m -30)(m >30 kg),试写出当托运路程为S 千米时计算运费的算法.导学号 95064032[解析] 算法如下: S1 输入m ;S2 若m ≤30,则执行S3,若m >30,则执行S4; S3 输出0.3m ×S ;S4 输出[0.3×30+0.5(m -30)]×S .C 级 能力拔高1.已知函数y =⎩⎪⎨⎪⎧2x-1(x ≤-1)log 2(x +1)(-1<x <2)x 2(x ≥2),请设计一个算法,输入x 的值,求对应的函数值.导学号 95064033[解析] 算法如下: S1 输入x 的值;S2 当x ≤-1时,计算y =2x-1,否则执行S3; S3 当x <2时,计算y =log 2(x +1),否则执行S4; S4 计算y =x 2; S5 输出y .2.试描述判断圆(x -x 0)2+(y -y 0)2=r 2和直线Ax +By +C =0的位置关系的算法.导学号 95064034[解析] S1 输入圆心的坐标(x 0,y 0),直线方程的系数A ,B ,C 和半径r ; S2 计算z 1=Ax 0+By 0+C ; S3 计算z 2=A 2+B 2; S4 计算d =|z 1|z 2;S5 如果d >r ,则相离;如果d =r ,则相切;如果d <r ,则相交.。

高中数学人教A版必修三课时习题:第1章算法初步1.1.1含答案

高中数学人教A版必修三课时习题:第1章算法初步1.1.1含答案

1. 1.1算法的观点课时目标1.认识详细算法的基本过程与主要特色;2.能应用算法思想解决相关的详细问题;3.能按步骤用自然语言写出简单问题的算法过程.识记加强1.算法往常能够编成计算机程序,让计算机履行并解决问题,计算机解决任何问题都要依靠于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”正确地描绘出来,计算机才能够解决问题.2.算法的五个特色为归纳性、逻辑性、有穷性、不独一性、广泛性.课时作业一、选择题1.算法的有穷性是指()A.算法一定包括输出步骤B.算法中每个操作步骤都是可履行的C.算法一定在有穷步内结束D.以上说法均不正确答案: C分析:算法的有穷性是指一个算法的步骤序列是有限的,它应在有限步骤以后停止,而不可以是无穷的.2.以下对于算法的描绘正确的是()..A.算法与求解一个问题的方法同样B.算法只好解决一个问题,不可以重复使用C.算法过程要一步一步履行,每步履行的操作一定切实D.算法要求循规蹈矩做,每一步能够有不一样的结果答案: C分析: A 中算法能够解决一类问题而不是一个问题,同理 B 也不正确, D 中每一步履行的操作,只好有独一的结果,故 D 错误.3.利用计算机进行运算,第一一定()A.编程 B .人机对话C.计算机自动达成 D .没法进行答案: A分析:编程就是设计算法.4.对算法的理解不正确的选项是()A.一个算法应包括有限的操作步骤,而不可以是无穷的B.算法中的每一个步骤都应该是确立的,而不该该是含糊的、含糊其词的C.算法中的每一个步骤都应该有效地履行,并获得确立的结果D.一个问题只好设计出一种算法答案: D分析:算法是不独一的.5.看下边的四段话,此中不是解决问题的算法是()A.方程x2- 100=0 有两个实根± 10B.解一元一次方程的步骤是去分母、去括号、移项、归并同类项、系数化为1C.某人去深圳打工,先步行到县城,再乘火车到省城,最后坐飞机到达D.求 1+2+ 3+ 4+ 5 的值:先计算1+ 2=3,再计算3+ 3= 6,6 + 4= 10,10 + 5=15,最后结果为15答案: A6.对于算法:第一步:输入n第二步:判断n 能否等于2,若 n=2,则 n 知足条件;若n>2,则履行第三步第三步:挨次从 2 到n- 1 查验能不可以整除n,若不可以整除n,则履行第四步;若能整除n,则履行第一步第四步:输出n知足条件的n 是()A.质数 B .奇数C.偶数 D .约数答案: A分析:本题第一要理解质数,除 1 和它自己外没有其余约数的正整数叫做质数, 2 是最小的质数,这个算法经过对 2 到( n- 1) 一一考证,看能否有其余约数来判断其能否为质数.二、填空题7.已知一个学生的语文成绩为98,数学成绩为87,外语成绩为92,以下是他的总分和均匀成绩的一个算法:( 在横线上填入算法中缺的两个步骤)第一步:取A=98, B=87, C=92;第二步: ________;第三步: ________;第四步:输出计算的结果.答案:计算总分D= A+ B+ CD计算均匀成绩E= .38.求 1×3×5×7×9×11 的值的一个算法是:第一步:求1×3获得结果 3.第二步:将第一步所得结果 3 乘 5,获得结果15.第三步: _______________________________________________.第四步:再将105 乘 9 获得 945.第五步:再将945×11,获得10395,即为最后结果.答案:将第二步所得的结果15 乘 7,获得结果 105.9.下边给出一个问题的算法:第一步:输入 x.第二步:假如≥2014,那么y =- 2014,不然y= 2014-.x x x第三步:输出y.则这个算法解决的问题是________________________________ .答案:求 x 与2014的差的绝对值.三、解答题10.下边给出了一个问题的算法:第一步,输入a.第二步,若a≥4,则履行第三步,不然履行第四步.第三步,输出2a- 1.第四步,输出a2-2a+3.: (1) 个算法解决的是什么?(2)当入的 a 多大,出的数最小?解: (1) 个算法解决的是求分段函数f (x) =2x- 1,x≥4,的函数的.x2-2x+3, x<4(2)a=1出的数最小.11.写出求解一元二次方程ax2+ bx+ c=0( a≠0)的根的算法.解:第一步:算=b2-4ac;第二步:若<0;行第三步;否行第四步;第三步:出方程无根;-b± b2-4ac第四步:算并出方程根x1,2=2a.能力提高12.写出求 2+ 4+ 6+⋯+ 200 的一个算法.能够运用公式2+ 4+ 6+⋯+ 2n=n( n+ 1)直接算.第一步__① __;第二步__② __;第三步出运算果.答案:①取 n=100② 算n(n+1)分析:本考算法步.解此第一求出算式中n 的取,而后将 n 的取代入公式 n( n+1)行算,即可得此的一个算法.13.写出求两点M(-2,-1), N(2,3)的直与坐成面的一个算法.解:第一步:取x1=-2,y1=-1, x2=2, y2=3;第二步:算y- y1=x- x1;y2-y2x2- x1第三步:在第二步果中令x = 0获得y的,得直与y交点(0, );m m第四步:在第二步果中令y=0获得 x 的 n,得直与 x 交点( n, 0);第五步:算=1||·||;S2m n第六步:出运算果.。

高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 1.1.2第1课时 Word版含答案

高中数学(人教版A版必修三)配套课时作业:第一章 算法初步 1.1.2第1课时 Word版含答案

1.1.2程序框图与算法的基本逻辑结构第1课时程序框图、顺序结构课时目标 1.理解程序框图的含义.2.掌握各类程序框的功能.3.掌握算法的顺序结构.1.程序框图(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.3.顺序结构(1)顺序结构的定义由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.(2)结构形式一、选择题1.下列关于程序框图的说法正确的是()A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念答案 A2.尽管算法千差万别,但程序框图按其逻辑结构分类共有()A.2类B.3类C.4类D.5类答案 B3.对终端框叙述正确的是()A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是答案 C4.下列程序框图所对应的算法和指向线分别为()A.5步,5条B.5步,4条C.3步,5条D.3步,4条答案 D5.下列关于流程线的说法,不正确的是()A.流程线表示算法步骤执行的顺序,用来连接程序框B.流程线只要是上下方向就表示自上向下执行可以不要箭头C.流程线无论什么方向,总要按箭头的指向执行D.流程线是带有箭头的线,它可以画成折线答案 B6.给出下列程序框图:若输出的结果为2,则①处的执行框内应填的是()A.x=2 B.b=2C.x=1 D.a=5答案 C解析因结果是b=2,∴2=a-3,即a=5.当2x +3=5时,得x =1. 二、填空题7.以下给出对程序框图的几种说法: ①任何一个程序框图都必须有起止框;②输入框只能紧接开始框,输出框只能紧接结束框; ③判断框是唯一具有超出一个退出点的符号;④对于一个问题的算法来说,其程序框图判断框内的条件的表述方法是唯一的. 其中正确说法的个数是________个. 答案 2解析 ①③正确.因为任何一个程序框图都有起止框;输入、输出框可以在程序框图中的任何需要位置;判断框有一个入口、多个出口;判断框内的条件的表述方法不唯一. 8.下面程序框图表示的算法的运行结果是________.答案 6 6解析 由题意P =5+6+72=9,S =9×4×3×2=63=6 6.9.根据下边的程序框图所表示的算法,输出的结果是______.答案 2解析 该算法的第1步分别将X ,Y ,Z 赋于1,2,3三个数,第2步使X 取Y 的值,即X 取值变成2,第3步使Y 取X 的值,即Y 的值也是2,第4步让Z 取Y 的值,即Z 取值也是2,从而第5步输出时,Z 的值是2. 三、解答题10.已知半径为r 的圆的周长公式为C =2πr ,当r =10时,写出计算圆的周长的一个算法,并画出程序框图.解算法如下:第一步,令r=10.第二步,计算C=2πr,第三步,输出C.程序框图如图:11.已知函数y=2x+3,设计一个算法,若给出函数图象上任一点的横坐标x(由键盘输入),求该点到坐标原点的距离,并画出程序框图.解算法如下:第一步,输入横坐标的值x.第二步,计算y=2x+3.第三步,计算d=x2+y2.第四步,输出d.程序框图如图:能力提升12.画出用现代汉语词典查阅“仕”字的程序框图.解现代汉语词典检字有多种方法,如部首检字法、拼音检字法等.现以部首检字法为例加以说明.13.如图所示的程序框图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件回答下面的几个问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为3时,输出的f(x)的值为多大?(3)要想使输出的值最大,输入的x的值应为多大?(4)按照这个程序框图输出的f(x)值,当x的值大于2时,x值大的输出的f(x)值反而小,为什么?(5)要想使输出的值等于3,输入的x的值应为多大?(6)要想使输入的值与输出的值相等,输入的x的值应为多大?解(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4.所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)max=4,所以要想使输出的值最大,输入的x的值应为2.(4)因为f(x)=-(x-2)2+4,所以函数f(x)在[2,+∞)上是减函数.所以在[2,+∞)上,x值大的对应的函数值反而小,从而当输入的x的值大于2时,x值大的输出的f(x)值反而小.(5)令f(x)=-x2+4x=3,解得x=1或x=3,所以要想使输出的值等于3,输入的x的值应为1或3.(6)由f(x)=x,即-x2+4x=x,得x=0或x=3,所以要想使输入的值和输出的值相等,输入的x的值应为0或3.1.画程序框图实际上是将问题的算法用程序框图符号表示出来,所以首先要搞清楚需要解决什么问题,采用什么算法可以解决.其次要弄清楚初值、循环情况、条件、表达式、程序的结构、流向等.2.顺序结构描述的是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章算法初步课时练习题及答案测试一算法与程序框图概念Ⅰ学习目标1.了解算法思想及算法的意义.2.了解框图的概念,明确框图符号的意义.Ⅱ基础性训练一、选择题1.下列程序框通常用来表示赋值、运算功能的是()(A)(B) (C) (D)2.算法的有穷性指的是()(A)算法是明确和有效的(B)算法能够在有限步内完成(C)算法的每个操作步骤是可执行的(D)用数字进行四则运算的有限过程3.对算法明白得正确的是( )(A)一种解题方法(B)差不多运算及规定的运算顺序构成的完整的解题步骤(C)运算的方法(D)一种语言程序4.算法中,每一步的结果有()(A)一个或两个(B)任意多个(C)确定的一个(D)两个*5.有一堆形状大小相同的珠子,其中只有一粒重量比其他的珠子重,其余所有珠子重量相同.一个同学利用科学的算法,仅两次利用天平就找出了这颗最重的珠子,则这堆珠子最多有()(A)6粒(B)7粒(C)8粒(D)9粒二、填空题6.完成不等式2x+3<3x+2的算法过程:(1)将含x的项移项至不等式的左边,将常数项移至不等式的右边,得____________;(2)在不等式两边同时除以x的系数,得____________.7.阅读流程图(图1),试写出流程图所给出的算法含义:__________________.图18.写出图2中顺序框图的运算结果____________.图29.写出图3中顺序框图的运算结果____________.图310.“判定整数n (n >2)是否为质数”的算法能够按如下步骤进行:S 1 给定大于2的整数n .S 2 令i =2.S 3 用i 除n ,得到余数r .S 4 判定余数r 是否为0.若为0,则不是质数,终止算法;否则将i 的值增加1仍用i 表示.S 5 判定i 是否大于n -1.若是,则是质数,终止算法;否则返回第三步.现设给定的整数为35,则算法终止时i 的值是______.三、解答题11.写出判定直线ax +by +c =0与圆x 2+y 2=1的位置关系的算法.12.写出求解二元一次方程组⎩⎨⎧=+=21y x ax 的算法步骤.13.在某商场购物时,商场会按顾客购物款的数额的大小分别给予不同的优待折扣.运算顾客应对货款的算法步骤如下:S 1 输入购物款x .(购物款以元为单位)S 2 若x <250,则折扣率d =0;若 250≤x <500,则折扣率d =0.05;若 500≤x <1000,则折扣率d =0.10;若 x ≥1000,则折扣率d =0.15;S3 运算应对货款T=x(1-d);S4 输出应对货款T.现已知某顾客的应对货款是882元,求该顾客的购物款是多少元.14.输入直角三角形两直角边长度,输出第三条边长度,画出此题的顺序框图.测试二 程序框图(一)Ⅰ 学习目标明白得三种逻辑结构,会读逻辑框图,尝试写出程序框图.Ⅱ 基础性训练一、选择题1.程序框图中“处理框”的功能是( )(A)赋值 (B )运算(C)赋值或运算 (D )判定某一条件是否成立2.尽管算法千差万别,但程序框图按其逻辑结构分类只有( )(A)2类 (B )3类 (C )4类(D )5类 3.程序框图如图1所示,输出的结果为( )图1(A)2,5 (B)4,7 (C)2,4(D)1,2 4.程序框图如图2所示,输出的结果为( )图2(A)2 (B )9 (C )3(D )1 5.程序框图如图3所示,当a =1,b =-3时输出的结果为( )(A)0,-1 (B)2,-4 (C )21-,43- (D )-2,4图3二、填空题6.用流程图表示求解不等式ax >b (a ≠0)的算法时,判定框内的内容能够是_________.7.在表示求解一元二次方程的算法中,需要使用选择结构,因为__________________.8.如图4,当a =-1时,框图的输出结果是______.图49.如图5,框图的输出结果是______.图510.如图6所示框图,设火车托运重量为p (kg )的行李时,每千克的费用标准为⎩⎨⎧>-+⨯≤=,)kg 30)(30(5.0303.0,)kg 30(3.0P P P P y 则图中①②处分别填的内容为:①______;②________________.图6三、解答题11.已知函数f(x)=|x-3|,程序框图(图7)表示的是给出x值,求相应函数值的算法.请将该框图补充完整.写出①②两处应填的内容.图712.观看所给算法的流程框图(图8),说明它表示的函数.假如输入数字1,则输出的数字是什么?图8Ⅲ拓展性训练13.设计一个求任意实数的绝对值的算法,并画出流程图.14.已知三个实数a,b,c,试给出查找这三个数中最大数的一个算法,并画出该算法的流程图.测试三 程序框图(二)Ⅰ 学习目标明白得三种逻辑结构,会读逻辑框图,尝试写出程序框图.Ⅱ 基础性训练一、选择题1.下列关于框图的逻辑结构说法正确的是( )(A)用顺序结构画出“求点到直线的距离”的程序框图是唯独的(B)条件结构中不含顺序结构(C)条件结构中一定含有循环结构(D)循环结构中一定包含条件结构2.已知函数⎩⎨⎧>-≤=,0,,0,)(x x x x x f 在由给定的自变量x 运算函数值f (x )的算法中,应该至少包含以下差不多逻辑结构中的( )(A)顺序结构、循环结构 (B )条件结构、循环结构(C)顺序结构、条件结构 (D )顺序结构、循环结构3.下列四个说法中正确的有( )①任意一个算法都离不开顺序结构②算法程序框图中,依照条件是否成立有不同的流向③循环体是指按照一定条件,反复执行某一处理步骤④循环结构中一定有条件结构,条件结构中一定有循环结构(A)1个 (B )2个 (C )3个 (D )4个4.要解决下面四个问题,只用顺序结构画不出其流程图的是( )(A)运算1+2+…+10的值 (B )当圆的面积已知时,求圆的周长(C)给定一个数x ,求其绝对值 (D )求函数f (x )=x 3-3x 的值5.算法:S 1 m =a ;S 2 若b <m ,则m =b ;S 3 若c <m ,则m =c ;S 4 若d <m ,则m =d ;S 5 输出m .则输出的m 为( )(A)a ,b ,c ,d 中的最小值 (B )a ,b ,c ,d 中的最大值(C)d (D )a二、填空题6.程序框图中的“处理框”的功能是____________.7.有如图1所示的程序框图,该程序框图表示的算法功能是____________.图18.如图2所示是求小于等于1000所有正偶数的和的程序框图,则空白处①应为_________;②应为___________.图29.如图3所示表示的是运算前10个奇数倒数之和的算法的程序框图,其中判定框内应填入的条件是___________.图3三、解答题10.给出如图4所示的程序框图.在执行上述框图表达的算法后,输出的S,i的值分别是多少?图411.写出表示解方程ax+b=0(a,b为常数)的一个程序框图.Ⅲ拓展性训练12.设计求S=1+3+5+…+2007和T=1×3×5×…×2007的一个算法,并画出相应的流程图.13.某工厂2004年的生产总值为200万元,技术革新后,估量以后每年的生产总值比上一年增加5%,问最早需要到哪一年年生产总值超过300万元,写出算法并画出相应的程序框图.测试四 算法语言Ⅰ 学习目标了解算法语言,尝试用算法语言实现一些算法.Ⅱ 基础性训练1.编写一个输入底面边长和侧棱长,求正四棱锥体积的程序.2.已知函数f (x )=2x -3,编写一段程序,用来求f [f (x )]的值.(其中,x 值由用户输入)3.给出三个正数a ,b ,c ,问能否构成一个三角形,若能则求其面积.请设计一个程序解决该问题.(注:已知三角形三边分别为a ,b ,c ,则其面积))()((c p b p a p p S ---=,其中p =2c b a ++)4.已知等式“□3×6528=3□×8256”中,方框内是同一个数字,请设计程序,用尝试的方法求出满足等式的一个数字.5.请编写一个程序,运算1!+2!+3!+4!+ (100)(注:其中4!=1×2×3×4,5!=1×2×3×4×5,...,100!=1×2×3× (100)Ⅲ 拓展性训练6.已知数列{a n }满足:a 1=1,a 2=3,关于任意的n ≥3,有a n =3a n -1-2a n -2.求该数列的前n 项和.7.写出一个用二分法求方程x 3+x 2-2x -2=0在某个区间上的近似解的程序.要求:初始区间和运算精度都能在运行中指定.8.求二次函数在给定区间上的最值.测试五 逻辑框图综合测试一、选择题 1.找出乘积为528的两个相邻偶数,流程图如图1,其中填充①②处语句正确的选择是( )图1(A)S =i *(i +2),输出i ,i -2 (B)S =i *i +2,输出i ,i -2 (C)S =i *(i +2),输出i ,i +2 (D)S =i *(i -2),输出i +2,i2.如图2所示的算法流程图中,第三个输出的数是( )图2(A)1(B )23 (C )2 (D )25 3.阅读流程图3,若输入的a ,b ,c 分别为21,32,75,则输出的a ,b ,c 分别是( )图3(A)75,21,32 (B )21,32,75 (C )32,21,75 (D )75,32,214.如图4,程序框图所进行的求和运确实是( )图4(A)101211+++(B)1814121+++(C)2014121+++(D)191311+++5.假如如图5程序框图的输出结果为-18,那么在判定框①中表示的“条件”应该是( )图5(A)i ≥9(B)i >9 (C)i ≥8 (D)i >116.函数⎪⎩⎪⎨⎧<=>-=0,1.0,00,1x x x y 求值的程序框图如图6所示,则空白处需要填的语句为:①_________;②_________;③_________.图67.如图7是一个算法的程序框图,当输入的值为5时,则其输出的结果是______.图78.阅读流程图8填空:①最后一次输出的i=______;②一共输出i的个数为______个.图89.分别写出图9和图10的运行结果:图9______;图10______.图9 图10参考答案 第一章 算法初步测试一1.C 2.B 3.B 4.C 5.D6.-x <-1,x >1 7.已知一个数的13%,求那个数 8.259.10 10.5 11.S 1 求出原点到直线ax +by +c =0的距离22||ba c d +=.S 2 比较d 与圆的半径r =1的大小,若d >r ,则直线与圆相离;若d =r ,则直线与圆相切;若d <r ,则直线与圆相交.12.S 1 判定a 是否为0,若是,则执行S 4,若不是,则执行S 2.S 2 解出ax 1=. S 3 将a x 1=代入x +y =2,解出ay 12-=. S 4 输出方程组的解.若a =0,则输出“方程组无解”;否则,输出方程组的解⎪⎪⎩⎪⎪⎨⎧-==.12,1a y ax13.解:设该顾客的购物款为x 元.依照题意,x >882.假如x <1000,则0.9x =882,解得x =980;假如x ≥1000,则0.85x =882,解得x ≈1037.65; 因此,该顾客的购物款是980元或1037.65元. 14.测试二1.C 2.B 3.A 4.B 5.C 6.a >0,或a <07.当方程根的判别式∆≥0时,方程有实根;当方程根的判别式∆<0时,方程没有实根. 8.“是负数” 9.12,21 10.①0.3*p ②0.3*30+0.5*(p —30). 11.x <3,y =x -3.或x ≤3,y =x -3.12.流程框图表示的是下面的函数:⎪⎩⎪⎨⎧-<--=->+=3,213,73,21x x x x x y输出的数字是3. 13.S 1 输入xS 2 假如x ≥0,则y ←x ;否则y ←-x S 3 输出y .14.S 1 输入a ,b ,cS 2 x ←aS 3 假如b >x ,则x ←b ;否则,执行S 4 S 4 假如c >x ,则x ←c ;否则,执行S 5 S 5 输出x测试三1.D 2.C 3.C 4.C 5.A 6.赋值或运算 7.从小到大连续n 个正整数乘积大于1000时,运算出最小的自然数n .或其他等价的回答. 8.S =S +i ,i =i +2 9.n ≤10? 10.3205,51 11.12.S1赋值S=1,T=1S2 赋值i=3S3赋值S=S+i,赋值T=T×iS4 赋值i=i+2S5 若i≤2007,则执行S3S6输出S,T.13.S1 赋值n=0,a=200,r=0.05S2 年增量T=arS3年产量a=a+TS4 若a≤300,那么n=n+2,重复执行S2S5N=2004+nS6 输出N.测试四算法语言1.a=input("底面边长a=");1=input("侧棱长l=");//注:那个地点应该对输入数据的合理性作出判别.h=sqrt(1^2-(sqrt(2)/2*a)^2); //运算棱锥的高V=a^2*h/3; //运算棱锥的体积disp(V,"正四棱锥的体积为");2.[法一]x=input("x=");y=2*x-3; //运算y=f(x)y=2*y-3; //运算y=f(f(x))disp(y);[法二]//定义函数f(x)=2*x-3function y=f(x)y=2*x-3;endfunction//下面可直截了当调用f(x)x=input("x=");y=f(f(x)); //与代数中的表达方式一样disp(y);3.disp("请输入三角形的三条边长:");a=input("a=");b=input("b=");c=input("c=");if(a+b>c)&(a+c>b)&(b+c>a)thenp=(a+b+c)/2;S=sqrt(p*(p-a)*(p-b)*(p-c));disp(S,"三角形面积为");elsedisp("不能构成三角形!");end;4.for i=1∶9if((10*i+3)*6528==(30+i)*8256)thendisp(i,"那个数字是:");break;end;end;5.[法一]用for语句实现S=0;an=1;for i=1∶100an=an*i;S=S+an;end;disp(S,"1!+2!+3!+…+100!=");[法二]用while语句实现S=0;an=1;i=1while i<=100an=an*i;S=S+an;i=i+1;end;disp(S,"1!+2!+3!+…+100!=");6.a_n_2=1;a_n_1=3;n=input("要求前多少项的和呢?请输入n=");S=0;//假如只要求前1项或2项的和,则不需要用到递推关系if(n==1)thenS=a_n_2;elseif(n==2)thenS=a_n_2+a_n_1;end;//假如n大于2,则要用递推关系i=3;while(i<=n)a_n=3*a_n_1-2*a_n_2;//先由递推关系求出下一项S=S+a_n; //然后累加到和S中a_n_2=a_n_1; //原先的第(n-1)项在下一轮循环中将变成第(n-2)项a_n_1=a_n; //原先的第n项在下一轮循环中将变成第(n-1)项i=i+1; //项的脚标增1(表示下一轮循环要运算下一项了) end;printf("前%d项和为:%d",int(n),int(S));7.//定义函数f(x)=x^3+x^2-2x-2//方程f(x)=0有三个实数解:-sqrt(2),-1,sqrt(2)function y=f(x)y=x^3+x^2-2*x-2;endfunction//用户输入初始区间的左右端点disp("请输入实根所在初始区间[a,b]:");a=input("a=");b=input("b=");ya=f(a);yb=f(b);//用户输入运算精度d=abs(input("请输入运算精度(输入的越小精度越高,但运算花费的时刻就越多):"));//下面通过二分法求符合精度的近似解x=0;err=%f;while(abs(b-a)>=d)x=(a+b)/2;y=f(x);if(y==0)then break;end; //若现在x的值正好是方程的解,则退出循环if(y*ya<0)thenb=x;yb=f(b);elseif(y*yb<0)thena=x;ya=f(a);elseerr=%t;break;end;end;if(err==%t)thendisp("运算中显现问题,可能是在您输入的初始区间中没有实根.");elseprintf("方程的近似解为:x=%f.",x);end;8.[法一]disp("请依次输入f(x)=ax^2+bx+c的系数");a=input("a=");if(a==0)thendisp("系数a不能为0!");abort;end;b=input("b=");c=input("c=");disp("请输入区间的左右端点:");x1=input("x1=");x2=input("x2=");if(x1>=x2)then begindisp("区间端点输入错误!");abort;end;x0=-b/(2*a); //对称轴if(a>0)then //假如开口朝上if(x0<x1)then //假如对称轴在给定区间的左侧,则min_v=a*x1^2+b*x1+c; //在x=x1处取得最小值max_v=a*x2^2+b*x2+c; //在x=x2处取得最大值elseif(x0<(x1+x2)/2)then //假如对称轴在区间[x1,x2]的左半部分,则min_v=a*x0^2+b*x0+c; //在顶点处取得最小值max_v=a*x2^2+b*x2+c; //在x=x2处取得最大值elseif(x0<x2)then //假如对称轴在区间[x1,x2]的右半部分,则min_v=a*x0^2+b*x0+c; //在顶点处取得最小值max_v=a*x1^2+b*x1+c; //在x=x1处取得最大值else //假如对称轴在区间[x1,x2]右侧,则min_v=a*x2^2+b*x2+c; //在x=x2处取得最小值min_v=a*x1^2+b*x1+c; //在x=x1处取得最大值end;else //假如开口朝下if(x0<x1)then //假如对称轴在给定区间的左侧,则max_v=a*x1^2+b*x1+c; //在x=x1处取得最大值min_v=a*x2^2+b*x2+c; //在x=x2处取得最小值elseif(x0<(x1+x2)/2)then //假如对称轴在区间[x1,x2]的左半部分,则max_v=a*x0^2+b*x0+c; //在顶点处取得最大值min_v=a*x2^2+b*x2+c; //在x=x2处取得最小值elseif(x0<x2)then //假如对称轴在区间[x1,x2]的右半部分,则max_v=a*x0^2+b*x0+c; //在顶点处取得最大值min_v=a*x1^2+b*x1+c; //在x=x1处取得最小值else //假如对称轴在区间[x1,x2]右侧,则max_v=a*x2^2+b*x2+c; //在x=x2处取得最大值min_v=a*x1^2+b*x1+c; //在x=x1处取得最小值end;end;printf("最小值=%f,\n最大值=%f",min_v,max_v);[法二](为[法一]的简化版)a=input("a=");b=input("b=");c=input("c=");x1=input("x1=");x2=input("x2=");x0=-b/(2*a); //对称轴if(x0<x1)then //假如对称轴在给定区间的左侧,则v1=a*x1^2+b*x1+c; //在x=x1处取得最小值v2=a*x2^2+b*x2+c; //在x=x2处取得最大值elseif(x0<(x1+x2)/2)then //假如对称轴在区间[x1,x2]的左半部分,则v1=a*x0^2+b*x0+c; //在顶点处取得最小值v2=a*x2^2+b*x2+c; //在x=x2处取得最大值elseif(x0<x2)then //假如对称轴在区间[x1,x2]的右半部分,则v1=a*x0^2+b*x0+c; //在顶点处取得最小值v2=a*x1^2+b*x1+c; //在x=x1处取得最大值else //假如对称轴在区间[x1,x2]右侧,则v1=a*x2^2+b*x2+c; //在x=x2处取得最小值v2=a*x1^2+b*x1+c; //在x=x1处取得最大值end;if(a>0)thenprintf("最小值=%f,\n最大值=%f",v1,v2);elseprintf("最小值=%f,\n最大值=%f",v2,v1);end;测试五1.C2.C3.A4.C5.A6.y=-1;x=0?;y=07.28.57,89.6,5。

相关文档
最新文档