钻井液润滑剂润滑性能及影响因素

钻井液润滑剂润滑性能及影响因素
钻井液润滑剂润滑性能及影响因素

钻井液润滑剂润滑性能及影响因素

国内外研究者对钻井液的润滑性能进行了评价,得出的结论是:空气与油处于润滑性的两个极端位置,而水基钻井液的润滑性处于其间。用Baroid公司生产的钻井液极压润滑仪测定了三种基础流体的摩阻系数(钻井液摩阻系数相当于物理学中的摩擦系数),空气为0.5,清水为0.35,柴油为0.07。在配制的三类钻井液中,大部分油基钻井液的摩阻系数在o.08~o.09之间,各种水基钻井液的摩阻系数在0.20~0.35之间,如加有油晶或各类润滑剂,则可降到0.10以下。

对大多数水基钻井液来说,摩阻系数维持在o.20左右时可认为是合格的。但这个标准并不能满足水平井的要求,对水平井则要求钻井液的摩阻系数应尽可能保持在0.08~0.10范围内,以保持较好的摩阻控制。因此,除油基钻井液外,其它类型钻井液的润滑性能很难满足水平井钻井的需要,但可以选用有效的润滑剂改善其润滑性能,以满足实际需要。近年来开发出的一些新型水基仿油性钻井液,其摩阻系数可小于0.10,很接近油基钻井液,其润滑性能可满足水平井钻井的需要。

从提高钻井经济技术指标来讲,润滑性能良好的钻井液具有以下优点:

(1)减小钻具的扭矩、磨损和疲劳,延长钻头轴承的寿命;

(2)减小钻柱的摩擦阻力,缩短起下钻时间;

(3)能用较小的动力来转动钻具;

(4)能防粘卡,防止钻头泥包。

钻井液润滑性好,可以减少钻头、钻具及其它配件的磨损,延长使用寿命,同时防止粘附卡钻、减少泥包钻头,易于处理井下事故等。在钻井过程中,由于动力设备有固定功率,钻柱的抗拉、抗扭能力以及井壁稳定性都有极限。若钻井液的润滑性能不好,会造成钻具回转阻力增大,起下钻困难,甚至发生粘附卡钻和日钻具事故;当钻具回转阻力过大时,会导致钻具振动,从而有可能引起钻具断裂和井壁失稳。

1.钻井作业中摩擦现象的特点

随着密封轴承的出现,改善钻井液润滑性能的目的主要是为了降低钻井过程中钻柱的扭矩和阻力。在钻井过程中,按摩擦副表面润滑情况,摩擦可分为以下三种情况(见图4-11):

(1)边界摩擦:两接触面间有一层极薄的润滑膜,摩擦和磨损不取决润滑剂的粘度,而是与两表面和润滑剂的特性有关,如润滑膜的厚度和强度、粗糙表面的相互作用以及液体中固相颗粒间的相互作用。有钻井液的情况下,钻铤在井眼中的运动等属边界摩擦。(2)干摩擦(无润滑摩擦):又称为障碍摩擦,如空气钻井中钻具与岩石的摩擦,或井壁极不规则情况下,钻具直接与部分井壁岩石接触时的摩擦。

(3)流体摩擦:由两接触面间流体的粘滞性引起的摩擦。可以认为,钻进过程中的摩擦是混合摩擦,即部分接触面为边界摩擦,另一部分为流体摩擦。在高负荷边界面上,塑性表面的边界摩擦更为突出。在钻井作业中,摩擦系数是两个滑动或静止表面间的相互作用以及润滑剂所起作用的综合体现。

钻井作业中的摩擦现象较为复杂,摩阻力的大小不仅与钻井液的润滑性能有关,其影响因素还涉及到钻柱、套管、地层、井壁泥饼表面的粗糙度;接触表面的塑性,接触表面所承受的负荷;流体粘度与润滑性;流体内固相颗粒的含量和大小,井壁表面泥饼润滑性;井斜角;钻柱重量;静态与动态滤失效应等。在这些众多的影响因素中,钻井液的润滑性能是主要的可调节因素。

2.钻井液润滑性的主要影D向因素

影响钻井液润滑性的主要因素有:钻井液的粘度、密度、钻井液中的固相类型及含量、钻井液的滤失情况、岩石条件、地下水的矿化度以及溶液pH值、润滑剂和其它处理剂的使用情况等。

(1)粘度、密度和固相的影响

随着钻井液固相含量、密度增加,通常其粘度、切力等也会相应增大。这种情况下,钻井液的润滑性能也会相应变差。这时其润滑性能主要取决于固相的类型及含量。砂岩

和各种加重剂的颗粒具有特别高的研磨性能。

钻井液中固相含量对其润滑性影响很大。随着钻井液固相含量增加,·除使泥饼粘附性增大外,还会使泥饼增厚,易产生压差粘附卡钻。另外,固相颗粒尺寸的影响也不可忽视。研究结果表明,钻井液在一定时间内通过不断剪切循环,其固相颗粒尺寸随剪切时间增加而减小,其结果是双重性的:钻井液滤失有所减小,从而钻柱摩阻力也有所降低;颗粒分散得更细微,使比表面积增大,从而造成摩阻力增大。可见,严格控制钻井液粘土含量,搞好固相控制和净化,尽量用低固相钻井液,是改善和提高钻井液润滑性能的最重要的措施之一。

(2)滤失性、岩石条件、地下水和滤液pH值的影响

致密、表面光滑、薄的泥饼具有良好的润滑性能。降滤失剂和其它改进泥饼质量的处理剂(比如磺化沥青)主要是通过改善泥饼质量来改善钻井液的防磨损和润滑性能。

在钻井液条件相同的情况下,岩石的条件是通过影响所形成泥饼的质量以及井壁与钻柱之间接触表面粗糙度而起作用的。底温度、压差、地下水和滤液的pH值等因素也会在不同程度上影响润滑剂和其它处理剂的作用效能,从而影响泥饼的质量,对钻井液的润滑性能产生影响。

(3)有机高分子处理剂的影响

许多高分子处理剂都有良好的降滤失、改善泥饼质量、减少钻柱摩阻力的作用。有机高分子处理剂能提高钻井液的润滑性能,还与其在钻柱和井壁上的吸附能力有关。吸附膜的形成,有利于降低井壁与钻柱之间的摩阻力。某些处理剂,如聚阴离子纤维素、磺化酚醛树脂等具有提高钻井液润滑性的作用。不少高分子化合物通过复配、共聚等处理,可成为具有良好润滑性能的润滑材料。

(4)润滑剂

试验表明,使用清水作钻井液,摩擦阻力是较大的。而往清水中加入千分之一至干分之几的润滑剂(主要是阴离子表面活性剂)后,润滑性能会得到明显改善,表现为钻具回转工作电流下降很多。因此,使用润滑剂是改善钻井液润滑性能、降低摩擦阻力的主要途径。因此,正确地使用润滑剂可以大幅度提高钻井液的防磨损和润滑性能。钻井液润滑剂品种一般可分为两大类,即液体类和固体类。前者如矿物油、植物油、表面活性剂等;后者如石墨、塑料小球、玻璃小球等,近年来钻井液润滑剂品种发展最快的是惰性固体类润滑剂,液体润滑剂中主要发展了高负荷下起作用的极压润滑剂及有利于环境保护的无毒润滑剂;由于环境保护的原因,沥青类润滑剂的用量正逐年减少。

目前,常用的改善钻井液润滑性能的方法,主要是通过合理使用润滑剂降低摩阻系数,以及通过改善泥饼质量来增强泥饼的润滑性。

三、用于钻井液的润滑剂

1.对钻井液润滑剂的要求

国内外对润滑剂的研究范围较广,其中有各种表面活性剂、高分子脂肪酸及其衍生物等。

钻井液润滑剂的选择应满足下列基本要求:

(1)润滑剂必须能润滑金属表面,并在其表面形成边界膜和次生结构。

(2)应与基浆有良好的配伍性,对钻井液的流变性和滤失性不产生不良影响。

(3)不降低岩石破碎的效率。

(4)具有良好的热稳定性和耐寒稳定性。

(5)不腐蚀金属,不损坏密封材料。

(6)不污染环境,易于生物降解,价格合理,且来源充足。

钻井液润滑剂除了主要提高钻具的寿命及其工作指标外,还应不影响对地层资料的分析和评价,即润滑剂应具有低荧光或无荧光性质。因此,润滑剂基础材料的选择应注意尽量不用含苯环,特别是多芳香烃的有机物质,而原油,尤其是重馏分、釜残物、沥青等因含荧光物质较多,也应尽量少用。

基于以上要求,一般植物油类,既无荧光和毒性,又易于生物降解,且来源较广,较适合作润滑材料。可选用的植物油有蓖麻油、亚麻油、棉子油等。植物油的主要成分是脂肪酸,而脂肪酸则是润滑剂所需要的表面活性物质。经化学改性后,其表面活性可进一步提高。如磺化棉子油就可以作为抗温抗挤压的极压润滑剂使用。磺化棉子油还可增加矿物油的活性,使其润滑效果得以提高。

2.钻井液中常用的润滑剂

(1)惰性固体润滑剂

该类产品主要有塑料小球、石墨、碳黑、玻璃微珠及坚果圆粒等。

近几年发展起来的塑料小球用做润滑剂效果很好,其组成为二乙烯苯与苯乙烯的共聚物。该产品具有较高的抗压强度,是一种无毒、无臭、无荧光显示、耐酸、耐碱、抗温、抗压的透明球体,在钻井液中呈惰性,不溶于水和油类,密度为1.03~1.05kg/m3,可耐温205℃以上。小球粒度分布为:10~30目的占45%~50%,30~120目的占50%~55%。该润滑剂一般可降低扭矩35%左右,降低起下钻阻力20%左右。它可与水基和油基的各种类型钻井液匹配,是一种较好的润滑剂,近年来发展很快。塑料小球虽然效果较好,但成本较高,所以近期又发展了用玻璃小球代替塑料小球,也达到了类似的效果。目前已证明玻璃小球能降低扭矩与阻力。在现场试验中,钻井液中含量为1.14 kg /m3,直径44~88μm的玻璃小球能使阻力从16 761kg降至11 325kg。玻璃小球由于可

能起到了类似球轴承作用或可能因埋人泥饼,从而降低了泥饼的摩擦系数。塑料小球和玻璃小球这类固体润滑剂由于受固体尺寸的限制,在钻井过程中很容易被固控设备清除,而且在钻杆的挤压或拍打下,有破坏、变形的可能,因此在使用上受到了一定的限制。

石墨粉作为润滑剂具有抗高温、无荧光、降摩阻效果明显、加量小、对钻井液性能无不良影响等特点。最近一种新的适用于钻井液和水泥浆的多功能固体润滑剂--弹性石墨已在路易斯安那州、得克萨斯州、俄克拉荷马州、墨西哥湾和北海等地区的200多口井中获得了成功的应用。弹性石墨(ResilientGraphitic Carbon,简称RGC)无毒、无腐蚀性,在高浓度下不会阻塞泥浆马达;即使在高剪切速率下,它也不会在钻井液中发生明显的分散。此外,它不会影响钻井液的动切力和静切力,与各种纤维质和矿物混合物具有良好的配伍性。弹性石墨的独特结构使其能够用于各种钻井液中,具有降低扭矩、摩阻和减少磨损的作用。弹性石墨作为固体润滑剂,尤其适用于使用常规液体润滑剂效果不大的石灰基钻井液。

石墨粉能牢固地吸附(包括物理和化学吸附)在钻具和井壁岩石表面,从而改善摩擦副之间的摩擦状态,起到降低摩阻的作用;同时当石墨粉吸附在井壁上,可以封闭井壁的微孔隙,因此兼有降低钻井液滤失量和保护储层的作用。

(2)液体类润滑剂

该类产品主要有矿物油、植物油和表面活性剂等。

液体类润滑剂又可分为油性剂和极压剂,前者主要在低负荷下起作用,通常为酯或羧酸;后者主要在高负荷下起作用,通常含有硫、磷、硼等活性元素。往往这些含活性元素的润滑剂兼有两种作用,既是油性剂,又是极压剂。

性能良好的润滑剂必须具备两个条件,一是分子的烃链要足够长(一般碳链R在C12~

C18之间),不带支链,以利于形成致密的油膜;二是吸附基要牢固地吸附在粘土和金属表面上,以防止油膜脱落。许多润滑剂大多属于阴离子型表面活;性物质,多含有磺酸基团,如磺化脂肪醇、磺化棉子油、磺化蓖麻油和其它含硫的润滑剂如硫代烷烃琥珀酸(或酸酐)的唑啉化合物,或含酯的脂肪族琥珀酸(或酸酐)如十八碳烯琥珀酸酐和二硫代烷基醇等化合物。

常用的作为润滑剂使用的表面活性剂有:OP-30、聚氧乙烯硬脂酸酯-6、甲基磺酸铅[(CH3SO3)2Pb]和十二烷基苯磺酸三乙醇胺(ABSN)等。虽然非离子活性剂同样具有亲水基(如聚氧乙烯链),但它们不能在钻柱表面形成牢固的化学吸附。因此,也就不能在钻柱表面形成牢固的憎水非极性(或油膜)润滑层。相对来讲,润滑效果较差。

如硬水中(含高价阳离子)使用单一阴离子表面活性剂时,往往会由于产生高价盐而失效或破乳。因此,一般采用以阴离子为主、非离子为辅的复合型活性剂配方,可收到了一定的润滑效果,并同时可以减少外界阳离子的影响。阴离子表面活性剂需要在碱性介质中才能保持稳定(但pH值过高时也会影响润滑效果),阳离子活性剂则相反,而非离子活性剂使用pH值的范围较大。

年来,极压润滑剂的应用已取得明显效果。该类产品主要有国外生产的磺化妥尔油和国产脂肪烃类衍生物(代号RH系列)等。

随着环保意识的增强,无毒可生物降解润滑剂的使用日趋广泛。该类产品主要是不含芳香烃和双键的有机物,如以动物油和植物油为原料而制得的脂类有机物或矿物油类。这类润滑剂无毒或低毒,不污染环境,不干扰地质录井,目前该类产品已在美国路易斯安那州沿海的定向斜井中取得了很好的使用效果。在沿海某口井钻进时,在91.44m井深处钻杆接头被完全卡住,当加入一种叫做Lu-brikeen的无毒、可生物降解的润滑剂后,摩阻力由33 975kg降到2 265kg,顺利地钻达4 358.64m完钻时为止。

3.润滑剂的作用机理

(1)惰性固体的润滑机理

固体润滑剂能够在两接触面之间产生物理分离,其作用是在摩擦表面上形成一种隔离润滑薄膜,从而达到减小摩擦、防止磨损的目的。多数固体类润滑剂类似于细小滚珠,可以存在于钻柱与井壁之间,将滑动摩擦转化为滚动摩擦,从而可大幅度降低扭矩和阻力。固体润滑剂在减少带有加硬层工具接头的磨损方面尤其有效,还特别有利于下尾管、下套管和旋转套管。固体类润滑剂的热稳定性,化学稳定性和防腐蚀能力等良好,适于在高温、但转速较低的条件下使用,缺点是冷却钻具的性能较差,不适合在高转速条件下使用。

(2)沥青类处理剂的润滑机理

沥青类处理剂主要用于改善泥饼质量和提高其润滑性。沥青类物质亲水性弱,亲油性强,可有效地涂敷在井壁上,在井壁上形成一层油膜。这样,既可减轻钻具对井壁的摩擦,又'可减轻钻具对井壁的冲击作用。由于沥青类处理剂的作用,井壁岩石由亲水转变为憎水,所以,可阻止滤液向地层渗透。

(3)液体润滑剂的润滑机理

矿物油、植物油、表面活性剂等主要是通过在金属、岩石和粘土表面形成吸附膜,使钻柱与井壁岩石接触(或水膜接触)产生的固·固摩擦,改变为活性剂非极性端之间或油膜之间的摩擦,或者通过表面活性剂的非极性端还可再吸附一层油膜。从而使回转钻柱与岩石之间的摩阻力大大降低,减少钻具和其它金属部件的磨损,降低钻具回转阻力。其原理如图4-12和图4-13所示。

图4-12 表面活性剂水溶液的润滑机理图4-13 油包水乳化钻井液的润滑机理

润滑剂种类

润滑剂的作用 润滑剂是能够改善塑料加工性能的一种添加剂。按其作用机理可分为外润滑剂和内润滑剂两种。外润滑剂能在加工时增加塑料表面的润滑性,减少塑料与金属表面的黏附力,使其受到机械的剪切力降至最少,从而达到在不损害塑料性能的情况下最容易加工成型的目的。内润滑剂则可以减少聚合物的内摩擦,增加塑料的熔融速率和熔体变形性,降低熔体黏度及改善塑化性能。实际上每一种润滑剂都有可以实现某一要求的作用,总是内外润滑的共同作用,只是在某一方面更突出一些。同一种润滑剂在不同的聚合物中或不同的加工条件下会表现出不同的润滑作用,如高温、高压下,内润滑剂会被挤压出来而成为外润滑剂。 一般润滑剂的分子结构中,都会有长链的非极性基和极性基两部分,它们在不同的聚合物中的相容性是不一样的,从而显示不同的内、外润滑的作用。 通常润滑剂均兼具有内、外润滑剂的功能,不过,不同的润滑剂其内、外润滑性能不同,有的润滑剂内润滑性较差,而外润滑性能较好;有的润滑剂外润滑性较差,而作为内润滑剂性能较好。通常认为,与聚合物相容性好、极性基团极性大的润滑剂多用作内润滑剂;反之,则用作外润滑剂,但也有内润滑及外润滑剂性能均佳的品种。 理想的润滑剂应具备如下性能: ①必须具有优异的、效能持久的润滑性能。 ②与聚合物具备良好的相容性,内部、外部润滑作用要平衡,不影响树脂的透明性,不起霜、不易结垢,不与其他助剂反应。 ③黏度小,表面引力小,在界面处扩展性好,易形成界面层。 ④热稳定性能优良,在加工成型过程中不分解、不挥发、不降低聚合物的各种优良性能,不影响制品第二次加工性能。 ⑤无毒,无污染,不腐蚀设备,价格便宜。 润滑剂的分类 润滑剂按化学结构可划分为脂肪酸酰胺类、烃类、脂肪酸类、酯类、醇类、金属皂类、复合润滑剂类。按用途类型可划分为内润滑剂(如高级脂肪醇、脂肪酸酯等)、外润滑剂(如高级脂肪酸、脂肪酰胺、石蜡等)和复合型润滑剂(如金属皂类硬脂酸钙、脂肪酸皂、脂肪酰胺等)。

钻井液用固体润滑剂

现如今,在许多的钻井工作中都会使用到钻井液润滑剂,它可以减少钻头、钻具及其它配件的磨损,延长使用寿命,同时防止粘附卡钻、减少泥包钻头,易于处理井下事故等。若钻井液的润滑性能不好,会造成钻具回转阻力增大,起下钻困难,甚至发生粘附卡钻和日钻具事故;由此可见润滑性好坏至关重要,那么影响其润滑性的主要因素有哪些呢?下面就简单的给大家介绍下。 1、粘度、密度和固相的影响 随着钻井液固相含量、密度增加,通常其粘度、切力等也会相应增大。这种情况下,钻井液的润滑性能也会相应变差。这时其润滑性能主要取决于固相的类型及含量。砂岩和各种加重剂的颗粒具有特别高的研磨性能。 钻井液中固相含量对其润滑性影响很大。随着钻井液固相含量增加,·除使泥饼粘附性增大外,还会使泥饼增厚,易产生压差粘附卡钻。另外,固相颗粒尺

寸的影响也不可忽视。研究结果表明,钻井液在一定时间内通过不断剪切循环,其固相颗粒尺寸随剪切时间增加而减小,其结果是双重性的:钻井液滤失有所减小,从而钻柱摩阻力也有所降低;颗粒分散得更细微,使比表面积增大,从而造成摩阻力增大。可见,严格控制钻井液粘土含量,搞好固相控制和净化,尽量用低固相钻井液,是改善和提高钻井液润滑性能的最重要的措施之一。 2、滤失性、岩石条件、地下水和滤液pH值的影响 致密、表面光滑、薄的泥饼具有良好的润滑性能。降滤失剂和其它改进泥饼质量的处理剂(比如磺化沥青)主要是通过改善泥饼质量来改善钻井液的防磨损和润滑性能。 在钻井液条件相同的情况下,岩石的条件是通过影响所形成泥饼的质量以及井壁与钻柱之间接触表面粗糙度而起作用的。底温度、压差、地下水和滤液的pH值等因素也会在不同程度上影响润滑剂和其它处理剂的作用效能,从而影响

滚动轴承润滑剂的作用和性能

滚动轴承润滑剂的作用和性能 1.轴承润滑剂的主要作用 (1)减少相对运动金属表面之间的摩擦和磨损,在摩擦表面形成油膜,增大零件接触承载面积,减小接触应力,延长轴承的接触疲劳寿命; (2)润滑剂具有防锈、防腐蚀、防尘和密封性能; (3)油润滑具有散热作用,可带走轴承运转中产生的磨损颗粒或侵人的污染物; (4)具有一定的减振作用。 2.润滑油的性能质量指标 (1)黏度 润滑油的私度可以定性的定义为其内部层与层之间相互移动或流动的阻力,它是润滑油 最重要的一项性能指标,决定着轴承润滑油膜的承载能力。 (2)黏度指数 黏度指数表示温度改变对润滑油黏度的影响程度。油品的黏度指数越大,粘温特性越好, 黏温特性是指a度随温度变化的性能,其值越大说明a度受温度变化的影响越小。 (3)水分 水分是润滑油中水分的比例。水分过多会使润滑油乳化变质,丧失润滑性能。一般润滑油中水分应控制在3%以下。 除了黏度和黏度指数外,还有闪点与燃点、酸性、凝点和炭分等润滑性能质量指标。 3.润滑脂的性能质量指标 (1)针入度 润滑脂在外力作用下抵抗变形的能力称为稠度。稠度采用针人度或锥人度来度量。针入度越小说明润滑脂的稠度越大、脂的硬度越高、流动性越差。 (2)滴点 润滑脂按规定的加热条件加热,其在滴点计的脂杯中滴落下第一滴油时的温度。润滑脂的滴点确定了脂的工作温度(或耐热性),一般润滑脂的工作温度应低于滴点20℃以上。 (3)极压性能 极压性能是润滑脂承受重载荷作用时在金属表面上维持完整油膜的能力。

(4)机械稳定性 润滑脂在承受机械作用时抵抗稠度改变的能力称为机械稳定性。润滑脂在机械力长期作用下,稠度将会下降,严重时会变成液体而丧失润滑脂特有的性能。 (5)氧化安定性 润滑脂在贮存和使用过程中抵抗氧化的能力称为氧化安定性。润滑脂氧化后将使基础油的黏度变大、稠度变小、滴点下降.而丧失润滑作用。轴承工作温度升高会加快润滑脂的氧化。 4.添加剂 一般基础油很难满足摩擦副润滑的综合性能要求,因此,为了提高油品的使用性能,必须在基础油中加人一定量对润滑剂性能改善起重要作用的物质即添加剂,以适应各种特殊工作条件的需要。添加剂的作用主要有: (1)提高基础油的油性和极压性,增加润滑油或脂的工作能力; (2)延缓润滑油或脂受环境影响老化变质,提高使用寿命; (3)改善润滑油或脂的物理性能,如降低凝点、消除泡沫、提高钻度等; (4)保护零件表面不受燃油腐蚀或其燃烧产物的污染。 5.稠化剂 稠化剂的作用主要是为了保持润滑脂呈半固体状态,而润滑脂的一些性能也是由稠化剂来决定,如润滑脂的使用温度、机械稳定性、耐热性、耐水性等性能主要取决于稠化剂的性能。 使用不同的稠化剂,润滑脂的性能也不同。稠化剂有金属皂基和非皂基之分,金属皂基如铿、钠、钙、钡、铝等,非皂基如硅胶、膨胀润土、尿素等。 6.润滑剂性能比较 用于轴承的润滑剂有许多种,但性能各异,使用的工作条件也不同。因此,在选择润滑剂时,应了解润滑剂的主要性能指标及它们在性能上的差异,从中选出符合使用要求的润滑剂。

润滑剂最新标准

中原油田企业标准 Q/SH1025 0512—2011 代替 Q/SH1025 0512—2007 钻井液用润滑剂技术条件 2011-10-01发布2011-12-01实施中原油田发布

前言 本标准按照GB/T 1.1—2009给出的规则起草。 本标准代替Q/SH1025 0512—2007《钻井液用润滑剂通用技术条件》。主要技术变化如下:——新增了钻井液用油酸脂类润滑剂的技术要求; ——液体润滑剂外观指标更改为:均匀状液体; ——更改了原标准中细度测试的叙述方式,不再描述为“引用SY/T 5559—1992中第6章”,而是直接明确了测试步骤。 本标准由中原油田石油化工油田化学专业标准化委员会提出并归口。 本标准起草单位:中原油田技术监测中心。 本标准主要起草人:何卫、孙明卫、朱玉萍、湛玉玲、魏玲艳。 本标准2007年首次发布,本次为第一次修订。

钻井液用润滑剂技术条件 1 范围 本标准规定了钻井液用润滑剂的要求、试验方法、检验规则、标志、包装、质量检验单及使用说明书。 本标准适用于中原油田钻井液用液体润滑剂、固体润滑剂、油酸脂类润滑剂的准入、验收和质量监督检验,不适用于小球类润滑剂。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 6678—2003 化工产品采样总则 GB/T 16783.1—2006 石油天然气工业钻井液现场测试第1部分:水基钻井液 SY/T 5490 钻井液试验用钠膨润土 3 要求 钻井液用润滑剂应符合表1的规定。 表1 指标 项目 液体润滑剂固体润滑剂油酸脂类润滑剂外观均匀状液体松散状流动粉末或颗粒均匀状液体 细度(筛孔0.25 mm筛余),% ≤—10.0 — 水分,% ≤—7.0 — 酸值,mg/g ≤——35 荧光级别*≤ 4.0 4.0 4.0 表观粘度升高值,mPa?s ≤ 3.0 3.0 2.0 润滑系数降低率,% ≥75 60 84 注:荧光级别指标仅限于钻井液用低荧光润滑剂。 4 试验方法 4.1 仪器设备和试剂 仪器设备和试剂包括: a)天平:精度0.01 g、0.0001 g;

新型钻井液用润滑剂GXRH的研制

新型钻井液用润滑剂GXRH的研制 孙金声潘小镛刘进京 (中石油石油勘探开发研究院北京) 摘要润滑剂GXRH是一种台高分子脂肪政和脂化剂的聚酯化台物,亲油基团及亲水基团均为长链.使其在金属、岩石和粘土表面形成的吸附膜厚度增大.从而在高密度钻井液中能有较好的润滑性。设化合物具有较高的耐磨性.稳定性好,克服了天然脂肪酸易于水解、易与高价阳离子如钙、镁离子生成币溶性盐及在高密度钻井液中效能低等缺点,抗盐、抗温性能好,适用于各种钻井液体系,满足了高密度钻井液对)闺滑剂的要求。合成GXRH的原料力合成脂肪酸鲞残.合成工艺简单,成本低;GXRH为直链化台物,无荧光,可降解达到环保要求。 关键词:润滑剂高密度钻井液耐温抗盐 目前常用的改善钻井液润滑性能的方法,主要是通过合理使用润滑剂降低摩阻系数以及通过改善泥饼质量来增强泥饼的润滑性。80年代以来,国内外钻井液润滑剂发展比较快,不仅数量多而且品种丰富。人工合成及油脂改性制成的润滑剂,以它们特殊的功能,已成为今Et钻井液润滑剂的主流。为适应钻井工程的需要及保护环境的要求,研制出了新型高效润滑剂GXRH。该处理剂在密度为2,0g/cm3的钻井液中仍有良好的降摩阻性能。 室内评价 润滑剂GXRH是一种含高分子脂肪酸和脂化剂的聚酯化合物,以合成脂肪酸釜残为原料,在脂化剂作用下娜催化法,在115~130℃下反应l~3h生成聚酯化合物。该化合物具有较高耐磨性,稳定性好,克服了天然脂肪酸易于水解、易与高价阳离子如钙、镁离子生成不溶性盐及在高密度钻井液中效能低等缺点,满足了高密度钻井液对润滑剂的要求。 室内评价仪器包括E—P极压润滑仪、泥饼粘滞系数测定仪和LEM润滑仪。 1.在淡水钻井液中的性能 如表i~表3所示,GXRH在不同淡水钻井液中均有良好的润滑性能、降摩阻及降扭矩性能。表1~表3中钻井液配方如下。 l86%钠膨润土浆 2。l4十1%FCLS+0.2%CMC 3。1。+0.3%FA367十0.2%XY一27 48l”+O.2%XY27+0.2%CPAM+1.0%NH。HPAN 表lGXRH在淡水钻井液中的泥饼粘甜系数 2GXRH在不同密度钻井液中的润滑性 GXRH在不同密度钻井液中的润滑性能见表4。表4说明,GXRH在密度为2.04g/cm3的钻井液中仍能保持良好的润滑性,润滑系数降低率为79.0%,扭矩降低率为40.2%。表4中钻井液配方如下。 585%潍县土+0.1%HPAN+0.1%PAc+2%SLSP 钻井液与完井液?2002年第19卷第6期?13?  万方数据万方数据

钻井液润滑性测定

中国石油大学钻井液工艺原理实验报告 实验日期:2015.03.23 成绩: 班级:石工12-1 学号姓名:教师:范鹏 同组者: 实验四钻井液润滑性测定 一.实验目的 1. 掌握钻井液润滑性测定仪器的使用方法; 2. 掌握钻井液润滑性的调整方法及常见润滑剂对钻井液润滑性能的影响。 二.实验原理 液体类润滑剂通过在金属、岩石和粘土表面形成吸附膜,减少钻具对井壁和套管的摩擦;多数固体润滑剂类似细小滚珠,将滑动摩擦转化为滚动摩擦,因而可大幅度降低扭矩和阻力。 在斜板倾斜条件下,放在泥饼上的滑块受向下的重力作用,当克服粘滞力后开始下滑,根据牛顿内摩擦定律,设滑块重量为W,其与斜面平行的分力为F,F 即摩擦力,垂直于斜面的力为P,F=Wsinα,P=Wcosα,摩擦系数f=F/P=tgα。泥饼的摩擦系数即仪器所测的粘滞系数。 三.仪器、药品 1.ZNS型打气筒失水仪一台 2.粘滞系数测定仪一台 3.高搅机一台 4. 秒表一只 5. 钢板尺一个 6. 20ml量筒1个 7.滤纸 8. 待测泥浆泥浆约500ml 四、实验步骤 1.接通粘滞系数测定仪的电源,预热15min,并检查电机、清零及显示屏工作是否正常。

2.通过手动调节测试板和仪器箱底的升降螺母使仪器测试板水平泡居中。 3.按清零按钮将数字显示屏归零。 4.测定基浆的滤失量后,将泥饼平整的放置在测试板上,将长方体滑块以垂 直于测试者身体方向,缓慢地放置在泥饼的中心位置,并静置1min。 5.按动电机按钮,测试板开始以一定速率缓慢的倾斜,直到滑块开始与泥饼 出现相对滑动时,立即记录下此时显示屏的读数。此读数的正切值即为泥饼的粘 滞系数。 6.取基浆加入一定量的NaCl并高速搅拌10min,按实验步骤4和5测定盐水 泥浆泥饼的粘滞系数。 五、数据处理 确定加入NaCl前后的润滑系数降低或提高率,并简要解释原因并提出简要的对策。 润滑系数提高率=(1.1504-0.0612)/0.0612=17.80 润滑系数提高。 钻井液中加入NaCl后,发生盐侵,会压缩粘土的扩散双电层,使其 电位降低,水化膜变薄,粘土颗粒间形成或增强网架结构,从而导致钻井液粘度、切力上升,摩擦阻力增大。 由此可知为了提高钻井液的润滑性,应该降低钻井液的矿化度。 六.实验总结 通过本次实验的具体操作,我掌握钻井液润滑性测定仪器的使用方法,对钻 井液润滑性的调整方法及常见润滑剂对钻井液润滑性能的影响有了初步的认识。 最后感谢老师的细心指导!

Xylan1000系列干膜润滑剂卓越高性能涂料

Xylan ? 1000 系列干膜润滑剂 卓越高性能涂料Xylan 涂料耐化学品和常规腐蚀...... 提供恒定的和可重复的扭矩...... 提供低摩擦系数... ...自 1969年已被工程师选定.

概述 美国华福的第一个产品是Xylan 1010。该系列涂 料一推出就被接受作为工程材料。至今,Xylan 1010 仍然是最通用、最可靠与最成功的工业含 氟聚合物涂料。Xylan 1000 系列 Xylan 1000 系列涂料,有多种颜色可供选择,在工业及机械行业(但不仅仅限于)有广泛应用。 华福公司同时提供水性的、低挥发物的涂料,干 膜润滑性能与下列涂料相类似。 Xylan 1006 是 Xylan 系列里含有最高PTFE润滑剂比例的。 Xylan 1010 提供低摩擦,耐磨性和高温不粘的最佳组合。 Xylan 1014 改变 PTFE 润滑油与聚合物的比例, 以达到较难的,更耐磨的涂料但不牺牲摩擦值。 Xylan 1052 包含了大量的高压力(EP) 润滑固体,为增加承载能力和涂料的寿命,同时保持一个非 常低的摩擦系数。 Xylan 1070 具有腐蚀抑制剂,因此具有更好的耐腐蚀性。该涂料最适作为一个能抗广谱的化学品 与腐蚀剂的干膜润滑剂而使用。 Xylan 1088是内部增强版的 Xylan 1010,耐磨性 能进 一 步加强。 适用基材 Xylan 1000 系列涂料在大多数基材上都有很好的附着力。即使是新的基材,也可以通过很简便的 方法来确定该系列涂料是否有很好的附着力。 耐化学性下图表仅用于参考。您所选择的Xylan涂料必须先经过您的测试程序才能在何化学环境使用。所有的试验都在室温下进行除非另有指示。所有测试结果均假定无针孔涂层膜。 欲知详情,请联系您的美国华福代表(或发电邮 至sales@https://www.360docs.net/doc/ac8018611.html, 。也敬请您浏览华福的 网站参阅与下载其他产品的宣传单。 Non-Warranty: The information presented in this publication is based upon the research and experience of Whitford. No representation or warranty is made, however, concerning the accuracy or completeness of the information presented in this publication. Whitford makes no warranty or representation of any kind, express or implied, including without limitation any warranty of merchantability or fitness for any particular purpose, and no warranty or represen-tation shall be implied by law or otherwise. Any products sold by Whitford are not warranted as suitable for any particular purpose to the buyer. The suit-ability of any products for any purpose particular to the buyer is for the buyer to determine. Whitford assumes no responsibility for the selection of prod-ucts suitable to the particular purposes of any particular buyer. Whitford shall in no event be liable for any special, incidental or consequential damages. Where good ideas come to the surface https://www.360docs.net/doc/ac8018611.html, ? sales@https://www.360docs.net/doc/ac8018611.html, ? ? Whitford 2016-02 Xylan is a registered trademark of Whitford.

泥浆性能的测定方法

泥浆性能的测定方法 一)实验目的 1.了解测定泥浆基本性能所用仪器 2.掌握泥浆性能常用测定仪的使用与操作方法 二)实验内容 1.泥浆比重、粘度、失水量、切力、含砂量、固相含量、胶体率、pH值、润滑性等主要性能测定所用仪器的结构。 2.测定上述性能的方法。 三)测定方法及步骤 (一)NB-1型泥浆比重计 1.仪器 NB-1型泥浆比重计由泥浆杯、横梁、游动砖码和支架组成,在横梁上有调重管和水平泡,其结构如图1。 2.测定步骤 ①校正比重计

先在泥浆杯中装满清水,盖好杯盖,把游码移到刻度1时,如水平泡位于中间,则仪器是准确的;如水平泡不在中间,可在调重管内取出或加入重物来调整。 ②倒出清水,将待测泥浆注入杯中,盖好杯盖,擦净泥浆杯周围的泥浆,移动砝码使横梁成水平状态(水平泡位于中间)。游码左侧所示刻度即为泥浆比重。 (二)MLN-4 型马氏漏斗粘度计 1.仪器 粘度计由漏斗和量筒组成,构成如图2。量筒由隔板分成两部分,大头为500毫升,小头为200毫升。漏斗下端是直径为5毫米、长为100毫米的管子。 2.测定步骤 将漏斗垂直,用手握紧用手指堵住管口。然后用量筒两端,分别装200毫升和500毫升的泥浆倒入漏斗。用筛网滤去大的砂粒,将量筒500毫升一端朝上放在漏斗下面,放开手指同时以秒表计时。流出500毫升泥浆所需时间(秒),即为所测泥浆的粘度(视粘度)。作用仪器前,

应用清水对粘度计进行校正,该仪器测量清水的粘度为15秒。若误差在±1秒以内,可用下式计算泥浆的实际粘度。 (三)ZNN型旋转粘度计 ZNN型旋转粘度计有手摇两速、电动两速与电动六速三种。主要用于测量泥浆的流变参数。仪器结构如图3。 1.工作原理 电机经过传动装置带动外筒恒悚旋转,借助于被测液体的粘滞性作用于内筒一定的转矩,带动与扭力弹簧相连的内筒旋转一个角度。该转角的大小与液体的粘性成正比。于是液体的粘度测量转换为内筒转角的测量。 2.仪器结构(六速旋转粘度计) ①动力部分 双速同步电机转速 750、1500转/分 电机功率 7.5、15瓦 电源电压 220伏 ②变速部分 转速 3、6、100、200、300、600转/分 速度梯度 5、10、170、340、511、1022秒-1 ③测量部分

钻井液润滑剂主要原料

钻井液润滑剂大多为动植物油类衍生物、合成化合物(如脂肪酚胺)和表面活性剂调配而成。它们大多具有极好的润滑性,此类为液体润滑剂;另一类为固体润滑剂,如石墨玻璃微珠、塑料微珠、碳珠等,专用于降低钻杆扭矩的场合。有些润滑剂有防钻头泥包的作用,又可称为防泥包剂。 本院采用了国际上先进的胶体化学、表面化学、抗磨油品化学合成技术,集中了有机极压吸附膜与无机弹性电荷沉积—极压膜的优点,特别开发了本款多能型的极压抗磨剂。水溶性润滑剂有环保节能、清洗、冷却、不燃等诸多优点,但由于润滑性差,一直制约着水溶性润滑剂的使用,使用本品可有效解决水溶性润滑剂润滑性差的问题,推进水性润滑剂快速发展。 ●能在摩擦的金属钻具表面形成坚固的极压润滑膜,对钻具起有效保护作用,延长钻头寿命,减少下钻次数,降低钻杆扭矩,提高钻速,有效减轻对钻杆和钻头的磨损,大幅度提高钻井效率。 ●使用本品可有效克服普通润滑剂润滑性不足的缺陷。本品可升级泥浆润滑剂的配方,提供一种泥浆极压润滑剂。 ●极高负荷条件下,极压抗磨性能更为出色,极压润滑膜更为牢固。 ●添加本剂的泥浆润滑液,被摩擦的金属表面变的更加光滑,有效减少压差卡钻的可能性。尤其在不规则的井径和斜井以及定向井中,可以减少对钻杆和钻铤的磨损。 ●本剂有利于使泥浆形成水包油乳化泥浆,降低界面张力 ●极低的使用浓度,极高的极压润滑效果。 国内开展了基于植物油、合成酯、聚合醇等原料的环保润滑剂研制工作,但在现场应用中,很多环保润滑剂抗温、抗盐不足,150℃以上时润滑性能下降明显,今后应进一步提升环保润滑剂的抗温和抗盐性能,以满足深部复杂地层的需要。 除CMC外,聚阴离子纤维素、磺化酚醛树脂和改性淀粉等也是常用的抗盐降滤失剂,铁铬盐(FCLS)等是常用的抗盐稀释剂。 羧甲基纤维素(Carboxymethyl Cellulose,简称CMC)是最重要的纤维素醚之一,它是以天然纤维素(浆粕)为基本原料,经过碱化、醚化反应而生成的,原料为绿色产品有很高的市场价值。羧甲基纤维素具有增稠、悬浮、分散和降滤失等性能,已被广泛应用于石油钻井液中。但是,随着石油勘探领域的扩大和钻井深度的增加,高粘、中粘和低粘等普通CMC溶液在140℃、12h密闭高温实验后其粘度损失率均大于90%,进一步提高CMC的抗高温性能成为了纤维素醚类大分子新的研究内容。为了提高产品质量,通过交联也是纤维素及其衍生物功能化改性的方便途径之一。采用适当的交联剂,并控制交联度,可显著提高纤维素的抗温性能,在不破坏其活性的前提下,提高产品的物性。本文在总结大量的国内外文献报道,研究了不同交联剂与羧甲基纤维素交联改性后的的抗温性能,包括水溶性密胺树脂、戊二醛、对二氯苄、水溶性酚醛树脂和三氯乙醛等。交联产品经140℃、12h密闭高温实验比较,水溶性酚醛树脂改性的羧甲基纤维素具有较好的抗温性能,粘度损失率3.7%。本文研究了羧甲基纤维素和水溶性酚醛树脂的交联缩合动力学的测试方法并得到了该反应的动力学方程。因为水溶性酚醛树脂是多种活性中间体的混合物,羧甲基纤维素是受羧甲基取代度和聚合度影响的大分子,两者的交联缩合反应可以同时发生在多点、多分子之间,动力学研究较为复杂,所以本文分别采用Borchardt-Daniels模型和Kissinger模型方法,根据差示扫描量热仪(DSC)测定不同升温速率下的羧甲基纤维素和水溶性酚醛树脂交联缩合反应的热流曲线数据,计算得到反应动力学方程。利用非等温单一扫瞄速率法的Borchardt-Daniels模型得到的动力学参数为:反应级数n1.05,反应活化能E93.86kJ/mol,指前因子lnA16.23。采用非等温多加热扫描速率法的Kissinger 模型计算得到的动力学参数为:反应级数n1.04,反应活化能E94.37kJ/mol,指前因子lnA15.96。三个热力学参数值分别相差0.55%、1.71%和1.14%,证明两种模型计算结果较一致。水溶性

润滑油主要性能指标

润滑油主要性能指标 (1)黏度是指润滑油抵抗剪切变形的能力,表示油液内部产生相对运动时内摩擦阻力的大小。黏度越大、内摩擦阻力愈大、流动性愈差。黏度是润滑油最重要的性能指标,也是润滑油选用的主要依据。 常用润滑油的黏度主要有三种: ①动力黏度(绝对黏度)η。常用单位是Pa·s(帕·秒)。 ②运动黏度υ。工业上常用动力黏度η与同温下该流体密度ρ的比值称运动黏度υ,国际单位制中运动黏度υ的单位是m2/s,物理单位制中运动黏度υ的单位是斯(St)或厘斯(cSt)(1mm2/s称St),1m2/s=106mm2/S=104st(斯)=106cst(厘斯)。一般现行标准中润滑油的牌号是指该油在40℃时运动黏度以厘斯为单位的平均值。 ③相对黏度(条件黏度)除运动黏度以外还经常用比较法测定液体的黏度。中国用恩氏黏度,代表符号°E;美国常用塞氏通用秒,代表符号SUS。 (2)油性是指润滑油中极性分子湿润或吸附于摩擦表面形成一层边界油膜的性能,是影响边界润滑性能好坏的重要指标。吸附能力愈强,油性愈好。 (3)极压性能。普通润滑油的极压性能都不好,需要依靠添加抗磨极压剂(含硫、氯、磷的有机极性化合物)来改善这种性能。 (4)闪点和燃点。润滑油在火焰下闪烁时的最低温度点为闪点。闪烁持续5s以上的最低温度称燃点,这是衡量润滑油易燃性的尺度。在较高温度和易燃环境中的润滑,应选用闪点高于工作温度20~30℃的润滑油。 (5)凝固点是指润滑油在规定条件下不能自由流动时的最高温度,它是润滑油在低温下工作的一个重要指标。低温润滑时应选用凝固点低的油。

(6)其它。包括反映腐蚀性能的酸值;反映氧化变质的氧化稳定性;反映与水混合的抗乳化性;反映激烈搅动而不起泡的抗泡性等。其中有许多性能需用添加剂加以改善,如抗氧化防腐剂、抗乳化剂、抗泡剂、降凝剂、增粘剂等。在实际生产中,在许多工况下添加剂使用可以使润滑油的性能大大改善,使用寿命也可成倍的延长。

钻井液性能要求及处理剂类型和作用

钻井液性能要求及处理剂类型和作用 一般而言,煤田地质勘探采用金刚石绳索取芯钻进在稳定岩层可使用清水作钻井液。而对各种不稳定岩层,如各种水敏岩层、破碎岩层、特别是对于深孔、长孔段的不稳定岩层,则必须采用泥浆作钻井液。由于金刚石岩心钻探内外管间隙小、钻头转速高、钻头价格贵,因此对泥浆提出了一些特殊要求。 金刚石绳索取芯钻进用钻井液,主要要求润滑性、流变性、滤失性、固相含量等项指标。并据此来选择钻井液类型、添加剂种类和工艺措施。 金刚石钻进要求钻井液有好的润滑性是不言而喻的。为发挥钻头的破岩效率,特别是使用孕镶钻头,要求高转速,只有泥浆润滑性能好,才能减少钻头磨损,提高钻头进尺;减少钻杆磨损和钻杆折断事故,降低功率消耗。不管用清水还是用泥浆作钻井液,都要重视其润滑性指标。 为保护孔壁和有效排除钻屑,要求钻井液有较好的流变性。以前用漏斗粘度来衡量流动性能是不够的。金刚石钻探的特点,要求钻井液通过小间隙处流动阻力小,即粘度小;而在大断面处粘度高,对孔壁冲刷小。 我们在金刚石绳索取芯钻探中应用流变学的理论解决生产实际问题,选择流变性能好的泥浆,取得较好满意的效果。 要使泥浆有较好的护壁能力,必须注意其滤失性能。失水量过大是造成泥页岩,盐类地层、破碎地层的膨胀、溶蚀、剥蚀、坍塌的主要根源。 在这些地层要求失水量低,金刚石钻进环空间隙很小,泥饼厚度过大是很不利的。此外,滤液的成分对护壁有重要影响。滤液中含有盐类离子、高分子材料等抑制性成分,即使失水量大一些,护壁能力也很好。因此,对滤失性能要注意失水量、泥饼厚度及滤液成分三个方面。为控制失水常加入多种降失水剂。 固相含量过高,尤其是钻屑含量过高,给钻进工作带来很多问题,如钻速下降、钻头寿命降低,设备磨损加快、孔内事故多。固相含量的多少和类型,直接影响到钻井液的流变性、滤失性和润滑性。 煤田金刚石绳索取钻进通常用低固相泥浆,固相含量可由比重观测。一般要求固相含量(体积)在4%以内,泥浆比重在1.06以下。 控制固相的方法有二;一是采用物理、化学的方法,即使用具有选择性絮凝的处理剂对钻屑起絮凝作用,而对搬士起增效的作用,或使用具有抑制性的处理剂,抑制钻屑的分散;二是采用机械的方法控制固相,安装机械净化设备。岩心钻探不能采用石油钻井的净化设备,必须按本身的特点发展净化装置。 一人工钠土、处理剂类型和作用

泥浆性能的测定方法

泥浆性能的测定方法 This model paper was revised by LINDA on December 15, 2012.

泥浆性能的测定方法 一)实验目的 1.了解测定泥浆基本性能所用仪器 2.掌握泥浆性能常用测定仪的使用与操作方法 二)实验内容 1.泥浆比重、粘度、失水量、切力、含砂量、固相含量、胶体率、pH值、润滑性等主要性能测定所用仪器的结构。 2.测定上述性能的方法。 三)测定方法及步骤 (一)NB-1型泥浆比重计 1.仪器 NB-1型泥浆比重计由泥浆杯、横梁、游动砖码和支架组成,在横梁上有调重管和水平泡,其结构如图1。 2.测定步骤 ①校正比重计 先在泥浆杯中装满清水,盖好杯盖,把游码移到刻度1时,如水平泡位于中间,则仪器是准确的;如水平泡不在中间,可在调重管内取出或加入重物来调整。 ②倒出清水,将待测泥浆注入杯中,盖好杯盖,擦净泥浆杯周围的泥浆,移动砝码使横梁成水平状态(水平泡位于中间)。游码左侧所示刻度即为泥浆比重。 (二)MLN-4 型马氏漏斗粘度计

1.仪器 粘度计由漏斗和量筒组成,构成如图2。量筒由隔板分成两部分,大头为500毫升,小头为200毫升。漏斗下端是直径为5毫米、长为100毫米的管子。 2.测定步骤 将漏斗垂直,用手握紧用手指堵住管口。然后用量筒两端,分别装200毫升和500毫升的泥浆倒入漏斗。用筛网滤去大的砂粒,将量筒500毫升一端朝上放在漏斗下面,放开手指同时以秒表计时。流出500毫升泥浆所需时间(秒),即为所测泥浆的粘度(视粘度)。作用仪器前,应用清水对粘度计进行校正,该仪器测量清水的粘度为15秒。若误差在±1秒以内,可用下式计算泥浆的实际粘度。 (三)ZNN型旋转粘度计 ZNN型旋转粘度计有手摇两速、电动两速与电动六速三种。主要用于测量泥浆的流变参数。仪器结构如图3。 1.工作原理 电机经过传动装置带动外筒恒悚旋转,借助于被测液体的粘滞性作用于内筒一定的转矩,带动与扭力弹簧相连的内筒旋转一个角度。该转角的大小与液体的粘性成正比。于是液体的粘度测量转换为内筒转角的测量。 2.仪器结构(六速旋转粘度计) ①动力部分 双速同步电机转速 750、1500转/分 电机功率 7.5、15瓦 电源电压 220伏 ②变速部分

钻井液常规性能测定及常用钻井液计算公式

钻井液常规性能测定 一.密度的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将钻井液加热到所需温度。 3、在密度计的杯中注满钻井液,盖上杯盖慢慢拧动压紧。 4、用手指压住杯盖小孔,用清水冲洗并擦干样品杯。 5、把密度计的刀口放在底座的刀垫上,移动游码直到平衡,记录读值。 6、将密度计冼净擦干备用。 二.测定马氏漏斗粘度 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将漏斗悬挂在墙上,且保证垂直;量杯置于漏斗流出管下面。 3、用手指堵住漏斗流出管下口,将搅拌均匀的泥浆倒入漏斗至筛网底;放开手指,同时启动秒表,待泥浆流满量杯达到它的边缘时,按停秒表。秒表所示时间即为泥浆粘度,单位为s。 4、使用完毕,将仪器洗净擦干。 三.流变的测定(ZNN-D6六速旋转粘度计) 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、使用前检查读数指针是否对准刻度盘“0”位,落下托盘,装配好内、外筒。 3、将搅拌均匀的泥浆倒入样品杯至刻度线、将样品杯置于托盘上,上升托盘使液面至外筒刻度线,拧紧托盘手轮。 4、调整变速手把和转速开关,迅速从高到低进行测量,待刻度盘稳定后,分别读取各转速下刻度盘的偏转格数。 5、测量完毕,落下托盘,卸下外筒,将内、外筒及样品杯洗净擦干。 四.钻井液失水的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、用手指堵住泥浆杯底部小孔,将搅拌均匀的泥浆倒入杯内至刻度线处,按顺序放入“O”型密封圈、滤纸、杯盖和杯盖卡,将杯盖卡旋转90°并拧紧旋转手柄。 3、将组装好的泥浆杯组件倒置嵌入气源接头并旋转90°;将量筒置于失水仪下方并对准滤液流出孔。 4、调节气源压力至0.7MPa,打开气源手柄并同时启动秒表,收集滤液于量筒之中。 5、当秒表指示为30min时,将悬于滤液流出孔的液滴收集于量筒之中并移开量筒,此量筒中液体体积即为滤失量。 6、关闭气源手柄,放出泥浆杯中余气;卸下泥浆杯组件,倒去泥浆并洗净擦干。 五.钻井液泥饼粘滞系数的测定(NZ-3A型泥饼粘滞系数测定仪) 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、打开机盖,调节滑板及平衡脚,使水平泡居中;接通电源,按下“清零”键。 3、将泥饼平放在滑板上,滑块纵向轻轻地放在泥饼上,静置1min。 4、按一下“电机”键,使滑板转动,当滑块开始滑动时,再按一下“电机”键,滑板停止转动,此时,显示窗中的数值即为泥饼摩擦角,单位为o,查其显示角度值的正切值,正切值为泥饼的摩擦系数。 5、使用完毕,切断电源,取下滑块和泥饼,擦净仪器,盖上机盖。 六.含砂量的测定 1、按安全检查表内容检查仪器,确保仪器安全可靠。 2、将待测钻井液注入含水量砂量管中至“钻井液”刻度线处,再注入水至“水”刻度线处,用手指堵住含砂量管口,剧烈摇动。

钻井液润滑剂润滑性能及影响因素

钻井液润滑剂润滑性能及影响因素 国内外研究者对钻井液的润滑性能进行了评价,得出的结论是:空气与油处于润滑性的两个极端位置,而水基钻井液的润滑性处于其间。用Baroid公司生产的钻井液极压润滑仪测定了三种基础流体的摩阻系数(钻井液摩阻系数相当于物理学中的摩擦系数),空气为0.5,清水为0.35,柴油为0.07。在配制的三类钻井液中,大部分油基钻井液的摩阻系数在o.08~o.09之间,各种水基钻井液的摩阻系数在0.20~0.35之间,如加有油晶或各类润滑剂,则可降到0.10以下。 对大多数水基钻井液来说,摩阻系数维持在o.20左右时可认为是合格的。但这个标准并不能满足水平井的要求,对水平井则要求钻井液的摩阻系数应尽可能保持在0.08~0.10范围内,以保持较好的摩阻控制。因此,除油基钻井液外,其它类型钻井液的润滑性能很难满足水平井钻井的需要,但可以选用有效的润滑剂改善其润滑性能,以满足实际需要。近年来开发出的一些新型水基仿油性钻井液,其摩阻系数可小于0.10,很接近油基钻井液,其润滑性能可满足水平井钻井的需要。 从提高钻井经济技术指标来讲,润滑性能良好的钻井液具有以下优点: (1)减小钻具的扭矩、磨损和疲劳,延长钻头轴承的寿命; (2)减小钻柱的摩擦阻力,缩短起下钻时间; (3)能用较小的动力来转动钻具; (4)能防粘卡,防止钻头泥包。 钻井液润滑性好,可以减少钻头、钻具及其它配件的磨损,延长使用寿命,同时防止粘附卡钻、减少泥包钻头,易于处理井下事故等。在钻井过程中,由于动力设备有固定功率,钻柱的抗拉、抗扭能力以及井壁稳定性都有极限。若钻井液的润滑性能不好,会造成钻具回转阻力增大,起下钻困难,甚至发生粘附卡钻和日钻具事故;当钻具回转阻力过大时,会导致钻具振动,从而有可能引起钻具断裂和井壁失稳。 1.钻井作业中摩擦现象的特点 随着密封轴承的出现,改善钻井液润滑性能的目的主要是为了降低钻井过程中钻柱的扭矩和阻力。在钻井过程中,按摩擦副表面润滑情况,摩擦可分为以下三种情况(见图4-11):

泥浆性能指标测定方法

泥浆性能指标的测定方法 1、相对密度 泥浆的相对密度的测定施工现场一般是采用泥浆相对密度计来测定。将要量测的泥浆装满泥浆杯,加盖并洗净从小孔溢出的泥浆,然后置于支架上,移动游码,使杠杆呈水平状态,读出游码左侧所示刻度,即为泥浆的相对密度。 2、粘度 用工地标准漏斗粘度计测定。用两端开口量杯分别量取200mL和500mL泥浆,通过虑网虑去大砂粒后,将泥浆700mL均注入漏斗,然后使泥浆从漏斗流出,流500mL量杯所需时间(s),即为所测泥浆的粘度。 校正方法:漏斗中注入700mL清水,流出500mL,所需时间应是15s,其偏差如超过+1s,测量泥浆时应校正。 3、含砂率 施工现场用含砂率计测定含砂率,量测时,把调好的泥浆50mL倒进含砂率计,然后再倒进清水,使总体积为500mL,将仪器口塞紧摇动1min,使泥浆与水混合均匀。再将仪器垂直静放3min,仪器下端沉淀物的体积乘2就是含砂率。 4、静切力 工地用不锈钢泥浆切力计测定。 泥浆切力可用下式计算: θ=(α-Fhr)/(Sh+F) 式中:θ-泥浆切力, α-切力计重计 F -切力计横断面面积 r-泥浆的容重 h-切力计沉入泥浆中的深度 S-切力计横断面周长 切力计用厚度0.7㎜不锈钢板卷制焊成,中空、不漏水,要求尺寸与制成后的重力符合要求。切力计两边从底边向上刻划有尺度,精度至㎜。泥浆筒用铝合金制成,要求不漏水,尺寸符合要求。另外需设置2根圆棒。 量测时,先将1500mL泥浆搅匀后,倒入泥浆筒中。将两根圆棒平行置于泥浆

筒顶面中间,两棒间距约2㎝。再将切力计慢慢竖直插于两棒之间沉放泥浆中,待其下沉稳定后,从切力计上读出沉入泥浆深度h,用相对密度计测出泥浆重度,带入公式,即可计算出该泥浆的初切力。取出切力计,擦净粘着的泥浆,用棒搅动筒内泥浆,静止10min,再用切力计测算初的切力为终切力。计算出的切力单位为N/c㎡。 5、失水率 施工现场一般可以采用滤纸法测定,用一张12㎝×12㎝的滤纸,至于水平玻璃板上,中央画一直径3㎝的圆,将2mL的泥浆滴入圆圈内,30min后测量湿圆圈的平均半径,减去泥浆坍平后泥皮的平均半径,即失水率。再滤纸上量出泥浆皮的厚度,即为泥皮厚度。泥皮愈平坦、愈薄则泥浆质量愈高,一般不宜后于2㎜~3㎜。 6、胶体率 胶体率是泥浆中土粒保持悬浮状态的性能。测定方法可将100mL泥浆倒入100mL的量杯中,用玻璃片盖上,静止24h后,量杯上部泥浆可能澄清为水,测量时其体积如为5mL,则胶体率为100-5=95,即95%。 7、酸碱度 pH值就是常用的酸碱度的表度之一。pH值等于溶液中氢离子浓度的负对数值。pH值等于7时为中性,大于7时为碱性,小于7时为酸性。工地测量pH值方法用比色法测定,取一条pH试纸放在泥浆面上,0.5s后拿出来与标准颜色相比,即可读出pH值。也可用pH酸碱计,将其探针插入泥浆,直接读出pH值。实际施工现场可以根据条件,一般操作是只测定泥浆的相对密度、粘度、含砂率几项指标。控制好这几项指标,泥浆的质量和性能已经能够很好的满足施工要求了。

《水基钻井液性能测试》

《水基钻井液性能测试》 一、填空题25题 1、屈服值的计量单位是Pa ,英制单位常用lb/100ft2。 2、写出下列英文符号在泥浆行业中的中文意思:AV 表观粘度,PV 塑性粘度。 3、测定钻井液滤液中的氯根浓度,用硝酸银标准溶液滴定,用指示剂重铬酸钾指示终点。 4、泥浆报表中常见的英文符号的中文意义是:P f滤液碱度,M f 滤液的甲基橙碱度。 5、初切力是将钻井液充分搅拌后静止10s后测得的数值,终切力是将钻井液充分搅拌后静止10min测得的数值 6、API滤失量指在常温下,压686kPa ,渗滤面积7.1±0.1in2,30min 钻井液滤出的滤液体积。 7、碱度是指一种物质中和酸的能力。由于使钻井液维持碱性的无机离子除了OH-外,还可能有HCO3-和CO32-等离子。 8、钻井液密度是指单位体积的钻井液质量,单位为g/cm3或lb/gal 。 9、马氏漏斗粘度是取1500mL钻井液经马氏漏斗流出1夸脱

(946mL)所需的时间,单位为s。 10、酚酞指示剂在PH=8.3时,由粉红色变为无色。 11、甲基橙指示剂在PH=4.3时由黄色转变为橙红色。 12、现场用硝酸银滴定法对钻井液滤液中的Cl-质量浓度进行检测。 13、LSRV是指流体低剪切速率黏度。 14、钻井液中不能通过200目筛(0.074mm)的砂子体积占钻井液体积的百分数。 15、pH值是指水溶液中氢离子活度对数的负值 16、EDTA标准溶液是0.01mol/L 的二水合乙二胺四乙酸二钠盐溶液 17、以钙离子表示的总硬度TH(mg/L)= 400×(EDTA溶液体积,mL)/(试样体积,mL) 18、钻井液的亚甲基蓝容量是用亚甲基蓝测定法测得的一种膨润土含量指标。 19、钻完井液静切力使用六速旋转粘度计进行测定,测定静止 后的3r/min读值。 20、通常用pH试纸测量,有广泛试纸和精密试纸。 21、蒸馏器是用来分离和测定钻完井液样品所含水、油 和固相体积的仪器

钻井液设计

第8章钻井液设计 本章主要介绍了新疆地区常用的钻井液体系,结合A1-4井及探井资料,设计了A区块井组所使用的钻井液体系、计算了所需钻井液用量,提出了钻井液材料计划等。 钻井液体系设计 钻探的目的是获取油气,保护地层是第一位的任务,因此,搞好钻井液设计,首先必须以地层类型特性为依据,以保护地层为前提,才能达到设计的目的。 新疆地区常用钻井液体系简介: (1)不分散聚合物钻井液体系:不分散聚合物钻井液体系指的是具有絮凝及包被作用的有机高分子聚合物机理的水基钻井液。该体系的特点是:具有很强的抑制性;具有强的携沙功能;有利于提高钻速;有利于近平衡钻井;可减少对油气层的伤害。 (2)分散性聚合物体系(即聚合物磺化体系):聚合物磺化体系是指以磺化机理及少量聚合物作用机理为主配置而成的水基钻井液。该体系的特点是:具有良好的高温稳定性,使用于深井及超深井;具有一定的防塌能力;具有良好的保护油层能力;可形成致密的高质量泥饼,护壁能力强。 (3)钾基(抑制性)钻井液体系:该体系是以聚合物的钾,铵盐及氯化钾为主处理剂配制而成的防塌钻井液。它主要是用来对付含水敏性粘土矿物的易坍塌地层。该体系特点:对水敏性泥岩,页岩具有较好的防塌效果;抑制泥页岩造浆能力较强;对储层中的粘土矿物具有稳定作用;分散型钾基钻井液有较高的固相容限度。 (4)饱和盐水钻井液体系:该体系是一种体系中所含NaCl达到饱和程度的钻井液,是专门针对钻岩盐层而设计的一种具有较强的抑制能力,抗污染能力及防塌能力的钻井液。该体系特点:具有较强的抑制性,由于粘土在其中不宜水化膨胀和分散,故具有较强的控制地层泥页岩造浆的能力;具有较强的抗污染能力,由于它已被NaCl所饱和,故对无机盐的敏感性较低,可以抗较高的盐污染,性能变化小;具有较强的防塌能力,尤其再辅以KCL对含水敏性粘土矿物的页岩具有较强抑制水化剥落作用;可制止盐岩井段溶解成大肚子井眼。由于钻井液中氯化钠已达饱和,故钻遇盐岩时就会减少溶解,以免形成大井眼;缺点是腐蚀性较强。 (5)正电胶钻井液体系是一种以带正电的混合层状金属氢氧化物晶体胶粒(MMH或MSF)为主处理剂的新型钻井液体该体系的特点:具有独特的流变性;有利于提高钻井速度;对页岩具有较强的抑制性;具有良好的悬浮稳定性;有较强

相关文档
最新文档