高二数学正弦定理2
002正弦定理二

全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计课 题:正弦定理二 编制人:王远刚学习目标:1.学会利用正弦定理解决有关平几问题以及判断三角形的形状,掌握化归与转化的数学思想;2.能熟练运用正弦定理解斜三角形.一、自学质疑:1.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,若ac b =2,A =60°,则bsinB c=________. 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c)·cosA=acosC ,则cosA 的值等于________.3.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ccosB =bcosC ,且cosA =23,则sinB 等于________.4.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为________.5.在锐角△ABC 中,BC =1,B =2A ,则AC cosA的值等于________,AC 的取值范围为________. 6.在△A BC 中,A 、B 、C 的对应边分别是a 、b 、c 且sinB =12,sinC =32,则a∶b∶c=________.二、例题精讲:例1.(教材9P 例4)在ABC ∆中,已知C c B b A a cos cos cos ==,试判断三角形的形状.例2.(教材10P 例5)在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BD AC DC =.例3.在ABC ∆中,已知角C B A ,,所对的边分别为c b a ,,,若b c a 2=+, (1)求证:2cos 2cos2C A C A -=+; (2)若3π=B ,试确定ABC ∆形状.例4.在ABC ∆中,c b a ,,分别为ABC ∆三边长,若31cos =A , (1)求A CB 2cos 2sin 2++的值; (2)若3=a ,求三角形ABC 外接圆的半径.例5.(教材9P 例3)某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米).三、矫正反馈:1.在ABC ∆中,A B B A 22sin tan sin tan ⋅=⋅,那么ABC ∆一定是 (填三角形形状). 2.在ABC ∆中,A 为锐角,2lg sin lg 1lglg -==+A cb ,则ABC ∆形状为_______. 3.在ABC ∆中,若3,600==a A ,则_______sin sin sin =++++C B Ac b a . 四、迁移应用:1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =4bsinA ,则cosB =________.2.在△ABC 中,BC =1,∠B=π3,当△ABC 的面积等于3时,tanC 等于________.3.已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与B 的距离为________.4.如图,测量河对岸的旗杆AB 的高时,选与旗杆底B 在同一水平面内的两个测点C 与D.测得∠BCD=75°,∠BDC=60°,CD =a ,并在点C 测得旗杆顶A 的仰角为60°,则旗杆高AB 为________.5.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是________米.6.一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.五、总结反思:【教师个人介绍】王远刚,江苏省海州高级中学(连云港市),邮编:222023,中学高级教师,数学备课组长,坚持理论指导教学实践,在教学中取得很好效果!从教16年来坚持撰写教科研论文,有两百余篇论文发表、获奖。
高中教育数学必修第二册湘教版《1.6.2.2 正弦定理2》教学课件

新知初探·课前预习
题型探究·课堂解透
新知初探·课前预习
教材要点
要点一 扩充的正弦定理
在△ABC中,内角A,B,C的对边分别为a,b,c,R为△ABC外接
圆的半径,则 a
sin
=b
A sin
=c
B sin
C=___2_R____.
要点二 几个常用结论
(1)a∶b∶c=sin A∶sin B∶sin C.
A.锐角三角形 B.等腰三角形 C.直角三角形 D.钝角三角形
答案:B
解析:∵c=2a cos B,根据正弦定理可知sin C=2sin A cos B, ∵A+B+C=π,∴sin C=sin (A+B), ∴sin (A+B)=2sin A cos B,即sin A cos B-cos A sin B=sin (A-B)=0, 所以A=B,即△ABC是等腰三角形.
A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形
答案:A
解析:由正弦定理可得 sin C<sin B cos A,即sin [π-(A+B)]<sin B cos A, 所以sin (A+B)=sin A cos B+sin B cos A<sin B cos A 故sin A cos B<0 因为A∈(0,π),所以sin A>0,所以cos B<0,即B为钝角, 则△ABC为钝角三角形.
2
.
基础自测 1.在△ABC中,若sin A>sin B,则A与B的大小关系为( ) A.A>B B.A<B C.A≤B D.A,B的大小关系不能确定
答案:A
解析:由正弦定理可知:sina A=sinb B,由sin A>sin B⇒a>b⇒A>B.
高二数学正弦定理2(PPT)5-1

A
B
石头:界~|墓~|里程~|纪念~|立了一块~。 【碑额】’名碑的上端。也叫碑首或碑头。 【碑记】名刻在碑上的记事文章。 【碑碣】〈书〉名碑: 墓前立有~。 【碑刻】名刻在碑上的文字或图画:拓印~。 【碑林】名石碑林立的地方,如陕西西安碑林。 【碑铭】名碑文。 【碑首】名碑额。 【碑拓】 名碑刻的拓本。 【碑帖】名;教育加盟 教育机构加盟 教育培训机构加盟 儿童机器人教育加盟 全脑教育加盟;石刻、木刻法书的拓本 或印本,多做习字时临摹的范本。 【碑头】名碑额。 【碑文】名刻在碑上的文字;准备刻在碑上的或从碑上抄录、拓印的文字。 【碑阴】ī名碑的背面。 【碑志】名碑记。 【碑座】(~儿)名碑下边的底座。 【鹎】(鵯)名鸟,羽毛大部为黑褐色,腿短而细。吃果实和昆虫。种类很多,常见的有白头鹎等。 【箄】〈书〉捕鱼的小竹笼。 【北】①名方位词。四个主要方向之一,清晨面对太阳时左手的一边:~头儿|~面|~风|~房|城~|往~去|坐~朝南。 ②北部地区,在我国通常指黄河流域及其以北的地区:~味|~货。③()名姓。 【北】〈书〉打败仗:败~|连战皆~|追奔逐~(追击败逃的敌军)。 【北半球】名地球赤道以北的部分。 【北边】?ɑ名①(~儿)方位词。北。②〈口〉北方?。 【北朝】名北魏(后分裂为东魏、西魏)、北齐、北周的合称。 参看页〖南北朝〗。 【北辰】名古书上指北极星:众星环~。 【北斗星】ī名大熊星座的七颗明亮的星,分布成勺形。用直线把勺形边上两颗星连接起来向 勺口方向延长约五倍的距离,就遇到小熊座α星,即现在的北极星。 【北豆腐】?名食品,豆浆煮开后加入盐卤,使凝结成块,压去一部分水分而成,比南豆 腐水分少而硬(区别于“南豆腐”)。 【北伐战争】第一次国内战争时期,以中国国民党和中国合作的统一战线为基础,组织国民军进行的一次反对帝国主 义和封建军阀统治的战争(—)。因这次战争从广东出师北伐,所以叫北伐战争。参看页〖第一次国内战争〗。 【北方】名①方位词。北。②北部地区,在 我国一般指黄河流域及其以北的地区。 【北方话】名长江以北的汉语方言。广义的北方话还包括四川、重庆、云南、贵州和广西北部的方言。北方话是普通 话的基础方言。 【北非】名非洲北部,通常包括埃及、苏丹、利比亚、突尼斯、阿尔及利亚、摩洛哥、西撒哈拉等。 【北瓜】?〈方〉名南瓜。 【北国】 〈书〉名指我国的北部:~风光。 【北寒带】名北半球的寒带,在北极圈与北极之间。参看页〖寒带〗。 【北回归线】ī名北纬°′的纬线。参看页〖回归 线〗。 【北货】名北方所产的食品,如
高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1

正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。
其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。
所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。
2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。
3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。
五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。
人教版高中数学必修2《正弦定理》PPT课件

2.正弦定理的常见变形:
(1)a=2Rsin A,b=2Rsin B,c=2Rsin C(R 为△ABC 外接圆的半径).
(2)sin A=2aR,sin B=2bR,sin C=2cR(R 为△ABC 外接圆的半径).
(3)三角形的边长之比等于对应角的正弦比,即 a∶b∶c=sin A∶sin B∶sin C.
题型一 已知两角及一边解三角形
【学透用活】
[典例 1] (1)在△ABC 中,c= 3,A=75°,B=60°,则 b 等于 ( )
32 A. 2
3 B.2 2
3
6
C.2
D. 2
(2)在△ABC 中,已知 BC=12,A=60°,B=45°,则 AC=_________.
[解析] (1)因为 A=75°,B=60°,
[方法技巧] 判断三角形的形状,就是根据题目条件,分析其是不是等腰三角形、直角
三角形、等边三角形、等腰直角三角形、锐角三角形、钝角三角形等.利用正
弦定理判断三角形形状的方法如下:
(1)化边为角,走三角变形之路,常用的转化方式有:①a=2Rsin A,b=2Rsin
B,c=2Rsin
C(R
为△ABC
+ccos B=asin A,则△ABC 的形状为
()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定
解析:由射影定理得 bcos C+ccos B=a,则 a=asin A,于是 sin A= 1,即 A=90°,所以△ABC 的形状为直角三角形.
答案:B
[应用二] 设△ABC 的内角 A,B,C 所对应的边分别为 a,b,c.已知 bcos
形,故选 D.
答案:D
高二数学正弦定理2精选教学PPT课件

正弦定理: 在一个三角形中,各边和它所对 角的正弦的比相等,即
a b c sin A sin B sin C
思考: 正弦定理的基本作用是什么?
思考: 正弦定理的基本作用是什么? ①已知三角形的任意两角及其一边可 以求其他边,如 b sin A a sin B
思考: 正弦定理的基本作用是什么? ①已知三角形的任意两角及其一边可 以求其他边,如 b sin A a sin B ②已知三角形的任意两边与其中一边 的对角可以求其他角的正弦值,如 a sin A sin B b
湖南省长沙市一中卫星远程学校
课堂小结
2. 正弦定理的应用范围: ①已知两角和任一边,求其它两边及 一角; ②已知两边和其中一边对角,求另一 边的对角.
湖南省长沙市一中卫星远程学校
课后作业
1. 阅读必修5教材P.2到P.4; 2. 教材P.10习题1.1A组第1、2题.
湖南省长沙市一中卫星远程学校
思考:
∠C的大小与它的对边AB的长度 之间有怎样的数量关系? 显然,边AB的长度随着其对角 ∠C的大小的增大而增大. A
A C B
C
B
复习引入
如图,固定△ABC的边CB及∠B, 使边AC绕着顶点C转动.
思考:
∠C的大小与它的对边AB的长度 之间有怎样的数量关系? 显然,边AB的长度随着其对角 ∠C的大小的增大而增大. A 能否用一个等式把 这种关系精确地表示出 C 来? B
解三角求其他的边和角的过程叫作
解三角形.
讲解范例: 例1. 在△ABC中,已知A=32.0 , B=81.8 ,a=42.9cm,解三角形.
o o
练习: 在△ABC中,已知下列条件,解三角 形(角度精确到1 , 边长精确到1cm):
高中数学必修二课件:正弦定理(第二课时)

例2 当△ABC为钝角三角形时,求证:S△ABC=12absin C=12bcsin A=12acsin B.
【证明】 不妨设B为钝角,如图,过A作AD⊥CB交CB的 延长线于D,
则AD=AB·sin∠ABD=AB·sin(180°-B)=ABsin B=csin B. 又AD=AC·sin C=bsin C,∴csin B=bsin C. ∴S△ABC=12BC·AD=12acsin B=12absin C.同理S△ABC=12bcsin A=12acsin B. 所以S△ABC=12absin C=12bcsin A=12acsin B.
6.4.3 余弦定理、正弦定理(二)(第2课时) 正弦定理
要点1 正弦定理的常见变形
(1)sin A∶sin B∶sin C=a∶b∶c;
a (2)sin
A=sinb
B=sinc
C=sin
a+b+c A+sin B+sin
C=2R;
(3)a=2Rsin A,b=2Rsin B,c=2Rsin C;
课后巩固
1.(高考真题·课标全国Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已
π
π
知b=2,B= 6 ,C= 4 ,则△ABC的面积为( B )
A.2 3+2
B. 3+1
C.2 3-2
D. 3-1
解析
A=π-(B+C)=π-
π6 +π4
=
7π 12
,由正弦定理
a sin
A
=
b sin
B
5.(2016·北京)在△ABC中,A=2π 3 ,a= 3c,则bc=____1____.
解析 ∵a= 3c,∴sin A= 3sin C,∵A=2π3 ,∴sin A= 23,∴sin C= 12,又C必为锐角,∴C=π6 ,∵A+B+C=π,∴B=π6 ,∴B=C,∴b=c,∴ bc=1.
高中数学:11《正弦定理2》课件必修

通过正弦定理,我们可以将三角形的面积表示为已知两边及夹角的函数,或者已 知三边的函数。这种方法在解决一些三角形面积问题时非常有效,特别是当已知 条件不足时。
解三角形
总结词
正弦定理是解三角形问题的重要工具,可以用于解决多种类 型的三角形问题,如求角度、求边长等。
详细描述
通过正弦定理,我们可以将三角形的角度或边长表示为已知 角度或边长的函数。这种方法在解决三角形问题时非常有效 ,特别是当已知条件不足时。
竞赛习题2
已知三角形ABC中,a=7, b=9, C=135°,求边b的大小 及角A的大小。
05
总结与反思
本节课的收获
掌握了正弦定理的基本概念和应用方法,能够运用正弦定理解决一些实际问题。
通过本节课的学习,对三角函数和三角形有了更深入的理解,提高了数学思维能力 。
学会了如何利用数学软件进行数值计算和图形绘制,提高了数学实验能力。
不足与反思
在解决一些复杂的实际问题时,对于 如何选择合适的角度和边长关系仍存 在困惑。
在课堂互动方面表现不够积极,需要 更加主动地参与课堂讨论和提问。
在运用正弦定理时,对于一些特殊情 况的处理不够熟练,需要加强练习。
下节课的预习建议
01
提前预习下一节内容《 余弦定理》,了解余弦 定理的基本概念和应用 方法。
实际应用
总结词
正弦定理在现实生活中有着广泛的应 用,如测量、建筑、航海等领域。
详细描述
正弦定理可以用于解决实际生活中与 角度和长度相关的问题,如测量山的 高度、建筑物的角度和长度等。此外 ,在航海和航空领域,正弦定理也常 被用于计算距离和角度。
03
正弦定理的拓展
定理的推广
推广到任意三角形
高二数学正弦定理2(教学课件2019)

左衽 袭冠带 要衣裳而蒙化者焉 岂非贤哉 为之流涕 五十四 又使尉佗逾五岭 内兴功利 迁少府 所以禁暴止邪 延寿之化也 敖军无功还 其口止於鄜衍 疑与为大奸 事下延尉 铁销 会暮 始周为廷史 汲 公卿大夫故人邑子设祖道 云为荆州刺史 传国至曾孙 且此数家之事 不能奉其宗庙而劫杀於其
臣者 而贰师功少 臣久病连年 鲁申公为《诗》训故 贤能佐职 东入滱 可谓极富贵无欲矣 举使君之 追监前代 以为 赏罚所以劝善禁恶 乃去妇 今茂陵徐福数上书言霍氏且有变 告诸将相曰 此壮士也 《书》曰 谗说殄行 不肯从沛公 不盈者名曰中余 顷公 数逢其害 下行十馀丈 破之 以水衡钱为
矣 汉省 尊王莽太傅 与卒三千人 皆如其形以占 长乐宫 怯夫慕义 广尺馀 不能 动作无法度 而作内 外《传》数万言 出之 因令窥汉 劝经学威仪之则 今自陛下兴兵击匈奴 我徒侃尔 予前在大麓 召盩厔令尹逢拜为谏大夫遣之 唯天子以为国器 而遣章以诛吕氏事告齐王 当阖门惶惧 建翠北之旗
王次春 神奄留 惧入见 既葬三十六日 褒周室 胜字君宾 武帝初即位 是其征也 表善好士 邪人进 甚说之 使大王得三县之实 及至牂柯 常夜守之 有黑气大如钱 自禁门内枢机近臣 旋踵亦绝 疲驽无以辅治 出放为何东都尉 会月六千三百四十五 能自安乎 削书到 四益封 述《易》道 彼人可见而
国有大灾 心合意同 盖不以本臧给末用 诏曰 朕亲率天下农耕以供粢盛 四方之政行焉 不敢言 朔中之 徒相益为乱 臣故曰击之便 安国曰 不然 汉之睦亲 为世典式 平帝以中山王即帝位 功德茂盛 县官所兴未获其利 前皮轩 贯高 利几之谋不生 辰星入太白中 凤凰集礻殳祤 帝年九岁 在二子矣
孟死 以实仓廪 问为谁 月氏乃远去 封爵之誓曰 使黄河如带 怯夫勉其死 惠帝四年置 能者养以之福 谊复上疏曰 {陛下即不定制 观众树之蓊薆兮 小人 天汉元年三月 悲不能自止 令士卒从入蜀 汉 关中者皆复终身 通古今之谊 愿少须臾毋死 亚夫为河内守时 传之老母弱子 以迎大王为名 布称
新版高中数学必修2课件:6.4.3.2正弦定理

解析:由ttaann AB=ba22
及正弦定理,
得scions
Acos Asin
BB=ssiinn
22AB,即ccooss
BA=ssiinn
(2)在△ABC中,若
a sin
A
=
b cos
B
=
c cos
C
,则△ABC的形状为
________.
解析:根据正弦定理sina
A=sinb
B=sinc
C可得ssiinn
B=cos C=cos
B C
,
由B,C的范围可得B=C=45°,故A=90°.则△ABC是等腰直角三
角形.
答案:等腰直角三角形
题型三 正弦定理、余弦定理的综合应用——微点探究 微点1 边角转化求值 例2 △ABC的内角A,B,C的对边分别为a,b,c.已知asin A -bsin B=4csin C,cos A=-14,则bc=( ) A.6 B.5 C.4 D.3
sin
A=2aR,sin
b B=___2_R____,sin
c C=___2_R____,
a:b:c=___si_n_A__:s_i_n_B_:_s_in__C_,
sin
a+b+c A+sin B+sin
C
=
2R
状元随笔
(1)正弦定理对任意三角形都适用. (2)正弦定理中的比值是一个定值,它的几何意义为三角形外 接圆的直径. (3)正弦定理是直角三角形边角关系的一个推广,它的主要功 能是实现三角形中的边角互化. (4)通过正弦定理可“知三求一”.
高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
高中数学必修二 6 4 3 余弦定理、正弦定理2课时(含答案)

6.4.3正弦定理导学案编写:廖云波 初审:孙锐 终审:孙锐 廖云波【学习目标】1.了解正弦定理的推导过程,掌握正弦定理及其基本应用2.能用正弦定理解三角形,并能判断三角形的形状3.能利用正、余弦定理解决综合问题【自主学习】知识点1 正弦定理的呈现形式1.a sin A =b sin B =c sin C=2R (其中R 是△ABC 外接圆的半径); 2.a =b sin A sin B =c sin A sin C=2R sin A ; 3.sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 知识点2 正弦定理的常见变形1.sin A ∶sin B ∶sin C =a ∶b ∶c ;2.a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; 3.a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;4.sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 知识点3 利用正弦定理判断三角形的解的个数已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定.具体做法如下:由正弦定理得sin B =b sin A a, ①若b sin A a>1,则满足条件的三角形个数为0,即无解. ②若b sin A a=1,则满足条件的三角形个数为1,即一解. ③若b sin A a <1,则满足条件的三角形个数为1或2.【合作探究】探究一 已知两角和任意一边解三角形【例1】在△ABC 中,已知B =30°,C =105°,b =4,解三角形.[分析] 由三角形的内角和定理可求A 的度数.根据正弦定理可求a ,c .[解] 因为B =30°,C =105°,所以A =180°-(B +C )=180°-(30°+105°)=45°.由正弦定理,得a sin45°=4sin30°=c sin105°, 解得a =4sin45°sin30°=42,c =4sin105°sin30°=2(6+2).归纳总结:【练习1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = .【答案】2113解析:在△ABC 中,由cos A =45,cos C =513, 可得sin A =35,sin C =1213, sin B =sin(A +C )=sin A cos C +cos A sin C =6365, 又a =1,由正弦定理得b =a sin B sin A =2113.探究二 已知两边及一边的对角解三角形【例2】下列三角形是否有解?有解的作出解答.(1)a =7,b =8,A =105°;(2)b =10,c =56,C =60°;(3)a =23,b =6,A =30°.[分析] 利用三角形中大边对大角定理以及结合有解无解的图形来考虑.[解] (1)a =7,b =8,a <b ,A =105°>90°,本题无解.(2)b =10,c =56,b <c ,C =60°<90°,本题有一解.△sin B =b sin C c =10·sin60°56=22, △B =45°,A =180°-(B +C )=75°.△a =b sin A sin B =10×sin75°sin45°=10×6+2422=5(3+1). (3)a =23,b =6,a <b ,A =30°<90°,又△b sin A =6sin30°=3,△a >b sin A ,△本题有两解. 由正弦定理得:sin B =b sin A a =6sin30°23=32,△B =60°或120°, 当B =60°时,C =90°,c =a sin C sin A =23sin90°sin30°=43; 当B =120°时,C =30°,c =a sin C sin A =23sin30°sin30°=2 3. △B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.归纳总结:【练习2】在三角形ABC 中,根据下列条件解三角形,其中有两个解的是 。
高二数学正弦定理2

真钱棋牌上线就送188 /
真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188 真钱棋牌上线就送188
பைடு நூலகம்
[单选]在中医脏腑学说中,主藏神志脏器为()。A、脾B、肝C、心D、肾 [填空题]早期商业票据的发展和运用几乎都在(),发行者主要是()、()、()等非金融性企业。主要购买者()。60年代得到迅速发展,现在已扩展到()、()、()、()、()等。 [单选]集体资产管理的基本任务是()。A.集体资产的保值B.集体资产的增值C.保证集体扩大再生产D.减少集体资金的投入 [单选]音像出版单位可以按照国家有关规定,()本单位出版的音像制品。A.批发B.播放C.出租D.出口 [单选]根据《企业破产法》的规定,下列关于债权人委员会的表述中,正确的是()。A.在债权人会议中应当设置债权人委员会B.债权人委员会的成员人数最多不得超过7人C.债权人委员会中的债权人代表南人民法院指定D.债权人委员会无权决定债务人的日常开支 [单选]设立商业银行的注册资本最低限额为()元人民币。A.1亿B.5亿C.10亿D.20亿 [单选]《中华人民共和国公司法》简称《公司法》,于()由我国立法机关制定。A.1993年12月B.1999年12月C.1997年12月D.2005年10月 [单选]在卫星道信的通信分系统中,双变频的优点是()A.频带宽B.允许多载波工作C.增益高,电路工作稳定 [单选]为预防皮质醇症病人术后发生肾上腺危象,以下护理措施不正确的是()A.术前补充皮质醇激素B.术中补充皮质醇激素C.术后补充皮质醇激素D.加快补液E.避免情绪大波动 [填空题]电压互感器的二次额定电压为()V,电流互感器的二次额定电压为()A [多选]多个单位共同承担的建设项目,向海事局申请办理《水上水下作业许可证》时可由()申办。A.多个单位的总负责单位统一B.从事某一类型施工的单位就该类型作业C.从事某一科目施工的单位就该科目申办某单位申办其他单位免办D.任意选一单位 [多选]手术体位不当可引起生理并发症有()A.肺通气不足B.上呼吸道阻塞C.血压下降D.肢体动脉搏动消失E.头面部充血水肿 [单选]下列关于Babinski征的描述,不正确的是()A.检查时沿外侧缘向前再向内划足底B.是最有意义的病理反射C.检查时患者须意识清楚D.阳性表现拇背屈,其余各趾向外扇形展开E.此征阳性提示锥体束受损 [单选]下列哪一项符合高血压的治疗原则().A.联合用药,达到降压目标后停药B.症状不重者不宜使用降压药C.联合用药,达到降压目标后短期服用维持量D.联合用药,达到降压目标后长期服用维持量E.间断用药,避免产生抗药性 [问答题,简答题]检查刮削精度常用哪些方法? [单选]()是否健全是合同管理的关键所在。A.合同统计考核制度B.合同管理评估制度C.合同管理目标制度D.合同管理质量责任制度 [单选]在下列情况中,何种情形将会使预算约束在保持斜率不变的条件下作远离原点的运动?()。A、x的价格上涨10%而y的价格下降10%B、x和y的价格都上涨10%而货币收入下降5%C、x和y的价格都下降15%而货币收入下降10%D、x和y的价格都上涨10%而货币收入上涨5%E、 [多选]小儿气管异物发生呼吸困难一般表现为()A.呼气性呼吸困难B.吸气性呼吸困难C.可出现喉鸣音D.有三凹症表现E.可出现潮式呼吸 [单选]()注重克服市场失灵,解决市场不能解决的问题。A.政府宏观管理和调控B.科学市场机制C.市场守衡定律D.市场客观规律 [单选]认为组织和组织成员的行为是复杂的、不断变化的,是一种固有的性质的观点所属的学派是()。A.系统理论管理B.行为科学管理C.权变理论管理D.管理科学E.管理质量 [单选,A1型题]眼科棱镜常用于矫正小角度斜视,顶角通常小于()。A.10°B.15°C.20°D.30°E.40° [单选]建筑内部因采用大量可燃材料装修、使用可燃家具,将()。(易)A、延长轰燃出现的时间B、增加火灾荷载C、降低耐火等级D、影响防火间距 [单选]再生中继站所用的中继方式是().A.直接中继B.外差中继C.基带中继 [单选,A2型题,A1/A2型题]划分非电离辐射与电离辐射的电磁辐射量子能量水平是()。A.2eVB.12eVIC.20eVD.12库仑E.12Ci [名词解释]种子安全含水量 [问答题]避震时须把握什么原则? [判断题]六腑是指胃、胆、大肠、小肠、脑、膀胱。A.正确B.错误 [单选]在稀溶液凝固点降低公式△tf=Kfb中,b表示的是溶液的。A.摩尔分数B.质量摩尔浓度C.物质的量浓度D.质量分数 [单选]行政诉讼的举证期间是()。A.第一审过程中B.第一审庭审结束之前C.第二审之前D.第二审庭审结束之前 [单选]如图,正常甲状腺中部横切面的超声声像图,中央气管环状软骨前方组织为()A.甲状腺峡部B.皮下组织C.甲状旁腺D.淋巴结E.以上均不对 [单选,A2型题,A1/A2型题]糖尿病酮症酸中毒时,不符合的选项是()A.血酮体>4.8mmol/LB.血pH下降C.血HCO下降D.血PCO2降低E.血糖常>33.3mmol/L [多选]影响空气粘性力的主要因素:().A、空气清洁度B、速度剃度C、空气温度D、相对湿度 [单选]孕期保健不包括下列哪项()。A.性知识教育B.孕早、中、晚期保健C.母乳喂养的宣传教育D.孕期心理准备E.了解影响孕期保健的社会因素及其预防方法和途径 [单选,A2型题,A1/A2型题]下列杀灭细菌芽胞最有效的方法是()。A.煮沸法B.流通蒸汽消毒法C.间歇灭菌法D.高压蒸汽灭菌法E.紫外线照射法 [问答题,简答题]2010版GMP新修订共有几个附录,它们的名称是什么? [单选]右肾上腺解剖描述中,下列哪一项最确切A.右肾上腺呈半月形,位于右肾上极内上方,下腔静脉后方,膈肌脚前方B.右肾上腺呈三角形,位于右肾上极内上方,下腔静脉后方,膈肌脚前方C.右肾上腺呈半月形,位于右肾上极内上方,下腔静脉后方,膈肌脚后方D.右 [单选,A1型题]26岁初孕妇,妊娠40周,因胎膜早破入院。不久出现规律宫缩,因宫缩乏力曾静滴缩宫素,随后宫缩增强,经2小时发现胎心不规律,随后产妇自述下腹剧痛伴少量阴道流血。腹部检查:腹壁紧张,超声多普勒未听及胎心,宫口开大4cm,先露胎头高浮,阴道 [单选]提高减拔的关键在于()。A.提高气化段真空度B.合理切割馏份C.控制顶温D.稳定侧线量 [单选]对多发性骨髓瘤诊断具有决定性意义的检查是()A.骨髓穿刺涂片形态学检查B.外周血涂片检查C.血沉测定D.血清钙、磷和碱性磷酸酶测定E.血清免疫电泳 [单选]杆头与地面平等击球产生()。A、弹道变高B、弹道变低C、弹道平行D、标准弹道
高二数学正弦定理2

例2:△ABC中,已知:a=25 A=600,求B和边c
6
,b=50,
b si nA 50 si n600 2 解: si nB a 2 25 6 又 b a B A故B 450 且C 180 45 60 75
它所对角的正弦的比相等。 a b c =2R SinA SinB SinC
(R为△ABC的外接圆半径)
A
. O
B C
E
变形应用:
asinB=bsinA csinB=bsinc csinA=asinB
a : b : c = sinA : sinB : sinC
a 2R sin A
b 2R sin B
2,A
2 又b a 2
a s i nC c s i nA
30
6 + 2 4 15 6 + 2 或 1 2 6 2 4 15 6 2 1 2
思考: 已知两边和其中一边的对角 解三角形,怎样判断解的个数? 例如:已知△ABC中边a,b及角A
练习1:△ABC中,已知:a=20, b=10,
c 2R sin C
a b c sinA , sinB , sinC 2R 2R 2R
解决两类基本问题: ①已知两角和任一边,求其它两边和一角;
②已知两边和其中一边的对角,求另一边的 对角。
例1:△ABC中,BC=0.15Km,B= 450, C=1050,求AB(保留两位有效数 字)
高二数学高效课堂资料正弦定理2

C
b
a
A
A
B A B2 B1 A
a<bsinA a=bsinA bsinA<a<b
C b
a≥b
无解
一解
两解
一解
A为直角或钝角
C a
b
A
B
a>b
一解
C a
b
A
a≤b 无解
a B
整理巩固
要求:整理巩固错题、重点题
落实基础知识 完成知识结构图
高效课堂精品课件 高二数学
市实验中学 数学组
知识的超市,生命的狂欢
a = b = c = 2R sin A sin B sin C
a : b : c sin A: sin B : sinC
正弦定理 三角形边角关系
• 1. 能够熟练应用正弦定理及其变式解决解三 角形问题,会判断已知两边和其中一边的对 角解三角形时解的个数。
• 2. 探究正弦定理和三角形面积公式应用的规 律及方法。
探究学习(前黑板)
学 习 目 标
例1
重点讨论: (1)结合例1,总结三角形面积公式如何应用. (2)结合例2,总结两边一角时,如何判断解三角形解的个数.
例2(3)
例2(2)
例2(1)
已知边a,b和角A,求其他边和角.
A为锐角
C
b
a
ห้องสมุดไป่ตู้
C ba
人教版高中数学必修2《正弦定理》PPT课件

延伸探究本例中,将条件改为“在△ABC中,若(a-acos B)sin B=(b-ccos C)
sin A”,判断△ABC的形状.
解 因为(a-acos B)sin B=(b-ccos C)sin A,所以asin B-acos Bsin B=bsin A-ccos
Csin A,而由正弦定理可知asin B=bsin A,所以acos Bsin B=ccos Csin A,
即sin Acos Bsin B=sin Ccos Csin A,
所以cos Bsin B=sin Ccos C,即sin 2B=sin 2C,
所以2B=2C或2B+2C=180°,即B=C或B+C=90°,故△ABC是等腰三角形或
所以 C>B,所以 B=30°,所以 A=180°-120°-30°=30°,所以△ABC 的面积
1
1
S=2AB·AC·sin A=2×2 3×2sin 30°= 3.
素养形成
对三角形解的个数的探究
已知三角形的两角和任意一边,求其他的边和角,此时有唯一解,即当三角
形的两角和任意一边确定时,三角形被唯一确定.
sin 5sin60° 5 3
解 由正弦定理,得 sin A=
=
=
>1,则角 A 不存在,所以该三
2
4在△ABC中,若(a-ccos B)sin B=(b-ccos A)sin A,判断△ABC的形状.
分析
解 (方法一)∵(a-ccos B)sin B=(b-ccos A)sin A,
c
,
C
《正弦定理》人教版高二数学下册PPT课件

由正弦定理,得
sin B =sin A co sC .
(*)
∵B =π-(A +C ),
∴sin B =sin (A +C ),从而(*)式变为
sin (A +C )=sin A co s C .
∴co s A sin C =0.
又∵A ,C ∈(0,π),
π
∴co s A =0,A = ,即△A B C 是直角三角形.
∴A 是直角,B +C =9 0 °
,
∴2 sin B co s C =2 sin B co s(9 0 °
-B )=2 sin 2 B =sin A =1 ,
2
∴sin B =
2
.
∵0 °
< B < 9 0°
,∴B =4 5 °
,C =4 5 °
,
∴△A B C 是等腰直角三角形.
02
跟踪训练
法二:(利用角的互补关系)根据正弦定理,
c
,sin C = 把
2R
2R
sin 2 A =sin 2 B +sin 2 C 转化为三角形三边的关系,从而判定出角 A ,然后再利
用 sin A =2sin B co s C 求解.
02
跟踪训练
a
[解]
b
c
法一:
(利用角的互余关系)根据正弦定理,
得
=
=
,
sin A sin B sin C
∵sin 2 A =sin 2 B +sin 2 C ,∴a 2 =b 2 +c2 ,
02
基础自测
1.思考辨析
(1)正弦定理只适用于锐角三角形.(
)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。