全国名校高考数学专题训练圆锥曲线
全国一卷圆锥曲线高考题汇编含答案

圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国Ⅰ卷)(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l过点B(1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B作AC 的平行线交AD于点E.(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C 1,直线l 交C1于M ,N 两点,过B且与l垂直的直线与圆A 交于P ,Q两点,求四边形M PN Q面积的取值范围.2、(2015全国Ⅰ卷)(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。
3、(2014全国Ⅰ卷)20.(本小题满分12分)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 3,抛物线E:22x y =的焦点F是C 的一个顶点. (I )求椭圆C 的方程;(II )设P是E 上的动点,且位于第一象限,E 在点P处的切线l 与C 交与不同的两点A,B,线段AB 的中点为D,直线O D与过P且垂直于x 轴的直线交于点M. (i)求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P的坐标.5、(2015山东卷)(20) (本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F为圆心,以1为半径的圆相交,交点在椭圆C上. (Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆2222:144x yEa b+=,P为椭圆C上的任意一点,过点P的直线y kx m=+交椭圆E于A,B两点,射线PO交椭圆E于点Q.(ⅰ)求||||OQOP的值;(ⅱ)求ABQ∆面积最大值.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国Ⅰ卷)(5)已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )(A)(–1,3) (B)(–1,错误!) (C)(0,3)(D)(0,错误!)2、(2015全国Ⅰ卷)(5)已知M(x 0,y 0)是双曲线C :2212x y -=上的一点,F1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是()3 (B )((C)(3-,3) (D)()3、(2014全国Ⅰ卷)4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3CD .3m4、(2016山东卷)(13)已知双曲线E1:22221x y a b-=(a>0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD的中点为E 的两个焦点,且2|AB |=3|B C|,则E 的离心率是_______ .5、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .6、(2014山东卷)(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C2C 的渐近线方程为( )(A)0x = (0y ±= (C)20x y ±= (D)20x y ±=圆锥曲线部分高考试题汇编(抛物线部分)1、(2016全国Ⅰ卷)(10)以抛物线C 的顶点为圆心的圆交C 于A,B 两点,交C的准线于D ,E 两点.已知|AB |=DE |=C 的焦点到准线的距离为( )(A)2 (B )4 (C )6 (D )82、(2015全国Ⅰ卷)(20)(本小题满分12分)在直角坐标系xoy中,曲线C :y=24x 与直线y kx a =+(a >0)交与M ,N两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠O PN ?说明理由。
圆锥曲线高考真题专练(含答案)

(一)数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x=1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得222(41)8440k x kmx m+++-=由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C1,直线l 交C1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(解析版)

专题05 五类圆锥曲线题型-2024年高考数学大题秒杀技巧及专项训练(解析版)【题型1 圆锥曲线中的轨迹方程问题】【题型2 圆锥曲线中齐次化处理斜率乘积问题】【题型3 圆锥曲线中的三角形(四边形)面积问题】【题型4 圆锥曲线中的定点、定值、定直线问题】【题型5 圆锥曲线中的极点与极线】题型1 圆锥曲线中的轨迹方程问题曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系:①曲线C 上的点的坐标都是方程(,)0F x y =的解;②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线.求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略);(2)设曲线上任意一点的坐标为),(y x ;(3)根据曲线上点所适合的条件写出等式;(4)用坐标表示这个等式,并化简;(5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围.y x 、求轨迹方程的方法:定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
直接法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,
∴
(完整)历年高考数学圆锥曲线试题汇总,推荐文档

2 3 5 35 23 2 高考数学试题分类详解——圆锥曲线一、选择题x 2y 2 1. 设双曲线- = 1(a >0,b >0)的渐近线与抛物线 y=x 2 +1 相切,则该双曲线的离心率等于( a 2 b 2C )(A ) (B )2(C ) (D )2. 已知椭圆C : x2+ 2 = 1 的右焦点为 F ,右准线为l ,点 A ∈ l ,线段 AF 交C 于点 B ,若 2FA = 3FB ,则| AF |=(A). (B). 2 (C). (D). 33. 过双曲线 x 2 - y 2= 2 1 (a > 0, b > 0) 的右顶点 A 作斜率为- 1的直线,该直线与双曲线的两条渐近线 a b 21的交点分别为 B , C .若 AB = BC ,则双曲线的离心率是 () 2A. B . C . D . 4. 已知椭圆 x 2 + y 2= 1 (a > b > 0) 的左焦点为 F ,右顶点为 A ,点 B 在椭圆上,且 BF ⊥ x 轴,a2b 2直线 AB 交 y 轴于点 P .若 AP = 2PB ,则椭圆的离心率是()A.3 C. 3B.2D. 1 2 5. 点 P 在直线l : y = x -1 上,若存在过 P 的直线交抛物线 y = x 2 于 A , B 两点,且| PA =| AB | ,则称点 P 为“点”,那么下列结论中正确的是 ( )A. 直线l 上的所有点都是“点”B. 直线l 上仅有有限个点是“点”C. 直线l 上的所有点都不是“点”D. 直线l 上有无穷多个点(点不是所有的点)是“点”6. 设双曲线 x 2a 2 - y 2b 2 = 1的一条渐近线与抛物线 y=x2 +1 只有一个公共点,则双曲线的离心率为().1 610y5 36 A.5 B. 5 C.D. 427. 设斜率为 2 的直线l 过抛物线 y 2 = ax (a ≠ 0) 的焦点 F,且和 y 轴交于点 A,若△OAF(O 为坐标原点)的面积为 4,则抛物线方程为( ).A. y 2 = ± 4xB. y 2 = ± 8xC. y 2 = 4xD. y 2 = 8xx 2 - y 2 8. 双曲线63= 1 的渐近线与圆(x - 3)2 + y 2 = r 2 (r > 0) 相切,则 r=(A ) (B )2(C )3(D )69. 已知直线 y = k (x + 2)(k > 0) 与抛物线 C: y 2 = 8x 相交 A 、B 两点,F 为 C 的焦点。
全国名校高中数学题库--圆锥曲线2

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C的焦点坐标为(0,27e =由1273e e =得13e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩. 代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系.解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点)∵2a=6,2c=10∴a=3, c=5, b=4 所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程.解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ① 224)2(120x x k ----=--+, ② x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,1tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程. (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-y x ,即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). 6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v ?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42= (2)由题可设直线l 的方程为(1)(0)x k y k =-≠,由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去), 又41k =-<-, ∴ 直线l 存在,其方程为440x y +-= 7、设双曲线y a x 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且O P O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I ) e c a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[] 2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即 则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l 设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分 221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………3分 由(1)-(2)可得1.3MN QN k k ∙=-…6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
高考数学《圆锥曲线》解答题专题复习题

高考数学《圆锥曲线》解答题专题复习题1.已知双曲线22221(00)y x a b a b-=>>,与双曲线22142x y -=有相同的渐近线,且经过点M.(1)求双曲线C 的标准方程.(2)已知直线0x y m -+=与曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆2220x y +=上,求实数m 的值.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,112A F =.(1)求椭圆C 的方程;(2)设与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P ,2A P ,2A Q ,1A Q 的斜率分别为1k ,2k ,3k ,4k .(i )求12k k 的值;(ii )若()142353k k k k +=+,求2F PQ △面积的取值范围.3.已知双曲线()2222Γ:10,0x y a b a b-=>>的左右顶点分别为点,A B ,其中2AB =,且双曲线过点()2,3C .(1)求双曲线Γ的方程;(2)设过点()1,1P 的直线分别交Γ的左、右支于,D E 两点,过点E 作垂直于x 轴的直线l ,交线段BC 于点F ,点G 满足EF FG =.证明:直线DG 过定点,并求出该定点.4.已知双曲线C 的渐近线方程是y =,点()2,3M在双曲线C 上.(1)求双曲线C 的离心率e 的值;(2)若动直线l :1y kx =+与双曲线C 交于A ,B 两点,问直线MA ,MB 的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由.5.已知椭圆C 的中心在原点,一个焦点为()10F ,(1)求椭圆C 的标准方程;(2)设过焦点F 的直线l 与椭圆C 交于A 、B 两点,1F 是椭圆的另一个焦点,若1ABF 内切圆的半径r =l 的方程.6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率e =C经过点2⎛ ⎝⎭.(1)求椭圆C 的标准方程;(2)过点()2,0P 且斜率不为零的直线与椭圆C 交于,B D 两点,B 关于x 轴的对称点为A ,求证:直线AD 与x 轴交于定点Q .7.已知椭圆221:4T x y +=,1F 、2F 为椭圆的左右焦点,C 、D 为椭圆的左、右顶点,直线1:2l y x m =+与椭圆T 交于A 、B 两点.(1)若12m =-,求AB ;(2)设直线AD 和直线BC 的斜率分别为1k 、2k ,且直线l 与线段12F F 交于点M ,求12k k 的取值范围.8.已知椭圆()2222:10x y C a b a b +=>>12D ⎫⎪⎭,点,A B 分别是椭圆C 的左、右顶点.(1)求椭圆C 的方程;(2)过点()4,0E 的直线l 与椭圆C 交于,P Q 两点(P 在,E Q 之间),直线,AP BQ 交于点M ,记,ABM PQM 的面积分别为12,S S ,求12S S的取值范围.第8题图第9题图9.如图,已知椭圆C 的焦点为()11,0F -,()21,0F,椭圆C 的上、下顶点分别为,A B ,右顶点为D ,直线l 过点D 且垂直于x 轴,点Q 在椭圆C 上(且在第一象限),直线AQ 与l 交于点N ,直线BQ 与x 轴交于点M .(1)求椭圆C 的标准方程;(2)判定AOM (O 为坐标原点)与ADN △的面积之和是否为定值?若是,请求出该定值;若不是,请说明理由.10.已知双曲线过点(A ,它的渐近线方程是20x y ±=.(1)求双曲线的标准方程;(2)若直线l 交C 于,P Q 两点,直线,AP AQ 的倾斜角互补,求直线l 的斜率.11.已知点(2,0)A -,(2,0)B ,平面内一动点M 满足直线AM 与BM 的斜率乘积为14-.(1)求动点M 的轨迹C 的方程;(2)直线l 交轨迹C 于,P Q 两点,若直线AP 的斜率是直线BQ 的斜率的4倍,求坐标原点O 到直线l 的距离的取值范围.12.若双曲线E :2221(0)x y a a-=>y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若AB =,点C 是双曲线上一点,且()OC m OA OB =+,求k ,m 的值.13.已知1F ,2F 分别是椭圆G22+22=1>>0的左、右焦点,且焦距为MN 平行于x 轴,且114F M F N +=.(1)求椭圆E 的方程;(2)设A ,B 为椭圆E 的左右顶点,P 为直线:4l x =上的一动点(点P 不在x 轴上),连AP 交椭圆于C 点,连PB 并延长交椭圆于D 点,试问是否存在λ,使得ACD BCD S S λ= 成立,若存在,求出λ的值;若不存在,说明理由.14.平面上的动点(,)P x y 到定点(0,1)F 的距离等于点P 到直线1y =-的距离,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线:l y x m =+与曲线C 相交于A ,B 两点,线段AB 的中点为M .是否存在这样的直线l ,使得MF AB ⊥,若存在,求实数m 的值,若不存在,请说明理由.15.已知双曲线()22:1,,24x C y M m -=,斜率为k 的直线l 过点M .(1)若0m =,且直线l 与双曲线C 只有一个交点,求k 的值;(2)已知点(2,0)T ,直线l 与双曲线C 有两个不同的交点A ,B ,直线,TA TB 的斜率分别为12,k k ,若12k k +为定值,求实数m 的值.16.已知椭圆(2222:10)x y C a b a b+=>>的离心率为12,左焦点F 与原点O 的距离为1,正方形PQMN 的边PQ ,MN 与x 轴平行,边PN ,QM 与y 轴平行,2112,,,7777P M ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,过F 的直线与椭圆C 交于A ,B 两点,线段AB 的中垂线为l .已知直线AB 的斜率为k ,且0k >.(1)若直线l 过点P ,求k 的值;(2)若直线l 与正方形PQMN 的交点在边PN ,QM 上,l 在正方形PQMN 内的线段长度为s ,求sAB的取值范围.17.已知F 是椭圆C :2222+1(0)x y a b a b=>>的一个焦点,点13,2M 在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 分别相交于A ,B 两点,且12OA OB k k +=-(O 为坐标原点),求直线l 的斜率的取值范围.参考答案1.(1)2212x y -=(2)2m =±2.(1)2211612x y +=(2)(i )34-;(ii )950,2⎛ ⎝⎭3.(1)2213y x -=(2)证明略,(1,0)B 4.(1)2(2)是,35.(1)2212x y +=(2)1x y =±+6.(1)2212x y +=(2)证明略7.(1(2)7⎡-+⎣8.(1)2214x y +=(2)()0,19.(1)2212x y +=(2210.(1)2214x y -=(2)11.(1)2214x y +=(0)y ≠(2)6(0,)512.(1)((2)51,24k m ==±13.(1)2214x y +=(2)存在,314.(1)24x y =;(2)不存在15.(1)12k =±或k =(2)2m =.16.(1)1k =(2)12,78⎛ ⎝⎦17.(1)2214x y +=(2)1[,0)(1,)4-+∞。
全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题一、选择题(本大题共60小题)1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4(de)点到焦点(de)距离为5,则p(de)值为( )C. 2D. 42.(江苏省启东中学高三综合测试三)已知椭圆E(de)短轴长为6,焦点F到长轴(de)一个端点(de)距离等于9,则椭圆E(de)离心率等于( )3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x249+y26=1(de)两个焦点,P是椭圆上(de)点,且|PF1|:|PF2|=4:3,则△PF1F2(de)面积为( )4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0(de)直线l过椭圆x2 a2+y2b2=1(a>b>0)(de)右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( )A.钝角B.直角C.锐角D.都有可能5.(江西省五校高三开学联考)从一块短轴长为2b(de)椭圆形玻璃镜中划出一块面积最大(de)矩形,其面积(de)取值范围是[3b2,4b2],则这一椭圆离心率e(de)取值范围是( )A.[53,32] B.[33,22] C.[53,22] D.[33,32]6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2b2=1(a>b >0)(de)右顶点和左焦点,点B 为椭圆短轴(de)一个端点,若BF →·BA →=0=0,则椭圆(de)离心率e 为( )7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2b2=1(a >b >0)(de)右焦点为圆心(de)圆经过原点,且被椭圆(de)右准线分成弧长为2:1(de)两段弧,那么该椭圆(de)离心率等于( )8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)(de)左,右焦点分别为F 1,F 2,抛物线C 2(de)顶点在原点,它(de)准线与双曲线C 1(de)左准线重合,若双曲线C 1与抛物线C 2(de)交点P 满足PF 2⊥F 1F 2,则双曲线C 1(de)离心率为( ) A. 2B. 3C.23329.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2b2=1(a >b >0)(de)中心,右焦点,右顶点,右准线与x 轴(de)交点依次为O ,F ,A ,H ,则|FA ||OH |(de)最大值为( )A.12B.13C.1410.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x (de)焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l (de)倾斜角θ≥π4,则|FA |(de)取值范围是( )A.[14,32)B.(14,34+22]C.(14,32]D.(14,1+22]11.(北京市十一学校高三数学练习题)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)(de)两个焦点为F 1,F 2,点A 在双曲线第一象限(de)图象上,若△AF 1F 2(de)面积为1,且tan ∠AF 1F 2=12,tan ∠AF 2F 1=-2,则双曲线方程为( )-y 23=1 -3y 2=1 -12y 25=1 -5y 212=1 12.(北京市西城区高三抽样测试)若双曲线x 2+ky 2=1(de)离心率是2,则实数k (de)值是( )A.-3B.-13 D.1313.(北京市西城区高三抽样测试)设x ,y ∈R ,且2y 是1+x 和1-x (de)等比中项,则动点(x ,y )(de)轨迹为除去x 轴上点(de)( )A.一条直线B.一个圆C.双曲线(de)一支D.一个椭圆14.(北京市宣武区高三综合练习一)已知P 为抛物线y =12x 2上(de)动点,点P 在x 轴上(de)射影为M ,点A (de)坐标是(6,172),则|PA |+|PM |(de)最小值是( )B.192 D.21215.(北京市宣武区高三综合练习二)已知F 1,F 2是双曲线(de)两个焦点,Q 是双曲线上任一点(不是顶点),从某一焦点引∠F 1QF 2(de)平分线(de)垂线,垂足为P ,则点P (de)轨迹是( )A.直线B.圆C.椭圆D.双曲线16.(四川省成都市高中毕业班摸底测试)已知定点A (3,4),点P 为抛物线y 2=4x 上一动点,点P 到直线x =-1(de)距离为d ,则|PA |+d (de)最小值为( )5 -2317.(东北区三省四市第一次联合考试)椭圆(de)长轴为A 1A 2,B 为短轴一端点,若∠A 1BA 2=120°,则椭圆(de)离心率为( ) A.33 B.63 C.32 D.1218.(东北三校高三第一次联考)设双曲线x 2a 2-y 2b2=1(a >0,b >0)(de)离心率为3,且它(de)一条准线与抛物线y 2=4x (de)准线重合,则此双曲线(de)方程为( )-y 26=1 -2y 23=1 -y 296=1 -y 224=1 19.(东北师大附中高三第四次摸底考试)已知椭圆x 29+y 25=1,过右焦点 F做不垂直于x 轴(de)弦交椭圆于A ,B 两点,AB (de)垂直平分线交x 轴于N ,则|NF |:|AB |=( )A.12B.13C.23D.1420.(福建省莆田一中期末考试卷)已知AB是椭圆x225+y29=1(de)长轴,若把线段AB五等分,过每个分点作AB(de)垂线,分别与椭圆(de)上半部分相交于C,D,E,G四点,设F是椭圆(de)左焦点,则|FC|+|FD|+|FE|+|FG|(de)值是( )21.(福建省泉州一中高三第一次模拟检测)过抛物线y2=4x(de)焦点作直线l交抛物线于A,B两点,若线段AB中点(de)横坐标为3,则|AB|等于( )22.(福建省厦门市高三质量检查)若抛物线y2=2px(de)焦点与椭圆x26+y22=1(de)右焦点重合,则p(de)值为( )A.-2 C.-423.(福建省仙游一中高三第二次高考模拟测试)已知双曲线(de)中心在原点,离心率为3,若它(de)一条准线与抛物线y2=4x(de)准线重合,则此双曲线与抛物线y2=4x(de)交点到抛物线焦点(de)距离为( )A.2124.(福建省漳州一中期末考试)过抛物线y2=4x(de)焦点F作直线l交抛物线于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|=( )B. 625.(甘肃省河西五市高三第一次联考)已知曲线C:x2a2+y2b2=1(a>b>0)是以F1,F2为焦点(de)椭圆,若以F1F2为直径(de)圆与椭圆(de)一个交点为P,且tan ∠PF 1F 2=12,则此椭圆(de)离心率为( )A.12B.23C.13D.5326.(广东省惠州市高三第三次调研考试)椭圆满足这样(de)光学性质:从椭圆(de)一个焦点发射光线,经椭圆反射后,反射光线经过椭圆(de)另一个焦点.现在设有一个水平放置(de)椭圆形台球盘,满足方程:x 216+y 29=1,点A ,B 是它(de)两个焦点,当静止(de)小球放在点A 处,从点A 沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,再回到点A 时,小球经过(de)最短路程是( )D.以上均有可能27.(广东省揭阳市第一次模拟考试)两个正数a ,b (de)等差中项是92,一个等比中项是25,且a >b ,则双曲线x 2a 2-y 2b2=1(de)离心率为( )A.53B.414C.54D.41528.(广东省揭阳市第一次模拟考试)已知:区域Ω={(x ,y )|⎩⎪⎨⎪⎧y ≥0y ≤4-x2},直线y =mx +2m 和曲线y =4-x 2有两个不同(de)交点,它们围成(de)平面区域为M ,向区域Ω上随机投一点A ,点A 落在区域M 内(de)概率为P (M ),若P (M )∈[π-22π,1],则实数m (de)取值范围为( ) A.[12,1] B.[0,33] C.[33,1]D.[0,1]29.(广东省汕头市潮阳一中高三模拟)已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b>0)(de)左焦点,点E 是该双曲线(de)右顶点,过F 且垂直于x 轴(de)直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线(de)离心率e (de)取值范围是( )A.(1,+∞)B.(1,2)C.(1,1+2)D.(2,1+2)30.(广东省韶关市高三第一次调研考试)椭圆x 2+my 2=1(de)焦点在y 轴上,长轴长是短轴长(de)两倍,则m (de)值为( )A .14 B.1231.(广东实验中学高三第三次阶段考试)过抛物线y =14x 2准线上任一点作抛物线(de)两条切线,若切点分别为M ,N ,则直线MN 过定点( )A.(0,1)B.(1,0)C.(0,-1)D.(-1,0)32.(贵州省贵阳六中、遵义四中高三联考)设双曲线以椭圆x 225+y 29=1长轴(de)两个端点为焦点,其准线过椭圆(de)焦点,则双曲线(de)渐近线(de)斜率为( )A .±2B .±43C .±12D .±3433.(贵州省贵阳六中、遵义四中高三联考)设椭圆x 2a 2+y 2b2=1(a >b >0)(de)离心率为e =21,右焦点为F (c ,0),方程ax 2+bx -c =0(de)两个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A.必在圆x 2+y 2=2内 B.必在圆x 2+y 2=2上 C.必在圆x 2+y 2=2外D.以上三种情形都有可能34.(安徽省合肥市高三年级第一次质检)已知双曲线C :x 2a 2-y 2b2=1满足条件:(1)焦点为F 1(-5,0),F 2(5,0);(2)离心率为53,求得双曲线C (de)方程为f (x ,y )=0.若去掉条件(2),另加一个条件求得双曲线C (de)方程仍为f (x ,y )=0,则下列四个条件中,符合添加(de)条件共有( ) ①双曲线C :x 2a 2-y 2b 2=1上(de)任意点P 都满足||PF 1|-|PF 2||=6;②双曲线C :x 2a 2-y 2b 2=1(de)—条准线为x =253;③双曲线C :x 2a 2-y 2b2=1上(de)点P 到左焦点(de)距离与到右准线(de)距离比为53;④双曲线C :x 2a 2-y 2b2=1(de)渐近线方程为4x ±3y =0.个 个 个 个35.(河北衡水中学第四次调考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0),被方向向量为k =(6,6)(de)直线截得(de)弦(de)中点为(4,1),则该双曲线离心率(de)值是( ) A.52 B.62 C.10336.(河北衡水中学第四次调考)设F 1,F 2为椭圆x 24+y 23=1(de)左,右焦点,过椭圆中心任作一条直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF 1→·PF 2→(de)值等于( ) 37.(河北省正定中学高三一模)已知P 是椭圆x 225+y 29=1上(de)点,F 1,F 2分别是椭圆(de)左,右焦点,若PF 1→·PF 2→|PF 1→|·|PF 2→|=12,则△F 1PF 2(de)面积为( )3 3 C. 3 D.3338.(河北省正定中学高三第四次月考)已知A ,B 是抛物线y 2=2px (p >0)上(de)两个点,O 为坐标原点,若|OA |=|OB |且△AOB (de)垂心恰是抛物线(de)焦点,则直线AB (de)方程是( )=p =3p =52p =32p39.(河北省正定中学高三第五次月考)AB 是抛物线y 2=2x (de)一条焦点弦,|AB |=4,则AB 中点C (de)横坐标是( )A. 2B.12C.32D.5240.(河南省濮阳市高三摸底考试)已知双曲线x 2a 2-y 2b2=1(a >0,b >0),若过右焦点F 且倾斜角为30°(de)直线与双曲线(de)右支有两个交点,则此双曲线离心率(de)取值范围是( )A.(1,2)B.(1,233)C.[2,+∞)D.[233,+∞)41.(黑龙江省哈尔滨九中第三次模拟考试)P 是椭圆x 225+y 29=1上一点,F 是椭圆(de)右焦点,OQ →=12(OP →+OF →),|OQ →|=4,则点P 到该椭圆左准线(de)距离为( )D.5242.(湖北省八校高三第二次联考)经过椭圆x 24+y 23=1(de)右焦点任意作弦AB ,过A 作椭圆右准线(de)垂线AM ,垂足为M ,则直线BM 必经过点( )A.(2,0)B.(52,0)C.(3,0)D.(72,0)43.(湖北省三校联合体高三2月测试)过双曲线M :x 2-y2b2=1(b >0)(de)左顶点A 作斜率为1(de)直线l ,若l 与双曲线M (de)两条渐近线分别相交于B ,C ,且|AB |=|BC |,则双曲线M (de)离心率是( )A.10B. 5C.103D.5244.(湖北省鄂州市高考模拟)下列命题中假命题是( ) A.离心率为2(de)双曲线(de)两渐近线互相垂直B.过点(1,1)且与直线x -2y +3=0垂直(de)直线方程是2x +y -3=0C.抛物线y 2=2x (de)焦点到准线(de)距离为1 +y 252=1(de)两条准线之间(de)距离为25445.(湖北省鄂州市高考模拟)点P 是抛物线y 2=4x 上一动点,则点P 到点A (0,-1)(de)距离与P 到直线x =-1(de)距离和(de)最小值是( )A. 5B. 3 D.2 46.(湖北省黄冈市秋季高三年级期末考试)双曲线(de)虚轴长为4,离心率为e =62,F 1,F 2分别是它(de)左,右焦点,若过F 1(de)直线与双曲线(de)左支交于A ,B 两点,且|AB |是|AF 2|与|BF 2|(de)等差中项,则|AB |=( ) 2 2 247.(湖北省荆州市高中毕业班质量检测)已知m ,n ,s ,t ∈R ,m +n =2,m s +nt=9其中m ,n 是常数,且s +t (de)最小值是49,满足条件(de)点(m ,n )是椭圆x 24+y 22=1一弦(de)中点,则此弦所在(de)直线方程为( ) -2y +1=0 -y -1=0 +y -3=0 +2y -3=048.(湖北省随州市高三五月模拟)设a ,b 是方程x 2+x ·cot θ-cos θ=0(de)两个不等(de)实数根,那么过点A (a ,a 2)和B (b ,b 2)(de)直线与椭圆x 2+y 22=1(de)位置关系是( ) A.相离 B.相切 C.相交 D.随θ(de)变化而变化49.(湖北省武汉市武昌区高中毕业生元月调研测试)设θ是三角形(de)一个内角,且sin θ+cos θ=15,则方程x 2sin θ+y 2cos θ=1所表示(de)曲线为( )A.焦点在x 轴上(de)椭圆B.焦点在y 轴上(de)椭圆C.焦点在x 轴上(de)双曲线D.焦点在y 轴上(de)(de)双曲线50.(湖南省长沙市一中高三第六次月考)设双曲线x 2a 2-y 2b2=1(b >a >0)(de)半焦距为c ,直线l 过A (a ,0),B (0,b )两点,若原点O 到l (de)距离为34c ,则双曲线(de)离心率为( ) A.233或2C.2或233D.23351.(湖南省雅礼中学高三年级第六次月考)双曲线x 2a 2-y 2b2=1(a >0,b >0)(de)左,右焦点分别为F 1,F 2,过焦点F 2且垂直于x 轴(de)弦为AB ,若∠AF 1B =90°,则双曲线(de)离心率为( )A.12(2-2)B.2-1C.2+1D.12(2+2)52.(湖南省岳阳市高三第一次模拟)Q 是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2为左,右焦点,过F 1作∠F 1QF 2外角平分线(de)垂线交F 2Q (de)延长线于P 点.当Q 点在椭圆上运动时,P 点(de)轨迹是( )A.直线B.圆C.椭圆D.双曲线53.(吉林省吉林市高三上学期期末)设斜率为2(de)直线l ,过双曲线x 2a 2-y 2b2=1(a >0,b >0)(de)右焦点,且与双曲线(de)左,右两支分别相交,则双曲线离心率e (de)取值范围是( )> 5 > 3 <e < 3 <e <5 54.(江西省鹰潭市高三第一次模拟)若直线y =32x 与双曲线x 2a 2-y2b 2=1(a >0,b >0)(de)交点在实轴上射影恰好为双曲线(de)焦点,则双曲线(de)离心率是( )A. 2 255.(宁夏区银川一中第六次月考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)(de)离心率是62,则椭圆x 2a 2+y 2b2=1(de)离心率是( )A.12B.33C.22D.3256.(山东省聊城市第一期末统考)已知点F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)(de)左,右焦点,过F 1且垂直于x 轴(de)直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率(de)取值范围是( ) A.(1+2,+∞) B.(1,1+2) C.(1,3) D.(3,22)57.(山东省实验中学高三第三次诊断性测试)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同(de)焦点(-c ,0)和(c ,0),若c 是a ,m (de)等比中项,n 2是2m 2与c 2(de)等差中项,则椭圆(de)离心率是( )A.33 B.22 C.14 D.1258.(山东省郓城一中高三第一学期期末考试)已知对称轴为坐标轴(de)双曲线(de)两条渐近线方程为y=±bax(a>0,b>0),若双曲线上有一点M(x0,y0),使b|x0|<a|y0|,则双曲线焦点( )A.在x轴上B.在y轴上C.当a>b时,在x轴上D.当a<b时,在y轴上59.(山东省郓城一中高三第一学期期末考试)已知对k∈R,直线y-kx-1=0与椭圆x25+y2m=1恒有公共点,则实数m(de)取值范围是( )A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)60.(山东省郓城一中高三第一学期期末考试)已知A,B是抛物线y2=2px(p >0)上异于原点O(de)两点,则“OA→·OB→=0”是“直线AB恒过定点(2p,0)”(de)( )A.充分非必要条件B.充要条件C.必要非充分条件D.非充分非必要条件二、填空题(本大题共40小题)61.(江苏省启东中学高三综合测试二)已知抛物线y2=a(x+1)(de)准线方程是x=-3,那么抛物线(de)焦点坐标是 .62.(江苏省启东中学高三综合测试三)已知动圆P与定圆C:(x+2)2+y2=1相外切,又与定直线l:x=1相切,那么动圆(de)圆心P(de)轨迹方程是 .63.(安徽省皖南八校高三第一次联考)已知P为双曲线x216-y29=1(de)右支上一点,P到左焦点距离为12,则P到右准线距离为 .64.(北京市东城区高三综合练习一)已知双曲线x2a2-y2b2=1(a>0,b>0)(de)左,右焦点分别为F1,F2,若在双曲线(de)右支上存在一点P,使得|PF1|=3|PF2|,则双曲线(de)离心率e(de)取值范围为 .65.(北京市东城区高三综合练习二)已知椭圆x2a2+y2b2=1(de)左、右焦点分别为F1,F2,点P为椭圆上一点,且∠PF1F2=30°,∠PF2F1=60°,则椭圆(de)离心率e= .66.(北京市海淀区高三统一练习一)若双曲线x2a2-y29=1(a>0)(de)一条渐近线方程为3x-2y=0,则a= .67.(北京市十一学校高三数学练习题)已知双曲线x2a2-y2b2=1(a,b∈R+)(de)离心率e∈[2,2],则一条渐近线与实轴所构成(de)角(de)取值范围是 .68.(北京市西城区4月高三抽样测试)已知两点A(1,0),B(b,0),若抛物线y2=4x上存在点C使△ABC为等边三角形,则b= .69.(北京市宣武区高三综合练习一)长为3(de)线段AB(de)端点A,B分别在x,y轴上移动,动点C(x,y)满足AC→=2CB→,则动点C(de)轨迹方程是 .70.(北京市宣武区高三综合练习二)设抛物线x2=12y(de)焦点为F,经过点P(2,1)(de)直线l与抛物线相交于A,B两点,又知点P恰为AB(de)中点,则|AF|+|BF|= .71.(四川省成都市高中毕业班摸底测试)与双曲线x 29-y 216=1有共同(de)渐近线,且焦点在y 轴上(de)双曲线(de)离心率为 .72.(东北区三省四市第一次联合考试)过抛物线y 2=4x (de)焦点F (de)直线交抛物线于A ,B 两点,则1|AF |+1|BF |= .73.(东北三校高三第一次联考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)(de)离心率(de)取值范围是e ∈[233,2],则两渐近线夹角(de)取值范围是 .74.(东北师大附中高三第四次摸底考试)若抛物线y 2=2px (de)焦点与椭圆x 28+y 24=1(de)右焦点重合,则p (de)值为 . 75.(福建省南靖一中第四次月考)过椭圆x 236+y 225=1(de)焦点F 1作直线交椭圆于A ,B 二点,F 2是此椭圆(de)另一焦点,则△ABF 2(de)周长为 .76.(福建省泉州一中高三第一次模拟检测)若双曲线x 2a 2-y 2b2=1(de)渐近线与方程为(x -2)2+y 2=3(de)圆相切,则此双曲线(de)离心率为 .77.(福建省厦门市高三质量检查)点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2(de)一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1,F 2是双曲线C 1(de)两个焦点,则双曲线C 1(de)离心率为 .78.(福建省厦门市高三质量检查)已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点(de)坐标为(3,0),|AM →|=1且PM →·AM →=0,则|PM →|(de)最小值是 .79.(福建省漳州一中上期期末考试)双曲线x 29-y 216=1(de)两个焦点为F 1,F 2,点P 在该双曲线上,若PF 1→·PF 2→=0,则点P 到x 轴(de)距离为 .80.(甘肃省兰州一中高三上期期末考试)已知P (x ,y )是抛物线y 2=-8x (de)准线与双曲线x 28-y 22=1(de)两条渐近线所围成(de)三角形平面区域内(含边界)(de)任意一点,则z =2x -y (de)最大值为 . 81.(广东省汕头市澄海区高三第一学期期末考试)经过抛物线y 2=4x (de)焦点F 作与x 轴垂直(de)直线,交抛物线于A ,B 两点, O 是抛物线(de)顶点,再将直角坐标平面沿x 轴折成直二面角,此时A ,B 两点之间(de)距离为 ,∠AOB (de)余弦值是 .82.(广东省五校高三上期末联考)若抛物线y 2=2px (de)焦点与双曲线x 26-y 23=1(de)右焦点重合,则p (de)值为 .83.(河北衡水中学第四次调考)椭圆x 2a 2+y 2b2=1(a >b >0)(de)两个焦点为F 1,F 2,点P 为椭圆上(de)点,则能使∠F 1PF 2=π2(de)点P (de)个数可能有个.(把所有(de)情况填全)84.(河北省正定中学高三第四次月考)已知m ,n ,m +n 成等差数列,m ,n ,mn成等比数列,则椭圆x 2m +y 2n=1(de)离心率是 .85.(河北省正定中学高三第五次月考)椭圆x 29+y 24=1(de)焦点为F 1,F 2,点P为椭圆上(de)动点,当PF 1→·PF 2→<0时,点P (de)横坐标(de)取值范围是 .86.(河南省濮阳市高三摸底考试)已知椭圆x 216+y 24=1(de)左右焦点分别为F 1与F 2,点P 在直线l :x -3y +8+23=0上.当∠F 1PF 2取最大值时,|PF 1||PF 2|(de)值为 .87.(湖北省三校联合体高三2月测试)设中心在原点(de)双曲线与椭圆x 22+y 2=1有公共(de)焦点,且它们(de)离心率互为倒数,则该双曲线(de)方程是 .88.(湖北省黄冈市秋季高三年级期末考试)已知点P 是抛物线y 2=4x 上(de)动点,点P 在y 轴上(de)射影是M ,点A (de)坐标是(4,a ),则当|a |>4时,|PA |+|PM |(de)最小值是 .89.(湖北省荆门市高三上学期期末)椭圆x 23+y 22=1(de)右焦点为F ,过左焦点且垂直于x 轴(de)直线为l 1,动直线l 2垂直于直线l 1于点P ,线段PF (de)垂直平分线交l 2于点M ,点M (de)轨迹为曲线C ,则曲线C 方程为 ;又直线y =x -1与曲线C 交于A ,B 两点,则|AB →|等于 .90.(湖北省荆州市高中毕业班质量检测)已知F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a>0,b>0)(de)左,右焦点,P为双曲线左支上(de)一点,若|PF2|2|PF1|=8a,则双曲线(de)离心率(de)取值范围是 .91.(湖北省武汉市武昌区高中毕业生元月调研测试)过椭圆x29+y24=1内一点P(1,1)作弦AB,若AP→=PB→,则直线AB(de)方程为 .92.(湖南省十二校高三第一次联考)若双曲线x24-y2b2=1(de)一条准线与抛物线y2=4x(de)准线重合,则双曲线(de)渐近线方程是 . 93.(湖南省岳阳市高三第一次模拟)过定点P(1,4)作直线交抛物线C:y=2x2于A,B两点, 过A,B分别作抛物线C(de)切线交于点M,则点M(de)轨迹方程为 .94.(湖南省岳阳市高三第一次模拟)设P是曲线y2=4x上(de)一个动点,则点P到点A(-1,2)(de)距离与点P到x=-1(de)距离之和(de)最小值为 .95.(湖南省株洲市高三第二次质检)直线l交抛物线y2=2x于M(x1,y1),N(x2,y2),且l过焦点,则y1y2(de)值为 .96.(江苏省南京市高三第一次调研测试)已知抛物线y2=mx(m≠0)(de)准线与椭圆x26+y22=1(de)右准线重合,则实数m(de)值是 .97.(江苏省南通市高三第二次调研考试)过抛物线y2=2px(p>0)(de)焦点F(de)直线l交抛物线于A,B两点,交准线于点C.若CB→=2BF→,则直线AB(de)斜率为 .98.(江苏省前黄高级中学高三调研)过抛物线y2=2px(p>0)(de)焦点F (de)直线交抛物线于点A ,B ,交其准线于点C (B 在FC 之间),且|BC |=2|BF |,|AF |=12,则p (de)值为 .99.(江苏省南通通州市高三年级第二次统一测试)已知中心在原点,焦点在x 轴上(de)双曲线(de)一条渐近线为mx -y =0,若m 在集合{1,2,3,4,5,6,7,8,9}中任意取一个值,使得双曲线(de)离心率大于3(de)概率是 .100.(山东省郓城一中高三第一学期期末考试)已知F 1,F 2是椭圆x 2a 2+y 2(10-a )2=1(5<a <10)(de)两个焦点,B 是短轴(de)一个端点,则△F 1BF 2(de)面积(de)最大值是 .全国名校高考专题训练——圆锥曲线解答题1.(河北省正定中学高三第五次月考)已知直线l 过椭圆E :x 2+2y 2=2(de)右焦点F ,且与E 相交于P ,Q 两点.(Ⅰ)设OR →=12(OP →+OQ →)(O 为原点),求点R (de)轨迹方程; (Ⅱ)若直线l (de)倾斜角为60°,求1|PF |+1|QF |(de)值.2.(河南省开封市高三年级第一次质量检测)双曲线x 2a 2-y 2b2=1(a >0,b >0)(de)左,右焦点分别为F 1,F 2,O 为坐标原点,点A 在双曲线(de)右支上,点B 在双曲线左准线上,F 2O →=AB →,OF 2→·OA →=OA →·OB →. (Ⅰ)求双曲线(de)离心率e ;(Ⅱ)若此双曲线过C (2,3),求双曲线(de)方程;(Ⅲ)在(Ⅱ)(de)条件下,D 1,D 2分别是双曲线(de)虚轴端点(D 2在y 轴正半轴上),过D 1(de)直线l 交双曲线M ,N ,D 2M →⊥D 2N →,求直线l (de)方程.3.(河南省濮阳市高三摸底考试)直线AB 过抛物线x 2=2py (p >0)(de)焦点F ,并与其相交于A ,B 两点,Q 是线段AB (de)中点,M 是抛物线(de)准线与y轴(de)交点,O 是坐标原点. (Ⅰ)求MN →·MB →(de)取值范围;(Ⅱ)过A ,B 两点分别作此抛物线(de)切线,两切线相交于N 点.求证:MN →·OF →=0,NQ →∥OF →.4.(河南省许昌市高三上期末质量评估)已知椭圆x 22+y 2=1(de)左焦点为F ,O 为坐标原点.(Ⅰ)求过点O ,F ,并且与椭圆(de)左准线l 相切(de)圆(de)方程;(Ⅱ)设过点F (de)直线交椭圆于A ,B 两点,并且线段AB (de)中点在直线x +y =0上,求直线AB (de)方程.5.(黑龙江省哈尔滨九中第三次模拟考试)已知P (-3,0),点R 在y 轴上,点Q 在x (de)正半轴上,点M 在直线RQ 上,且PR →·RM →=0,RM →=-32MQ →. (Ⅰ)当R 在y 轴上移动时,求M 点(de)轨迹C ;(Ⅱ)若曲线C (de)准线交x 轴于N ,过N (de)直线交曲线C 于两点AB ,又AB (de)中垂线交x 轴于点E ,求E 横坐标取值范围;(Ⅲ)在(Ⅱ)中,△ABE 能否为正三角形.6.(湖北省八校高三第二次联考)已知A ,B 是抛物线x 2=2py (p >0)上(de)两个动点,O 为坐标原点,非零向量OA →,OB →满足|OA →+OB →|=|OA →-OB →|.(Ⅰ)求证:直线AB 经过一定点;(Ⅱ)当AB (de)中点到直线y -2x =0(de)距离(de)最小值为255时,求p (de)值.7.(湖北省三校联合体高三2月测试)已知半圆x 2+y 2=4(y ≥0),动圆M 与此半圆相切且与x 轴相切.(Ⅰ)求动圆圆心M (de)轨迹方程;(Ⅱ)是否存在斜率为13(de)直线l ,它与(Ⅰ)中所得轨迹由左到右顺次交于A ,B ,C ,D 四个不同(de)点,且满足|AD |=2|BC |若存在,求出l (de)方程,若不存在,说明理由.8.(湖北省鄂州市高考模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)(de)左、右焦点分别是F 1(-c ,0),F 2(c ,0),Q 是椭圆外(de)动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆(de)交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P(de)横坐标,证明1||c F P a x a=+;(Ⅱ)求点T(de)轨迹C(de)方程;(Ⅲ)试问:在点T(de)轨迹C 上,是否存在点M,使△F 1MF 2(de)面积S=.2b 若存在,求∠F 1MF 2(de)正切值;若不存在,请说明理由.。
2024年全国一卷数学新高考题型细分S13圆锥曲线解答题3

2024年全国一卷新高考题型细分S13——圆锥曲线 大题31、试卷主要是2024年全国一卷新高考地区真题、模拟题,合计202套。
其中全国高考真题4套,广东47套,山东22套,江苏18套,浙江27套,福建15套,河北23套,湖北19套,湖南27套。
2、题目设置有尾注答案,复制题干的时候,答案也会被复制过去,显示在文档的后面,双击尾注编号可以查看。
方便老师备课选题。
3、题型纯粹按照个人经验进行分类,没有固定的标准。
4、《圆锥曲线——大题》题目主要按长短顺序排版,具体有:短,中,长,涉后导数等,大概206道题。
每道题目后面标注有类型和难度,方便老师备课选题。
1. (2024年冀J12大数据应用调研)19. 已知圆()()22:4,1,0,1,0O x y B C +=-.点M 在圆O 上,延长CM 到A ,使CM MA =,点P 在线段AB 上,满足()0PA PC AC +⋅=.(1)求点P 的轨迹E 的方程;(①)(2)设Q 点在直线1x =上运动,()()122,0,2,0D D -.直线1QD 与2QD 与轨迹E 分别交于G H ,两点,求OGH 面积的最大值.(椭圆,中下;面积,最值,中档;)2. (2024年冀J16邯郸三调)18. 已知椭圆2222:1(0,0)x y E a b a b +=>>经过2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭两点.(1)求E 的方程;(②)(2)若圆221x y +=的两条相互垂直的切线12,l l 均不与坐标轴垂直,且直线12,l l 分别与E 相交于点A ,C 和B ,D ,求四边形ABCD 面积的最小值. (椭圆,基础;面积,最值,中档;)3. (2024年冀J11衡水一模)17. 已知椭圆2222:1(0)x y C a b a b+=>>过31,2⎛⎫ ⎪⎝⎭和⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(③)(2)求AB 的范围.(椭圆,基础;长度,范围,中档;)4. (2024年粤J105湛江二模)18. 双曲线2222:1(0,0)x y C a b a b-=>>上一点(D 到左、右焦点的距离之差为6,(1)求双曲线C 的方程,(④)(2)已知()(),3,03,0A B -,过点()5,0的直线l 与C 交于,M N (异于,A B )两点,直线MA 与NB 交于点P ,试问点P 到直线2x =-的距离是否为定值?若是,求出该定值;若不是,请说明理由, (双曲线,易;距离,定值,中档;)5. (2024年粤J104名校一联考)16. 现有一“v ”型的挡板如图所示,一椭圆形物件的短轴顶点被固定在A 点.物件可绕A 点在平面内旋转.AP 间距离可调节且与两侧挡板的角度固定为60°.已知椭圆长轴长为4,短轴长为2.(1)在某个角度固定椭圆,则当椭圆不超过挡板时AP 间距离最短为多少;(⑤)(2)为了使椭圆物件能自由绕A 点自由转动,AP 间距离最短为多少.求出最短距离并证明其可行性. (椭圆,距离最值,中档;距离最值,中档;)6. (2024年闽J13厦门二检)17.(15分)双曲线C :()222210,0x y a b a b-=>>,点T在C 上.(1)求C 的方程;(⑥)(2)设圆O :222x y +=上任意一点P 处的切线交C 于M 、N 两点,证明:以MN 为直径的圆过定点.(双曲线,基础;圆切线,定点,中档;)7. (2024年湘J42岳阳三检)18.已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(⑦)(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=; (2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值. (斜率,中下;中点,定值,中档;)8.(2024年湘J47长沙雅礼二模)17.已知椭圆2222:1(0)x y G a b a b +=>>右焦点为(),斜率为1的直线l 与椭圆G 交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -. (1)求椭圆G 的方程;(⑧) (2)求PAB 的面积. (椭圆,易;面积,中下;)9. (2024年鲁J46烟台二模)19.已知椭圆()222103x y a a Γ+=>:的右焦点为()1,0F ,过点F 且不垂直于坐标轴的直线交Γ于,A B 两点,Γ在,A B 两点处的切线交于点Q . (1)求证:点Q 在定直线上,并求出该直线方程;(⑨)(2)设点M 为直线OQ 上一点,且AB AM ⊥,求AM 的最小值. (椭圆,定直线,中档;长度,中档;)10. (2024年鲁J38济宁三模)18.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,上顶点为B ,离心率2e =,直线FB 过点(1,2)P . (1)求椭圆E 的标准方程;(⑩)(2)过点F 的直线l 与椭圆E 相交于M ,N 两点(M 、N 都不在坐标轴上),若MPF NPF =∠∠,求直线l 的方程.(椭圆,基础;角度,直线,中档;)11. (2024年鲁J42青岛二适)16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E的离心率为12,椭圆E 上的点到右焦点的最小距离为1. (1)求椭圆E 的方程;(11)(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程. (椭圆,中下;直线,中档;)12. (2024年浙J40台州二评)18.已知椭圆C :229881x y +=,直线l :=1x -交椭圆于M ,N 两点,T为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标;(12) (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长. (椭圆,易;圆,中下;圆切线,周长,中档;)13. (2024年浙J31五校联考)16.已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离11. (1)求该椭圆的方程;(13)(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ',求PF P F '+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB 面积的最大值. (椭圆,中下;椭圆,基础;面积最值,中档;)14. (2024年苏J35南京二模)18.已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧). (1)求E 的渐近线方程;(14)(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围. (双曲线,基础;范围分析,中档;)15. (2024年粤J138汕头金南三模)19.已知动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切.(1)求动圆圆心M 的轨迹方程;(15)(2)设过点P 且斜率为1)中的曲线交于A 、B 两点,求AOBS ;(3)设点(,0)N a 是x 轴上一定点,求M 、N 两点间距离的最小值()d a . (抛物线,中下;面积,中下;距离最值,中档;)16. (2024年粤J137梅州二模)15.已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,且经过点31,2T ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程:(16)(2)求椭圆C 上的点到直线l :2y x =的距离的最大值. (椭圆,基础;最值,中下;)17. (2024年粤J136茂名高州一模)21.已知抛物线()2:20C y px p =>,F 为抛物线的焦点,,P Q 其为准线上的两个动点,且PF QF ⊥.当2PF QF =时,5PQ =. (1)求抛物线C 的标准方程;(17)(2)若线段,PF QF 分别交抛物线C 于点,A B ,记PQF △的面积为1S ,ABF △的面积为2S ,当129S S =时,求PQ 的长.(抛物线,基础;面积,长度,中档;)18. (2024年粤J135茂名二测)17.已知椭圆22:12x C y +=,右焦点为F ,过点F 的直线l 交C 于,A B 两点.(1)若直线l 的倾斜角为π4,求AB ;(18)(2)记线段AB 的垂直平分线交直线=1x -于点M ,当AMB ∠最大时,求直线l 的方程. (椭圆,常规,基础;最值求直线,中档)19. (2024年粤J133江门开平忠源)18.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y =. (1)求双曲线C 的方程;(19)(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.(双曲线,常规,基础;直线中点,斜率,中下)20. (2024年冀J47唐山二模)18.已知椭圆C 的右焦点为()1,0F ,其四个顶点的连线围成的四边形面积为ABDE 内接于椭圆C . (1)求椭圆C 的标准方程;(20)(2)(ⅰ)坐标原点O 在边AB 上的投影为点P ,求点P 的轨迹方程; (ⅰ)求菱形ABDE 面积的取值范围.(椭圆,基础;轨迹,中档;面积范围,中上)①【答案】(1)22143x y +=(2【解析】【分析】(1)由题意可得PA PC =,再根据M 为AC 的中点,可得12OM AB =,再根据PB PC PB PA AB +=+=,结合椭圆的定义即可得解;(2)设()()()011221,,,,,Q y G x y H x y ,根据1,,Q G D 三点共线,2,,Q H D 三点共线,求出,G H 两点坐标的关系,设GH 的方程为ty x m =+,联立方程,利用韦达定理求得1212,y y y y +,再根据弦长公式及点到直线的距离公式分析即可得解. 【小问1详解】因为()0PA PC AC +⋅=,所以()()0PA PC PC PA +⋅-=, 所以22PA PC =,所以PA PC =, 因为CM MA =,所以M 为AC 的中点, 又因O 为BC 的中点,所以122OM AB ==,所以AB 4=,则4PB PC PB PA AB BC +=+==>,所以点P 的轨迹是以,B C 为焦点的椭圆,而22213-=,所以点P 的轨迹E 的方程为22143x y +=;【小问2详解】由(1)得()()122,0,2,0D D -是椭圆E 的左右顶点, 设()()()011221,,,,,Q y G x y H x y ,由1,,Q G D 三点共线,得11//D Q D G ,而()()101113,,2,D Q y D G x y ==+, 所以()10132y y x =+,所以10132y y x =+, 由2,,Q H D 三点共线,得22//D Q D H ,而()()101221,,2,DQ y DG x y =-=-, 所以()1012y y x -=-,所以2022y y x =--, 所以1212322y y x x =-+-,即()()12213220y x y x -++=, 设GH 的方程为ty x m =+,联立22143ty x m x y =+⎧⎪⎨+=⎪⎩,得()2223463120t y tmy m +-+-=,则()()()222222Δ3643431248340t m t m t m =-+-=-+>,21212226312,3434tm m y y y y t t -+==++,所以()2121242m ty y y y m-=+,由()()12213220y x y x -++=,得()()12213220y ty m y ty m --+-+=, 即()()122142320ty y m y m y ---+=, 所以()()()()21221242320m y y m ym y m-+---+=,所以()()()214220m m y m y ⎡⎤+--+=⎣⎦恒成立,所以4m =-, 则()2Δ483120t =->,所以24t >, 则21221234243634,t y y y y t t ==++-+,GH 的方程为4ty x =-,所以GH ==,原点O 到直线GH 的距离d =则12424323416OGHSGH d t ====-++≤===t =时取等号,所以OGH【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.②【答案】(1)22143x y +=.(2)24049. 【解析】【分析】(1)依据椭圆经过两点,将点的坐标代入椭圆方程,待定系数法解方程即可;(2)设其中一条的斜截式方程,首先由直线与圆相切,得出直线的斜率与截距关系;再设而不求,用韦达定理表示出两条直线与椭圆相交的弦长,再利用条件知两弦垂直,故四边形ABCD 的面积1||||2S AC BD =⋅,利用弦长将面积表示成其中一条直线斜率的函数,利用函数求最值. 【小问1详解】因为E过点P ⎛ ⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭, 所以2222231,2191,4a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3.a b ⎧=⎨=⎩ 故E 的方程为22143x y +=.【小问2详解】由题知12,l l 的斜率存在且不为0. 设1:(0)l y kx m k =+≠. 因为1l 与圆221x y +=1=,得221m k =+.联立1l 与E 的方程,可得()2223484120kxkmx m +++-=,设()11,A x y ,()22,C x y ,则122834km x x k -+=+,212241234m x x k-=+.所以12AC x =-==,将221m k =+代入,可得AC =.用1k-替换k,可得BD =四边形ABCD 的面积123434S AC BD k k =⋅=++令21t k=+,则(1,)t ∈+∞,可得212S t t==+-, 再令u =(1,)t ∈+∞,则52u ⎤∈⎥⎦,可得2242424240652649625u S u u u ==≥=+++⨯,即四边形ABCD 面积的最小值为24049.③【答案】(1)22143x y +=(2)[]3,4 【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解; 【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a b a b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b ==,所以椭圆的标准方程为22143x y +=.【小问2详解】由(1)知()11,0F -,()21,0F , 当直线l 的斜率为0时,24AB a ==,当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,得22(34)690m y my ++-=, 易得()22Δ636(34)0m m =++>,则12122269,3434m y y y y m m --+==++, 所以AB ==2221212443434m m m +===-++, 因为20m ≥,所以2344m +≥,所以240134m <≤+,所以34AB ≤<,综上,34AB ≤≤,即AB 的范围是[]3,4.④【答案】(1)2219x y -=(2)是定值,定值为195【解析】【分析】(1)利用双曲线的定义与点在双曲线上得到关于,a b 的方程,解之即可得解;(2)假设直线l 方程5x my =+,联立双曲线方程得到1212,y y y y +,再由题设条件得到直线AM 与BN 的方程,推得两者的交点P 在定直线上,从而得解. 【小问1详解】依题意可得22222661a ab =⎧⎪⎨-=⎪⎩,解得23,1a b ==,故双曲线C 的方程为2219x y -=.【小问2详解】由题意可得直线l 的斜率不为0,设直线l 的方程为5x my =+,联立22519x my x y =+⎧⎪⎨-=⎪⎩,消去x ,得()22910160m y my -++=, 则290m -≠,()()()222Δ10416936160m m m =-⨯-=+>,设()()1122,,,M x y N x y ,则1212221016,99m y y y y m m -+==--, 又()()3,0,3,0A B -, 直线11:(3)3y AM y x x =++,直线22:(3)3y BN y x x =--, 联立1122(3)3(3)3y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩,两式相除,得()()()()2121122121212138833322y x y my my y y x x y x y my my y y ++++===--++()1122212121121112216806488889994161622299m m my y my y y y y m m m m m my y y y y m m ----++----====-+++--, 即343x x +=--,解得95x =, 所以点P 在定直线95x =上,因为直线95x =与直线2x =-之间的距离为919255+=, 所以点P 到直线2x =-的距离为定值,且定值为195. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.⑤【答案】(1)13- (2)13+,证明见解析 【解析】【分析】(1)如图,设00(,)P x y 和过点P 的直线,切线,PM PN 的斜率分别为12,k k ,联立椭圆方程,利用韦达定理表示1212,k k k k +,进而可得121200tan 1k k MPN k k -∠==+,结合tan 0MPN ∠>或tan MPN ∠≤(2)当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点,则2163PB ≤,进而1R x >=.由(1)可得222012(320)(320)160R y R -+--≤或20320620R y -++≥,利用换元法,结合011R y R -≤≤+建立不等式组,化简可得2310R ≥+.【小问1详解】由题意,如图,该椭圆的方程为2214x y +=,(0,1)A ,,PM PN 分别为椭圆的2条切线,切点分别为,M N ,设直线,PM PN 的斜率分别为12,k k .设00(,)P x y ,当02x =±时,12,k k 其中1个不存在,另1个趋于∞; 当02x ≠±时,设过点P 的直线为00()y k x x y =-+(0)k ≠,00222200002()(14)8()4()4014y k x x y k x k y kx x y kx x y =-+⎧⎪⇒++-+--=⎨+=⎪⎩, 所以2222000064()16(14)[()1]0k y kx k y kx ∆=--+--=,整理,得220000(4)210x k x y k y --+-=,①由12,k k 是方程①的2个实根,得20001212220021,44x y y k k k k x x -+==--, 所以220002222200121212222012122021()444()4tan 11(1)(1)4x y y x x k k k k k k MPN y k k k k x -----+-∠===-+++- 2222222000000022222222000004()4(1)(4)(4)4(44)(4)(5)(5)x y y x x x y x x y x y ----+-=⨯=-+-+-, 又220014x y +>,所以2200440x y +->, 当220050x y +->时,点P 在圆225x y +=的外部,则tan 0MPN ∠>,此时00tan MPN ∠=;当220050x y +-<时,点P 在圆225x y +=的内部,则tan 0MPN ∠>,此时00tan MPN ∠=,所以00tan MPN ∠=.又tan 0MPN ∠>或tan tan120MPN ︒∠≤=,000>00≤整理,得220050x y +-≥或2222200004(44)3(5)x y x y +-≥+-.要求PA 的最小值,只需考虑MPN ∠为钝角的情况,即2222200004(44)3(5)x y x y +-≥+-且220050x y +-<,得22222220000003(5)4(44)4(444)x y x y x y +-≤+-≤+-.令2OP t =,则5t <且23(5)4(44)t t -≤-,即2346910t t -+≤,解得7133t ≤≤,所以OP ≥13PA OP OA ≥-=-,当且仅当,,P O A 三点共线时等号成立.故00tan MPN ∠=053=-,得120MPN ︒∠=. 综上,PA的最小值为13-. 【小问2详解】当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点, 则22222211111111216(1)213255333PB x y x y y y y =+-=+-+=--+≤-++=,当且仅当1113x y ==时等号成立,所以13R x >=. 由(1)知,2222200004(44)3(5)x y x y +-≥+-或220050x y +-≥,由22200(1)x y R +-=,得22222200004[(1)44]3[(1)5]R y y R y y --+-≥--+-或22200(1)50R y y --+-≥,即22220004(325)3(26)y y R R y ++-≥+-或20260R y +-≥,整理,得222012(320)(320)160R y R -+--≤或20320620R y -++≥,令2320u R =-,则4u >-,得2012160uy u +-≤或0620u y ++≥,011R y R -≤≤+.当2203R ≤即0u <时,201612u y u-≥或026u y --≥,令v u =-,则04v <<,得201612v y v -≥-或026v y -≥,又011y ≤得216112v v --或216v -≥,而12111136v -=<-<-<,所以216112v v--,整理,得010v <≤-10u ≥- 当0u ≥时,010u ≥>,符合题意.综上,10u ≥,则232010u R =-≥,即2310R ≥+解得1R ≥+,所以R1,即PA1.【点睛】方法点睛:解决圆锥曲线中范围问题的方法:一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线 上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.⑥17. 方法一:(1)依题意:22222221a b c a b ca⎧-=⎪⎪=+⎨⎪⎪=⎩,……2分解得:21a =,22b =,……3分所以双曲线方程为2212y x -=.……4分 (2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222kmx x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 由对称性知,若以MN 为直径的圆过定点,则定点必为原点.……9分1212OM ON x x y y ⋅=+……10分()()()()22121212121x x kx m kx m k x x mk x x m =+++=++++……11分 ()2222222122m km kmk m k k--=+++-- 222222m k k --=-.……12分又2222m k =+,所以0OM ON ⋅=,所以OM ON ⊥,故以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分 方法二:(1)同方法一;(2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222km x x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 以()11,M x y ,()22,N x y 为直径的圆的方程为()()()()12120x x x x y y y y --+--=, 即()()22121212120x x x x x x y y y y y y -+++-++=,……9分因为()()()()221212*********x x y y x x kx m kx m k x x km x x m +=+++=++++,所以()222221212222222210222m km m k x x y y k km m k k k ----+=+⋅+⋅+==---,……11分 且()121222242222km my y k x x m k m k k +=++=⋅+=--, 所以所求的圆的方程为222224022km m x x y y k k -+-=--,……12分所以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分⑦18.(1)证明见解析;(2)证明见解析【分析】(1)先有两点间距离公式求出圆心的轨迹方程,再由斜率的定义表示出斜率,利用轨迹方程化简斜率之差即可证明;(2)先设直线MN 的方程为y kx b =+,直曲联立,用韦达定理表示出线段MN 中点坐标()22,21Q k k --+进而得到Q 的轨迹方程是222x y =-+,再与动圆P 的方程联立,得到C 、D 、G 的横坐标分别为c ,d ,g ,最后利用()()()0x c x d x g ---=的展开式系数与3(42)40x b x a +-+=相同,得到2x 系数为零即可. 【详解】(1)设点(,)P x y ,|3|y =-, 化简并整理成248x y =-+, 圆心P 的轨迹E 的方程为248x y =-+1211,22y y k k x x --==+-,122114(1)224y y y k k x x x -----=-=+--, 又248x y =-+, 所以24(1)4(1)1444y y x y ,所以121k k -=.(2)显然直线MN 的斜率存在,设直线MN 的方程为y kx b =+,由248x y y kx b ⎧=-+⎨=+⎩,消y 并整理成24480x kx b ++-=, 在判别式大于零时,1248x x b =-, 又124x x =-,所以1b =, 所以2440x kx +-=,1y kx =+,()21212124,242x x k y y k x x k +=-+=++=-+,所以线段MN 的中点坐标为()22,21Q k k --+,设(,)Q x y ,则2221x k y k =-⎧⎨=-+⎩,消k 得222x y =-+, 所以Q 的轨迹方程是222x y =-+,圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,由222(1)(1)022x y ax b y x y ⎧+-++-=⎨=-+⎩,得42(42)40x b x ax +-+=, 设C 、D 、G 的横坐标分别为c ,d ,g ,因为C 、D 、G 异于F ,所以c ,d ,g 都不为零, 故3(42)40x b x a +-+=的根为c ,d ,g , 令()()()0x c x d x g ---=,即有32()()0x c d g x cd dg gc x cdg -+++++-=, 所以0c d g ++=,故CDG 的重心的横坐标为定值.【点睛】关键点点睛:本题第二问关键是圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,然后与Q 的轨迹方程联立,表示出重心横坐标的方程,然后利用待定系数法求出结果.⑧17.(1)221.124x y +=(2)92【分析】(1)根据椭圆的简单几何性质知a =2224b a c =-=,写出椭圆的方程;(2)先斜截式设出直线y x m =+,联立方程组,根据直线与圆锥曲线的位置关系,可得出AB 中点为00(,)E x y 的坐标,再根据ⅰPAB 为等腰三角形知PE AB ⊥,从而得PE 的斜率为241334mk m -==--+,求出2m =,写出AB :20x y -+=,并计算||AB = 【详解】(1)由已知得c =ca=a =2224b ac =-=, 所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由22,{1124y x m x y ,=++=得22463120x mx m ++-=,ⅰ设A 、B 的坐标分别为11(,)x y ,22(,)x y (12x x <),AB 中点为00(,)E x y , 则120324x x m x +==-,004my x m =+=, 因为AB 是等腰ⅰPAB 的底边,所以PE AB ⊥.所以PE 的斜率为241334mk m-==--+,解得2m =,此时方程ⅰ为24120x x +=. 解得13x =-,20x =,所以11y =-,22y =,所以||AB =, 此时,点(3,2)P -到直线AB :20x y -+=的距离d =所以ⅰPAB 的面积1922S AB d =⋅=. 考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离. 【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键.⑨19.(1)证明见解析,4x =(2)12【分析】(1)由题得出椭圆方程,设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠,写出,A B 两点处的切线方程,由对称性得,点Q 处于与x 轴垂直的直线上,法一:两切线方程联立得Q x ,再代入()()1122=1,=1y k x y k x --即可证明;法二:由点(),Q Q Q x y 在两切线上得直线AB 的方程143Q Q x y x y +=,结合直线AB 过点()1,0F ,即可得出Q x ;(2)由(1)得出直线OQ 的方程,设直线AB 和OQ 交于点P ,得出P 为线段AB 的中点,由弦长公式得出AB 进而得出AP ,由两直线夹角公式得出tan APM ∠,得出243k AM AP k+=⋅,根据基本不等式求解即可.【详解】(1)由题意可知,231a -=, 所以24a =,所以椭圆方程为22143x y +=, 设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠, 联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,消y 可得,()22223484120k x k x k +-+-=, 所以221212228412,3434k k x x x x k k -+==++, 因为过点A 的切线为11143x x y y+=,过点B 的切线为22143x x y y +=, 由对称性可得,点Q 处于与x 轴垂直的直线上, 法一:联立1122143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 得,()2112214Q y y x x y x y -=-,将()()1122=1,=1y k x y k x --代入上式得()()()()212112211244411Q k x x k x x x kx x kx x kx kx --===----+,所以Q 点在直线4x =上.法二:因为点(),Q Q Q x y 在两切线上,所以1122114343Q QQ Q x x y y x x y y+=+=,, 所以直线AB 的方程为143Q Q x y x y +=,又直线AB 过点()1,0F ,所以10143QQ x y ⨯+⨯=,解得4Q x .(2)将4x =代入11143x x y y+=得,()()()1111313131Q x x y y k x k --===--,直线OQ 的方程为34y x k =-, 设直线AB 和OQ 交于点P ,联立()134y k x y x k ⎧=-⎪⎨=-⎪⎩,解得22434P kx k =+, 又221222418342342P k k x x x k k +==⋅=++,所以P 为线段AB 的中点,因为()212212134k AB x k +=-==+, 所以()226134k AP k +=+,又因为23434tan 314k AM k kAPM k AP k k ++∠===⎛⎫+⋅- ⎪⎝⎭,所以()2222614343161234k k k AM AP k k k k k +⎛⎫++=⋅=⋅=+≥ ⎪ ⎪+⎝⎭, 当且仅当1k =±时,等号成立, 故AM 的最小值为12.⑩18.(1)2212x y +=;(2)550x y ++=.【分析】(1)根据给定条件,求出,,a b c 即得椭圆E 的标准方程.(2)根据给定条件,借助倾斜角的关系可得1MP NP k k ⋅=,设出直线l 的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得. 【详解】(1)令(,0)F c -,由c e a ==,得,a b c ==,则直线FB 的斜率1k =, 由直线FB 过点(1,2)P ,得直线FB 的方程为1y x =+,因此1,b c a ===所以椭圆C 的标准方程为2212x y +=.(2)设MPF NPF θ∠=∠=,直线MP 的倾斜角为β,直线NP 的倾斜角为α,由直线FP 的斜率1k =知直线FP 的倾斜角为π4,于是ππ,44αθβθ=+=+,即有π2αβ+=,显然,αβ均不等于π2, 则πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,即直线,MP NP 的斜率满足1MP NP k k ⋅=, 由题设知,直线l 的斜率不为0,设直线l 的方程为1,1x my m =-≠,由22122x my x y =-⎧⎨+=⎩,消去x 并整理得,22(2)210m y my +--=,显然0∆>, 设1122(,),(,)M x y N x y ,则12122221,22m y y y y m m +==-++, 由1MP NP k k ⋅=,得121222111y y x x --⋅=--,即1212(1)(1)(2)(2)0x x y y -----=, 则1212(2)(2)(2)(2)0my my y y -----=,整理得21212(1)(22)(0)m y y m y y ---+=,即2221(22)2022m m m m m --⋅--=++,于是25410m m --=,而1m ≠,解得,15m =-, 所以直线l 的方程为115x y =--,即550x y ++=.【点睛】关键点点睛:本题第2问,由MPF NPF =∠∠,结合直线倾斜角及斜率的意义求得1MP NP k k ⋅=是解题之关键.1116.(1)22143x y +=(2)10x y -=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B、C坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121c a a c a b c⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=; (2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A == 所以122y y =-ⅰ设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=, 由韦达定理得()122122634934m y y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩, 把ⅰ式代入上式得222226349234m y m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++, 解得m =, 所以直线l 的方程为:10x y +-=或10x y -=.1218.(1)0,⎛ ⎝⎭(2)221924x y ⎛⎫-+= ⎪⎝⎭(3)【分析】(1)化简椭圆的标准方程,根据,,a b c 的关系即可求得焦点坐标;(2)先联立方程求得()1,3M -,()1,3N --,求出直线MT 的方程,然后利用待定系数法求得内切圆的方程;(3)设过P 作圆Q 的切线方程为()13y k x =-+,利用相切关系求得点A ,B 坐标,进而结合内切圆的半径利用三角形中等面积法求解即可.【详解】(1)椭圆的标准方程为2218198x y +=,因为819988-=,所以焦点坐标为0,⎛ ⎝⎭. (2)将=1x -代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M -,()1,3N --, 直线MT 的方程为()3313y x =---,即3490x y +-=, 设圆Q 方程为()222x t y r -+=,由于内切圆Q 在TMN △的内部,所以1t >-, 则Q 到直线MN 和直线MT的距离相等,即1t r +=,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫-+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =-+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率. 由圆Q32=,化简得:2812270k k +-=,则121232278k k k k ⎧+=-⎪⎪⎨⎪=-⎪⎩,由()122139881y k x x y ⎧=-+⎨+=⎩得()()222111119816384890k x k k x k k ++-+--=, 可得21121848989A P A k k x x x k --==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫----+=-+=-+= ⎪++⎝⎭ ()()()111113271218271833271291232k k k k k ---+-===--+-.同理22222848989B k k x k --=+,32B y =-,所以直线AB 的方程为32y =-, 所以AB 与圆Q 相切,将32y =-代入229881x y +=得x =所以AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB的面积13192222ABC S m =⨯=⨯△,解得m =所以PAB的周长为.1316.(1)2212x y +=;(2)【分析】(1)设出椭圆上的点00(,)M x y ,求出||MF 的最值,进而求出,a c 即可. (2)利用椭圆的对称性及椭圆定义求解即得.(3)设出直线AB 的方程,与椭圆方程联立求出三角形面积的表达式,再求出最大值即得.【详解】(1)令(,0)F c -,设00(,)M x y 是椭圆22221x y a b+=上的点,则22220002(),b y a x a x a a =--≤≤,则0||c MF a x a===+,显然当0x a =-时,min ||MF a c =-,当0x a =时,max ||MF a c =+,则11a c a c ⎧-=⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ',由椭圆对称性知,||||P F PF ''=,所以2PF P F PF PF a +=+==''(3)显然直线AB 不垂直于y 轴,设直线AB 的方程为2x my =+,1122(,),(,)A x y B x y ,由22222x my x y =+⎧⎨+=⎩消去x 得22(2)420m y my +++=,222168(2)8(2)0m m m ∆=-+=->,则12122242,22m y y y y m m +=-=++,12||y y -=因此12|1|||2ABFS QF y y =-=,令0t =>,于是ABFS=≤=,当且仅当2t =,即m =所以FAB1418.(1)y =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,3a b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围. 【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =. 由222+=a b c ,得3ab ,所以E的渐近线的方程为y = (2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,12111122OP OQ y y +=+===设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,343411y y AF BFy y --=3423422y y pm y y p p +== 由1111OP OQ AF BF λ⎛⎫+=- ⎪ ⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣⎭,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1519.(1)28y x =(3)4(),4a d a a a ≥=<⎪⎩【分析】(1)根据抛物线的定义即得动圆圆心M 的轨迹方程; (2)将直线方程与抛物线方程联立,求出交点坐标,再由12AOBA B SOP y y =-计算可得; (3)根据题设先求出MN 的解析式,可将距离最小值问题转化为二次函数最小值问题,分类讨论即得. 【详解】(1)因为动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切,即点M 到定点(2,0)P 的距离与到直线:2l x =-的距离相等,且点(2,0)P 不在直线:2l x =-上, 所以由抛物线定义知:圆心M 的轨迹是以定点()2,0P 为焦点,定直线:2l x =-为准线的抛物线,抛物线方程形如()220y px p =>,又22p=,则4p =, 故圆心M 的轨迹方程为28y x =.(2)如图,由题知,直线AB的方程为)2y x =-,由)228y x y x ⎧=-⎪⎨=⎪⎩,解得6x y =⎧⎪⎨=-⎪⎩23x y ⎧=⎪⎪⎨⎪=⎪⎩23A ⎛ ⎝⎭,(6,B -, 所以()11222AOBA B SOP y y =-=⨯-=(3)设(),M x y ,则28y x =()0x ≥,又(,0)N a ,则MN ==)0x =≥,因二次函数()24816y x a a =-++-的对称轴为4x a =-,故当40a -≥,即4a ≥时,min 816y a =-,此时min ()MN d a =当40a -<,即4a <时,2min y a=,此时min ||()MN d a a ==.所以4(),4a d a a a ≥=⎨<⎪⎩.1615.(1)22143x y +=【分析】(1)由椭圆的离心率可得a ,b 的关系,设椭圆的方程,将点T 的坐标代入椭圆的方程,可得参数的值,即可得a ,b 的值,求出椭圆的方程;(2)设与2y x =平行的直线的方程,与椭圆的方程联立,由判别式为0,可得参数的值,进而求出两条直线的距离,即求出椭圆上的点到直线的最大距离.【详解】(1)由椭圆的离心率为12,可得12c e a=,可得2234a b =,设椭圆的方程为:2222143x y t t+=,20t >,又因为椭圆经过点3(1,)2T ,所以2213144t t +=,解得21t =,所以椭圆的方程为:22143x y +=;(2)设与直线2y x =平行的直线的方程为()20y x m m =+≠,联立222143y x mx y =+⎧⎪⎨+=⎪⎩,整理可得:2219164120x mx m ++-=,22216419(412)0m m ∆=-⨯⨯-=,可得219m =,则m =所以直线2y x m =+到直线2y x =的距离d ==所以椭圆C 上的点到直线:2l y x =1721.(1)24y x = (2)649【分析】(1)首先利用勾股定理求出QF ,PF ,再由等面积法求出p ,即可得解;(2)设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,依题意0FA FB ⋅=,即可得到22614b b k -+=,再由129S S =得到线段的比例关系,从而求出b ,再计算出12y y -,最后根据P Q PQ y y =-及韦达定理计算可得. 【详解】(1)方法一:5PQ =,PF QF ⊥,2PF QF =,22225QF PF PQ ∴+==,解得QF =PF = ∴在PQF △中,根据等面积法1122PQ MF PF QF ⋅=⋅,5p ⨯=2p =,∴抛物线的标准方程为24y x =;方法二:设x 轴与准线的交点为M .,PF QF ⊥∴当2PF QF =时,tan 2tan PQF AFM ∠==∠,2PM MF ∴=,2MF MQ =.552PQ PM MQ MF ∴=+==,2MF p ∴==, ∴抛物线C 的标准方程为24y x =;(2)由(1)可得抛物线的焦点()1,0F ,准线为=1x -, 依题意,直线AB 的斜率不为0,∴设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y .联立24y x x ky b⎧=⎨=+⎩,消去x 得2440y ky b --=,显然0∆>,124y y k ∴+=,124y y b =-.由PF QF ⊥,则0FA FB ⋅=,可得()()11221,1,0x y x y -⋅-=,()()1212110x x y y ∴--+=,整理得22614b b k -+=.ⅰ易知直线AF 的解析式为()1111y y x x =--,令=1x -,可得1121P y y x -=-, 同理可得2221Q y y x -=-. 129S S =,9PF QF AF BF ∴⋅=⋅,即9PF BFAFQF =⨯,219P Qy y y y ∴=.129P Q y y y y ∴=,12121222119y y x x y y --⋅--∴=,()()124911x x ∴=--,即1249y y -=,19b ∴=.12169y y ∴-=. 所以()()1212211212122222221111P Q y y x y x y y y PQ y y x x x x ---+-=-=-=---- ()121212121264249y y y y y y y y ⎛⎫-- ⎪⎝⎭==-=-.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.1817.(2)10x-=或10x -=【分析】(1)由椭圆方程,即可求出椭圆右焦点坐标,根据直线的点斜式,联立直线方程和椭圆方程,求得交点,A B 的坐标,根据两点之间距离公式可求得AB ;(2)联立直线方程和椭圆方程,根据椭圆的弦长公式可求得|AB |,计算AB 的中点,G MG ,利用AMB ∠最大求得直线方程【详解】(1)由题意可得()1,0F ,因为直线l 的倾斜角为π4,所以πtan 14k ==,因此,l 的方程为1y x =-,联立方程22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 得2340x x -=解得1240,3x x ==所以()410,1,,33A B ⎛⎫- ⎪⎝⎭因此,AB =(2)设()()1122,,,A x y B x y ,由题意得,直线l 的斜率不为0,故设l 为1x my =+, 联立方程22121x y x my ⎧+=⎪⎨⎪=+⎩消去x 得,()222210m y my ++-=,0∆>,因此12122221,22m y y y y m m -+==-++, 所以)2212m AB m +==+,设线段AB 的中点为G , 则12222,1222G G G y y m y x my m m +==-=+=++,所以()22242122m MG m m +=-=++,所以12tan 2ABAMB MG∠==设t =,则tan 2AMB t t ∠===≤+,当且仅当t =m = 当2AMB∠最大时,AMB ∠也最大,此时直线l 的方程为1x =+, 即10x-=或10x -=1918.(1)2213x y -=(2)1【分析】(1)先求出焦点坐标,再根据渐近线方程可求基本量,从而可得双曲线的方程. (2)利用点差法可求直线的斜率,注意检验.【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y x =,故b a =1,b a == 故双曲线方程为:2213x y -=.(2)设()()1122,,,A x y B x y ,AB 的中点为M , 因为M 在直线1:3l y x =,故13M M y x =,而121231y x -=,222231y x -=,故()()()()1212121203x x x x y y y y -+--+=, 故()()121203M M x x xy y y ---=,由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M My y xx x y -==-, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =-+=-,由222333M x y x x y ⎧=-⎪⎨⎪-=⎩可得222333M x x x ⎛⎫--= ⎪⎝⎭,整理得到:22424303M M x x x x -++=, 当222416Δ168324033M M M x x x ⎛⎫=-+=-> ⎪⎝⎭即M x <M x >即当M x <M x >AB 存在且斜率为1.2018.(1)22143x y +=(2)(ⅰ)2212 7x y+=;(ⅰ)48,7⎡⎢⎣.【分析】(1)利用题意列出两个方程,联立求解得,a b的值,即得椭圆方程;(2)(ⅰ)设AB方程,与椭圆方程联立,写出韦达定理,利用菱形对角线互相垂直得到()221217km+=,再由题意推出22212||17mOPk==+,即得点P的轨迹方程;(ⅰ)利用弦长公式求出AB =算出AOB的面积表达式S=t的函数S=图象即可求其取值范围.【详解】(1)根据题意设椭圆C的标准方程为22221x ya b+=,由已知得,1222a b⨯⨯==ab1c=可得,221a b-=,联立解得,2a=,b=故椭圆C的标准方程为:22143x y+=.(2)ⅰ 如图,当直线AB的斜率存在时,设其方程为y kx m=+,由22143y kx mx y=+⎧⎪⎨+=⎪⎩,得()2223484120k x kmx m+++-=,由题意()()()222222Δ6443441248430k m k m k m=-+-=-+>,设1122(,),(,)A x yB x y,则122834kmx xk+=-+,212241234mx xk-=+,于是,()()2212121212()y y kx m kx m k x x km xx m=++=+++。
2024届高考数学专项复习极点极线与调和点列,调和线束(高观点下的圆锥曲线拓展)含解析

极点极线与调和点列,调和线束专题(高观点拓展)近3年考情考题示例考点分析关联考点2023年全国乙卷卷,第22题,调和线束平行截取中点证明中点问定点2022年新高考I 卷,第21题调和线束平行截取中点已知中点与平行求定点2020年全国I 卷,第22题自极三角形问题证明直线过定点题型解读【题型1】极点极线【题型2】调和点列模型【题型3】自极三点形与a 2模型【题型4】斜率成等差模型【题型5】调和线束,平行截中点高考真题再现1(2023年全国乙卷)已知椭圆C :y 2a2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.2024届高考数学专项复习极点极线与调和点列,调和线束(高观点下的圆锥曲线拓展)2(2020全国高考Ⅰ卷20)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;x 29+y 2=1(2)证明:直线CD 过定点.32,03(2022·全国乙卷高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1 两点.(1)求E 的方程;y 24+x 23=1(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.高考模拟·新题速递【题型1】极点极线二次曲线的极点极线(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0y b2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.1过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A 、B 则直线AB 的方程为()A.2x +y −3=0B.2x −y −3=0C.4x −y −3=0D.4x +y −3=02已知点P 为2x +y =4上一动点.过点P 作椭圆x 24+y 23=1的两条切线,切点分别A 、B ,当点P 运动时,直线AB 过定点,该定点的坐标是.3(2024·广东湛江·一模)已知点P 为直线x -y -3=0上的动点,过P 作圆O :x 2+y 2=3的两条切线,切点分别为A ,B ,若点M 为圆E :x +2 2+y -3 2=4上的动点,则点M 到直线AB 的距离的最大值为.4(2024·湖南衡阳·二模)(多选)已知圆C :x 2+y 2=4,P 是直线l :x +y -6=0上一动点,过点P 作直线PA ,PB 分别与圆C 相切于点A ,B ,则()A.圆C 上恰有一个点到l 的距离为22B.直线AB 恒过点23,23C.AB 的最小值是473D.四边形ACBP 面积的最小值为214【题型2】调和点列模型一、调和点列的充要条件如图,若A ,C ,B ,D 四点构成调和点列,则有(一般前2个出现较多)AC BC =AD BD ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD 二、调和点列与极点极线的联系如图,过极点P 作任意直线,与椭圆交于M ,N ,与极线交点M 则点M ,D ,N ,P 成调和点列,若点P 的极线通过另一点D ,则D 的极线也通过P .一般称P 、D 互为共轭点.1(2024江南十校联考)在平面直角坐标系xOy 中,已知双曲线C 的中心为坐标原点,对称轴是坐标轴,右支与x 轴的交点为1,0 ,其中一条渐近线的倾斜角为π3.(1)求C 的标准方程;x 2-y 23=1(2)过点T 2,0 作直线l 与双曲线C 的左右两支分别交于A ,B 两点,在线段AB 上取一点E 满足AE ⋅TB =EB ⋅AT ,证明:点E 在一条定直线上.2(安徽高考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1),且左焦点为F 1(-2,0).(1)求椭圆C 的方程;(2)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP |∙|QB |=|AQ |∙|PB |,证明:点Q 总在某定直线上.3已知F 1、F 2分别为椭圆C 1:y 2a 2+x 2b2=1(a >b >0)的上、下焦点,其中F 1也是抛物线C 2:x 2=4y 的焦点,点M 是C 1与C 2在第二象限的交点,且|MF 1|=53.(1)求椭圆C 1的方程;y 24+x 23=1(2)已知点P (1,3)和圆O :x 2+y 2=b 2,过点P 的动直线l 与圆O 相交于不同的两点A ,B ,在线段AB 上取一点Q ,满足:AP =-λPB ,AQ =λQB,(λ≠0且λ≠±1).求证:点Q 总在某定直线上. 答案:x +3y =3【题型3】自极三点形与a2模型如图, 设P是不在圆雉曲线上的一点, 过P点引两条割线依次交二次曲线于E,F,G,H四点, 连接对角线EH,FG交于N, 连接对边EG,FH交于M, 则直线MN为点P对应的极线. 若P为圆雉曲线上的点, 则过P 点的切线即为极线.同理, PM为点N对应的极线, PN为点M所对应的极线. 因而将△MNP称为自极三点形. 设直线MN交圆锥曲线于点A,B两点, 则PA, PB恰为圆锥曲线的两条切线.从直线x=t上任意一点P向椭圆E:x2a2+y2b2=1a>b>0的左右顶点A1,A2引两条割线PA1,PA2与椭圆交于M,N两点,则直线MN恒过定点a2t ,0.2024杭州二模1已知A,B是椭圆E:x24+y2=1的左,右顶点,点M m,0m>0与椭圆上的点的距离的最小值为1.(1)求点M的坐标.(2)过点M作直线l交椭圆E于C,D两点(与A,B不重合),连接AC,BD交于点G.(ⅰ)证明:点G在定直线上2已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F1(-3,0),且过点P32,134.(1)求椭圆C的标准方程;x24+y2=1(2)已知A1,A2分别为椭圆C的左、右顶点,Q为直线x=1上任意一点,直线A1Q,A2Q分别交椭圆C于不同的两点M,N.求证:直线MN恒过定点,并求出定点坐标.深圳二模1已知椭圆E:x2a2+y2b2=1(a>b>0)经过点M1,32,且焦距F1F2 =23,线段AB,CD分别是它的长轴和短轴.(1)求椭圆E的方程;x24+y2=1(2)若N(s,t)是平面上的动点,从下面两个条件中选一个,证明:直线PQ经过定点.①s=1,t≠±32,直线NA,NB与椭圆E的另一交点分别为P,Q;4,0②t=2,s∈R,直线NC,ND与椭圆E的另一交点分别为P,Q.0,1 22023广州白云区高三统考1已知双曲线的中心在原点且一个焦点为F2,0,直线y=x-1与其相交于A,B两点,若AB中点的横坐标为-1 2.(1)求双曲线的方程;(2)设A1,A2为双曲线实轴的两个端点,若过F的直线l与双曲线C交于M,N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.2(2010江苏18)在平面直角坐标系xoy中,如图,已知椭圆x29+y25=1的左右顶点为A,B,右顶点为F,设过点T(t,m)的直线TA,TB与椭圆分别交于点M(x1,y1),N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2-PB2=4, 求点P的轨迹;(2)设x1=2,x2=13,求点T的坐标;(3)设t=9,求证:直线MN必过x轴上的一定点.(其坐标与m无关)【题型4】斜率成等差模型如图,已知椭圆E :x 2a 2+y 2b2=1a >b >0 ,点P m ,0 ,直线l 过点P (极点)且与椭圆交于不同的两点A ,B ,与直线x =a 2m(极线)交于M ,显然A ,P ,B ,M 四点形成调和点列(1)点N 为直线x =m 上任意一点,则k AN +k BN =2k MN .(2)若点Q 为直线x =a 2m上一点,则k AQ +k BQ =2k PQ(3)若点P 0,m ,直线l 过点P (极点)且与椭圆交于不同的两点A ,B ,Q 为直线y =a 2m 上一点,则1k AQ+1k BQ =2k PQ2024·湖北十一校第二次联考1已知椭圆M:x2a2+y2b2=1(a>b>0)的离心率为12,A,B分别为椭圆的左顶点和上顶点,F1为左焦点,且△ABF1的面积为3 2.(1)求椭圆M的标准方程:答案:x24+y23=1(2)设椭圆M的右顶点为C、P是椭圆M上不与顶点重合的动点.(ii)若直线AB与直线CP交于点Q,直线BP交x轴于点N,求证:2k QN-k QC为定值,并求出此定值(其中k QN、k QC分别为直线QN和直线QC的斜率).2024届广东省四校联考1过原点O 的直线交椭圆E :x 29+y 2b2=1(b >0)于A ,B 两点,R 2,0 ,△ABR 面积的最大值为25.(1)求椭圆E 的方程x 29+y 25=1(2)连AR 交椭圆于另一个交点C ,又P 92,m (m ≠0),分别记PA ,PR ,PC 的斜率为k 1,k 2,k 3,求k 2k 1+k 3的值.2013江西卷1已知椭圆方程为x 24+y 23=1.设P 是直线x =4上任意一点,AB 是经过椭圆右焦点F 的一条弦.记直线PA ,PF ,PB 的斜率依次为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 3=λk 2.若存在,求λ的值;若不存在,说明理由.【题型5】调和线束,平行截中点(1)调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。
2024届高考数学专项练习压轴题型11 圆锥曲线压轴解答题的处理策略(解析版)

压轴题型11 圆锥曲线压轴解答题的处理策略命题预测解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题;(3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大考向展开. 高频考法(1)直线交点的轨迹问题(2)向量搭桥进行翻译(3)弦长、面积范围与最值问题(4)斜率之和差商积问题(5)定点定值问题01 直线交点的轨迹问题交轨法解决.【典例1-1】(2024·陕西安康·模拟预测)已知双曲线22:13y C x −=的左、右顶点分别是12,A A ,直线l 与C 交于,M N 两点(不与2A 重合),设直线22,,A M A N l 的斜率分别为12,,k k k ,且()126k k k +=−.(1)判断直线l 是否过x 轴上的定点.若过,求出该定点;若不过,请说明理由.(2)若,M N 分别在第一和第四象限内,证明:直线1MA 与2NA 的交点P 在定直线上.【解析】(1)由题意可知12(1,0),(1,0),0A A k −≠,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+.2024届高考数学专项练习由2213y x y kx m ⎧−=⎪⎨⎪=+⎩消去y ,可得222(3)230k x kmx m −−−−=, 则23k ≠,2212(3)0m k ∆=+−>,即223k m <+,212122223,33km m x x x x k k ++==−−−. 因为()121212*********()()211()1kx m kx m kx x m k x x m k k k k k x x x x x x ⎛⎫⎡⎤+++−+−+=+= ⎪⎢⎥−−−++⎝⎭⎣⎦222222322()2336632133m kmk m k m k k k km kmm k k k ⎡⎤⎛⎫+−+−−⎢⎥ ⎪−−⎝⎭⎢⎥===−⎢⎥++−−+⎢⎥−−⎣⎦, 所以2m k =−,故直线l 的方程为(2)y k x =−,恒过点(2,0). (2)由题可知,直线1MA 的方程为11(1)1y y x x =++,直线2NA 的方程为22(1)1yy x x =−−,因为2121121212121212(1)(2)(1)2211(1)(2)(1)22y x x x x x x x x x y x x x x x x x +−+−+−+===−−−−−−+ 1212112121()322()2x x x x x x x x x x ++−−=−+++21221269333233k x k k x k −−−−==−++− 所以12x =,故点P 在定直线12x =上.【典例1-2】(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅,PA PC⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=− ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上. 【解析】(1)由题意可得(1,)PA x y =−−,(,1)PB x y =−−,(1,1)PC x y =−−, 则22(1)()()(1)PA PB x x y y x y x y ⋅=−⋅−+−⋅−=+−−,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=−⋅−+−⋅−=+−−+, 又2y 是PA PB ⋅,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+−−++−−+=,整理得点(,)P x y 的轨迹方程为23122y x x =−+.(2)由(1)知2131:22C y x x =−+,又31,416a ⎛⎫=− ⎪⎝⎭,∴平移公式为34116x x y y ⎧=−⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=−'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫−=+−++ ⎪ ⎪⎝⎭⎝⎭',即2yx .曲线2C 的方程为2yx .如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b −−=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b+=⎧⎨=−⎩, ()()21111,,OM x y x x ∴==,()()22222,,ON x y x x ==,又MON ∠为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅, 2212120x x x x ∴+>,又12x x b =−,2()0b b ∴−+−>,得0b <或1b >.(3)当2b =时,由(2)可得12122x x k x x b +=⎧⎨=−=−⎩,对2yx 求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x −=−,()2222:2N l y x x x x −=−, 由()()()211112222222y x x x x x x y x x x x ⎧−=−⎪≠⎨−=−⎪⎩,解得交点R 的坐标(,)x y . 满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=−⎩,R ∴点在定直线=2y −上. 【变式1-1】(2024·高三·全国·专题练习)已知椭圆C :22221x y a b +=(0a b >>)过点2,3P,且离2. (1)求椭圆C 的方程;(2)记椭圆C 的上下顶点分别为,A B ,过点()0,4斜率为k 的直线与椭圆C 交于,M N 两点,证明:直线BM 与AN 的交点G 在定直线上,并求出该定直线的方程.【解析】(1)由椭圆过点2,3P,且离心率为22,所以2222223122a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得2284a b ⎧=⎨=⎩,故所求的椭圆方程为22184x y +=.(2)由题意得()0,2A ,()0,2B −,直线MN 的方程4y kx =+,设()()1122,,,M x y N x y ,联立224184y kx x y =+⎧⎪⎨+=⎪⎩,整理得()221216240k x kx +++=,由()22Δ25696120k k =−+>,即232k >,所以1221612kx x k −+=+,1222412x x k =+. 由求根公式可知,不妨设218246k k x −−−,228246k k x −+−= 直线AN 的方程为2222y y x x −−=,直线BM 的方程为1122y y x x ++=, 联立22112222y y x x y y xx −⎧−=⎪⎪⎨+⎪+=⎪⎩,得()()()()2121121121212222222266y x kx x kx x x y y y x kx x kx x x −++−===++++, 代入12,x x ,得222222241644628446112122324481246241246k k k y k k k k y k k k k k −−−−−−++===−+−+−−+−+, 解得1y =,即直线BM 与AN 的交点G 在定直线1y =上.【变式1-2】(2024·全国·模拟预测)已知双曲线C 的中心为坐标原点O ,C 的一个焦点坐标为()10,3F ,离3 (1)求C 的方程;(2)设C 的上、下顶点分别为1A ,2A ,若直线l 交C 于()11,M x y ,()22,N x y ,且点N 在第一象限,120y y >,直线1A M 与直线2A N 的交点P 在直线35y =上,证明:直线MN 过定点. 【解析】(1)由题意得3c =,3ca3a =2226b c a =−=, 故C 的方程为22136y x −=;(2)证明:由已知条件得直线MN 的斜率存在,设直线MN :y kx t =+,联立2226y kx t y x =+⎧⎨−=⎩,消去y 整理得,()222214260k x ktx t −++−=, 由题设条件得2210k −≠,()()2222Δ16421260k t k t =−−−>,则122412kt x x k +=−,21222621t x x k −=−.由(1)得(13A ,(20,3A −, 则直线1A M :1133y y −,直线2A N :2233y y x +=, 11223333y y y y −−=++ 因为直线1A M 与直线2A N 的交点P 在直线35y =上,所以112233353335y y −=++因为2222136y x−=2222222233312y y y x −+−==,即()2222323y y x +=−所以(11211212122233323333523335y y y y y x x y −−−===+.又((()(221212123333y y k x x k t x x t =+++,(((2222222326433212121t t ktk k t t k k k −−=⨯−+=−−−,所以33353335t t −=+,解得5t =,所以直线MN 过定点()0,5.02 向量搭桥进行翻译将向量转化为韦达定理形式求解.【典例2-1】(2024·上海普陀·二模)设椭圆222:1(1)x y a a Γ+=>,Γ2倍,直线l 交Γ于A 、B 两点,C 是Γ上异于A 、B 的一点,O 是坐标原点. (1)求椭圆Γ的方程;(2)若直线l 过Γ的右焦点F ,且CO OB =,0CF AB ⋅=,求CBFS的值;(3)设直线l 的方程为(,R)y kx m k m =+∈,且OA OB CO +=,求||AB 的取值范围. 【解析】(1)由Γ24倍,得212a −22(1)a a −=, 又1a >,则2a =故椭圆Γ的方程为2212x y +=.(2)设Γ的左焦点为1F ,连接1CF , 因为CO OB =,所以点B 、C 关于点O 对称, 又0CF AB ⋅=,则CF AB ⊥, 由椭圆Γ的对称性可得,1CF CF ⊥,且三角形1OCF 与三角形OBF 全等,则1112CBFCF FSSCF CF ==⋅,又122211224CF CF CF CF F F ⎧+=⎪⎨+==⎪⎩,化简整理得, 12CF CF ⋅=,则1CBFS=.(3)设11(,)A x y ,11(,)B x y ,00(,)C x y ,又 OA OB CO +=,则012()x x x =−+,012()y y y =−+, 由2212x y y kx m ⎧+=⎪⎨⎪=+⎩得,222(12)4220k x mkx m +++−=, 222222168(12)(1)8(21)m k k m k m ∆=−+−=−+,由韦达定理得,122412mk x x k −+=+,21222212m x x k −=+,又121222()212my y k x x m k +=++=+,则02412mkx k =+,02212m y k −=+, 因为点C 在椭圆Γ上,所以222242()2()21212mk m k k −+=++, 化简整理得,22412m k =+,此时,22222218(21)8(21)6(21)04k k m k k +∆=−+=+−=+>,则2222212121()()(1)()AB x x y y k x x =−+−=+−222224221()4()1212mk m k k k−−+−++ 226(21)1k k ++226612k k ++ 令212t k =+,即1t ≥,则(]2266333=33,612k t k t t ++=+∈+, 则AB 的取值范围是3,6.【典例2-2】(2024·贵州安顺·一模)已知双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线方程为3y x =,右焦点F 3 (1)求双曲线C 的标准方程;(2)过点F 的直线l 与双曲线C 交于,M N 两点,()1,0A −.求AM AN ⋅的值.【解析】(1)由双曲线2222:1x y C a b −=的渐近线方程为3y =,可得3b a =又由焦点(c,0)F 32233(3)1c d ==+2c =,又因为222c a b =+,可得1,3a b =2213y x −=.(2)由(1)知2c =,可得(2,0)F ,当直线l 的斜率不存在时,即:2l x =,将2x =代入2213y x −=,可得13y =或23y =−,不妨设(2,3),(2,3)M N −,又由(1,0)A −,可得(3,3),(3,3)AM AN ==−, 所以333(3)0AM AN ⋅=⨯+⨯−=; 当直线l 的斜率存在时,即:(2)l y k x =−,联立方程组22(2)13y k x y x =−⎧⎪⎨−=⎪⎩,整理得2222(3)4430k x k x k −+−−=,设1122(,),(,)M x y N x y ,则2222(4)4(3)(43)0k k k ∆=+−+>,且22121222443,33k k x x x x k k ++==−−, 则222212121212(2)(2)2()4y y k x x k x x k x x k =−−=−++,且1122(1,),(1,)AM x y AN x y =+=+,则1212121212(1)(1)()1AM AN x x y y x x x x y y ⋅=+++=++++ 22212121212()12()4x x x x k x x k x x k =++++−++2221212(12)(1)()41k x x k x x k =−+++++=2222222434(12)(1)4133k k k k k k k +=−⋅++⋅++−−242244222484343412303k k k k k k k k k −+++++−+−==−,综上可得:0AM AN ⋅=.【变式2-1】(2024·全国·模拟预测)如图,已知抛物线()2:20E y px p =>,其焦点为F ,其准线与x 轴交于点C ,以FC 为直径的圆交抛物线于点B ,连接BF 并延长交抛物线于点A ,且4AF BF −=.(1)求E 的方程.(2)过点F 作x 轴的垂线与抛物线E 在第一象限交于点P ,若抛物线E 上存在点M ,N ,使得0MP NP ⋅=.求证:直线MN 过定点.【解析】(1)根据抛物线的性质可知CF p =.设直线AB 的倾斜角为θ,则在Rt CBF △中,cos BF p θ=. 由抛物线的定义知cos AF AF p θ=+,cos BF p BF θ=−, 所以1cos p AF θ=−,cos 1cos pBF p θθ==+,所以2sin cos θθ=. 所以222sin cos p p AB AF BF θθ=+==. 由24AF BF AB BF −=−=,得221cos 2cos 224cos cos p p p p θθθθ−−=⋅==,解得2p =. 所以E 的方程为24y x =.(2)由(1)知()1,2P .设直线MN 的方程为x my n =+,()11,M x y ,()22,N x y .联立抛物线方程,得2,4.x my n y x =+⎧⎨=⎩代入并整理,得2440y my n −−=.则124y y m +=,124y y n =−,且216160m n ∆=+>. 由0MP NP ⋅=,得()()11221,21,20x y x y −−⋅−−=,则()()()()()()()()12121212112211220x x y y my n my n y y ⎡⎤⎡⎤−−+−−=−+−++−−=⎣⎦⎣⎦,得()()()22121212250m y y mn m y y n n ++−−++−+=,所以()()()221424250m n mn m m n n +⨯−+−−⨯+−+=.整理得()()22341n m −=+.当()321n m −=−+,即21n m =−+时,直线MN 的方程为()21x m y =−+,则直线MN 恒过定点()1,2P ,不符合题意.当()321n m −=+,即25n m =+时,直线MN 的方程为()25x m y =++,则直线MN 恒过定点()5,2−.【变式2-2】(2024·山东聊城·二模)已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为26. (1)求C 的方程;(2)直线:(0,0)l y kx m k m =+>>与C 交于,M N 两点,与y 轴交于点A ,与x 轴交于点B ,且,AM BM AN BN λμ==. (ⅰ)当12μλ==时,求k 的值;(ⅱ)当3λμ+=时,求点(0,3到l 的距离的最大值.【解析】(1)由题意得222226b c a b a a =⎧⎪⎨−==⎪⎩13b a =⎧⎪⎨=⎪⎩ 所以C 的方程为2213x y +=.(2)(ⅰ)由题意得()0,,,0m A m B k ⎛⎫− ⎪⎝⎭,由12AM BM =,得2OM OA OB =−,即,2m M m k ⎛⎫⎪⎝⎭,由2AN BN =,得2ON OB OA =−,即2,m N m k ⎛⎫−− ⎪⎝⎭, 将,M N 的坐标分别代入C 的方程,得222413m m k +=和222413m m k+=,解得213k =,又0k >,所以3k =(ⅱ)由22,13y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,得()222316330k x kmx m +++−=, 其中()()()222222Δ361231112310k m k m k m =−+−=−+>,设()()1122,,,M x y N x y ,则2121222633,3131km m x x x x k k −−+==++,由(),,0,,,0m AM BM AN BN A m B k λμ⎛⎫==− ⎪⎝⎭,得1122,m m x x x x k k λμ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,所以121212112x x m m m m m k x x x x k k k k λμ⎛⎫ ⎪+=+=−+ ⎪ ⎪++++⎝⎭, 由3λμ+=,得()221212230k x x mk x x m +++=,即222222223312303131m k k m k m k k −−++=++, 所以222222223312930m k k m k m k m −−++=, 因此22k m =,又0,0k m >>,所以k m =. 所以l 的方程为()1y k x =+,即l 过定点()1,0−,所以点(0,3−到l 的最大距离为点(0,3−与点()1,0−的距离21(3)2d =+=, 即点(0,3−到l 的距离的最大值为2.03 弦长、面积范围与最值问题1、建立目标函数,使用函数的最值或取值范围求参数范围.2、建立目标函数,使用基本不等式求最值.【典例3-1】(2024·浙江台州·二模)已知椭圆C :229881x y +=,直线l :=1x −交椭圆于M ,N 两点,T 为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标; (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长.【解析】(1)椭圆的标准方程为2218198x y +=,因为819988−=,所以焦点坐标为320,⎛ ⎝⎭. (2)将=1x −代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M −,()1,3N −−, 直线MT 的方程为()3313y x =−−−,即3490x y +−=, 设圆Q 方程为()222x t y r −+=,由于内切圆Q 在TMN △的内部,所以1t >−, 则Q 到直线MN 和直线MT 的距离相等,即223409134t t r +⨯−+==+,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫−+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =−+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率.由圆Q 21132321k k ⎛⎫−+ ⎪⎝⎭=+,化简得:2812270k k +−=,则121232278k k k k ⎧+=−⎪⎪⎨⎪=−⎪⎩,由()122139881y k x x y ⎧=−+⎨+=⎩得()()222111119816384890k x k k x k k ++−+−−=, 可得21121848989A P A k k x x x k −−==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫−−−−+=−+=−+= ⎪++⎝⎭()()()111113271218271833271291232k k k k k −−−+−===−−+−.同理22222848989B k k x k −−=+,32B y =−,所以直线AB 的方程为32y =−, 所以AB 与圆Q 相切,将32y =−代入229881x y +=得7x =所以7AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB 的面积1319272222ABC S m =⨯=⨯△, 解得67m =.所以PAB 的周长为67.【典例3-2】(2024·高三·浙江金华·阶段练习)设抛物线()2:20C y px p =>,直线=1x −是抛物线C 的准线,且与x 轴交于点B ,过点B 的直线l 与抛物线C 交于不同的两点M ,N ,()1,A n 是不在直线l 上的一点,直线AM ,AN 分别与准线交于P ,Q 两点. (1)求抛物线C 的方程; (2)证明:BP BQ =:(3)记AMN △,APQ △的面积分别为1S ,2S ,若122S S =,求直线l 的方程. 【解析】(1)因为=1x −为抛物线的准线,所以12p=,即24p =, 故抛物线C 的方程为24y x = (2)如图,设l :1x ty =−,()()1122,,,M x y N x y , 联立24y x =,消去x 得2440y ty −+=,则()2Δ1610t =−>,且121244y y t y y +=⎧⎨=⎩,又AM :()1111y ny n x x −−=−−,令=1x −得()1121,1y n P n x ⎛⎫−−− ⎪−⎝⎭, 同理可得()2221,1y n Q n x ⎛⎫−−− ⎪−⎝⎭,所以()()()()12121212222221122P Q y n y n y n y n y y n n n x x ty ty ⎡⎤−−−−+=−+−=−+⎢⎥−−−−⎣⎦()()()()()()1221122222222y n ty y n ty n ty ty −−+−−=−−⋅−,()()()212122212124248882202444ty y nt y y nn nt n n t y y t y y t −−++−=−=−=−++−,故BP BQ =.(3)由(2)可得:()()1222122222221nt y n y n S PQ ty ty t −−−==−=−−−22212211141212221nt S MN d t t t nt t −==++=−−+,由122S S =,得:212t −=,解得3t = 所以直线l 的方程为310x +=.【变式3-1】(2024·上海闵行·二模)如图,已知椭圆221:14x C y +=和抛物线()22:20C x py p =>,2C 的焦点F 是1C 的上顶点,过F 的直线交2C 于M 、N 两点,连接NO 、MO 并延长之,分别交1C 于A 、B 两点,连接AB ,设OMN 、OAB 的面积分别为OMN S △、OABS.(1)求p 的值; (2)求OM ON ⋅的值; (3)求OMNOABS S 的取值范围. 【解析】(1)椭圆221:14x C y +=的上顶点坐标为()0,1,则抛物线2C 的焦点为()0,1F ,故2p =.(2)若直线MN 与y 轴重合,则该直线与抛物线2C 只有一个公共点,不符合题意, 所以直线MN 的斜率存在,设直线MN 的方程为1y kx =+,点()11,M x y 、()22,N x y ,联立214y kx x y=+⎧⎨=⎩可得2440x kx −−=,216160k ∆=+>恒成立,则124x x =−,221212121241344x x OM ON x x y y x x ⋅=+=+=−+=−.(3)设直线NO 、MO 的斜率分别为1k 、2k ,其中10k >,20k <,联立12244y k x x y =⎧⎨+=⎩可得()221414k x +=,解得2141x k =+ 点A 在第三象限,则2141A x k =+点B 在第四象限,同理可得2241B x k =+,且121212121164y y x x k k x x ===− 121222124141OMN OAB B AOM ONx x x x S S OB OA x x k k ⋅⋅⋅===⋅⋅++()()2221212114141424k k k k ++++2121124224k k ≥⋅+, 当且仅当112k =时,等号成立. OMNOABS S 的取值范围为[)2,+∞. 【变式3-2】(2024·辽宁·二模)已知点P 为双曲线22:14x E y −=上任意一点,过点P 的切线交双曲线E 的渐近线于,A B 两点. (1)证明:P 恰为AB 的中点;(2)过点P 分别作渐近线的平行线,与OA 、OB 分别交于M 、N 两点,判断PMON 的面积是否为定值,如果是,求出该定值;如果不是,请说明理由;【解析】(1)由切线不可能平行于x 轴,即切线的斜率不可能为0, 设切线方程为:l x ty m =+,联立方程组2214x ty m x y =+⎧⎪⎨−=⎪⎩,整理得222(4)240t y tmy m −−+=+, 所以()()222Δ24(4)40tm t m =−−−=,可得2240t m +−=,即224m t =−,所以22220m y tmy t −++=,即2()0my t −=,所以t y m =,则2t x m m=+,所以点2(,)t tP m m m+,又由双曲线22:14x E y −=的渐近线方程为12y x =±,联立方程组12y xx ty m⎧=⎪⎨⎪=+⎩,可得2,22m m x y t t ==−−,即2(,)22m m A t t −−, 联立方程组12y xx ty m⎧=−⎪⎨⎪=+⎩,可得2,22m m x y t t −==++,即2(,)22m m B t t −++,所以222222244422244m mm tm m tmm m t t t t m m+++−−+====−− 222224m mtm tm t t t t m m−+−+===−,所以AB 的中点坐标为4(,)t m m又因为2224t t m m m m m++==,所以4(,)t P m m ,所以点P 与AB 的中点重合.(2)由2(,)22m m A t t−−,2(,)22m mB t t −++, 可得2222225()()22(2)m m m OA t t t =+=−−−,2222225()()22(2)m m m OB t t t −=+=+++, 所以44422222425252525[(2)(2)](4)m m m OA OB t t t m ⋅====−+−,即5OA OB =, 又由22223322224m m m m m OA OB t t t t t−⋅=⨯+⨯==−+−+−,可得3cos 5OA OB AOB OA OB ⋅∠==, 所以24sin 1cos 5AOB AOB ∠=−∠=, 所以114sin 52225AOBSOA OB AOB =∠=⨯⨯=, 因为P 为AB 的中点,所以112122PMON AOBS S ==⨯=, 所以四边形PMON 的面积为定值1.04 斜率之和差商积问题1、已知00(,)P x y 是椭圆22221x y a b +=上的定点,直线l (不过P 点)与椭圆交于A ,B 两点,且0PA PBk k +=,则直线l 斜率为定值2020b x a y .2、已知00(,)P x y 是双曲线22221x y a b−=上的定点,直线l (不过P 点)与双曲线交于A ,B 两点,且0PA PBk k +=,直线l 斜率为定值2020b x a y −.3、已知00(,)P x y 是抛物线22y px =上的定点,直线l (不过P 点)与抛物线交于M ,N 两点,若0PA PB k k +=,则直线l 斜率为定值0p y −. 4、00(,)P x y 为椭圆222:x y a bΓ2+=1)0,0(a b >>上一定点,过点P 作斜率为1k ,2k 的两条直线分别与椭圆交于,M N 两点.(1)若12(0)k k λλ+=≠,则直线MN 过定点2000222(,)y b x x y aλλ−−−; (2)若2122()b k k a λλ⋅=≠,则直线MN 过定点2222002222(,)a b a b x y a b a b λλλλ++−−−.5、设00(,)P x y 是直角坐标平面内不同于原点的一定点,过P 作两条直线AB ,CD 交椭圆222:x y a b Γ2+=1)0,0(a b >>于A 、B 、C 、D ,直线AB ,CD 的斜率分别为1k ,2k ,弦AB ,CD 的中点记为M ,N .(1)若12(0)k k λλ+=≠,则直线MN 过定点2002(,)y b x x aλλ−−;(2)若2122()b k k a λλ⋅=≠,则直线MN 过定点22002222(,)a x b y a b a b λλλ−−.6、过抛物线22(0)y px p =>上任一点00(,)P x y 引两条弦PA ,PB ,直线PA ,PB 斜率存在,分别记为12,k k ,即12(0)k k λλ+=≠,则直线AB 经过定点00022(,)y px y λλ−−.【典例4-1】(2024·上海徐汇·二模)已知椭圆22:143x y C +=,12A A 、分别为椭圆C 的左、右顶点,12F F 、分别为左、右焦点,直线l 交椭圆C 于M N 、两点(l 不过点2A ).(1)若Q 为椭圆C 上(除12A A 、外)任意一点,求直线1QA 和2QA 的斜率之积; (2)若112NF F M =,求直线l 的方程;(3)若直线2MA 与直线2NA 的斜率分别是12k k 、,且1294k k =−,求证:直线l 过定点.【解析】(1)在椭圆 22:143x y C +=中,左、右顶点分别为12(2,0)(2,0)A A −、,设点()000,(2)Q x y x ≠±,则12202000220000314322444QA QA x y y y k k x x x x ⎛⎫− ⎪⎝⎭⋅=⋅===−+−−−. (2)设()()1122,,,M x y N x y ,由已知可得1(1,0)F −,122111(1,)(+1,)NF x y F M x y =−−−=,,由112NF F M =得2211(1,)2(+1,)−−−=x y x y ,化简得2121=322x x y y −−⎧⎨=−⎩代入2222143x y +=可得22114(32)(32)1−−−+=x y ,联立2211143x y +=解得117=435=x y ⎧−⎪⎪⎨⎪⎪⎩由112NF F M =得直线l 过点1(1,0)F −,73(,5)48−N , 所以,所求直线方程为5=1)y x ±+.(3)设()()3344,,,M x y N x y ,易知直线l 的斜率不为0,设其方程为x my t =+(2t ≠),联立22143x my t x y =+⎧⎪⎨+=⎪⎩,可得()2223463120m y mty t +++−=,由2222364(34)(312)0m t m t ∆=−+−>,得2234t m <+.由韦达定理,得234342263123434,−+=−=++mt t y y y y m m .1294k k =−,34349224∴⋅=−−−y y x x . 可化为()()343449220y y my t my t ++−+−=, 整理即得()()223434499(2)9(2)0my ym t y y t ++−++−=,()222223126499(2)9(2)03434t mt m m t t m m −⎛⎫∴+⨯+−−+−= ⎪++⎝⎭,由20t −≠,进一步得2222(49)(2)183(2)03434m t m tt m m ++−+−=++,化简可得16160t −=,解得1t =, 直线MN 的方程为1x my =+,恒过定点(1,0).【典例4-2】(2024·全国·模拟预测)已知椭圆2222:1(0)x y E a b a b+=>>的左、右顶点分别为()(),,2,2A B C a b D a b −,直线AC 的斜率为12,直线AC 与椭圆E 交于另一点G ,且点G 到x 轴的距离为43. (1)求椭圆E 的方程.(2)若点P 是E 上与点,A B 不重合的任意一点,直线,PC PD 与x 轴分别交于点,M N . ①设直线,PM PN 的斜率分别为12,k k ,求2112k k k k −的取值范围. ②判断22||AM BN +是否为定值.若为定值,求出该定值;若不为定值,说明理由.【解析】(1)由题意知,(),0A a −.由直线AC 的斜率为12()2012b a −=,所以2a b =. 直线AC 的方程为()12y x a =+. 设(),G s t ,则0,0s t >>.由点G 到x 轴的距离为43,得43t =. 由点G 在直线AC 上,得()4132s a =+,所以83s a =−.由点G 在椭圆E 上,得2222843312a a a⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭+=,解得2a =.所以2b =.所以椭圆E 的方程为22142x y+=.(2)①设()00,P x y (020y ≤<或002y < 由(1)知,()()2,2,2,2C D −, 则00120022,22PC PD y y k k k k x x −−====−+, 所以0021121200002211442222x x k k k k k k y y y y −+−−=−=−==−−−−. 由020y −<或002y <≤得02222y −<或02222y <−≤ 所以0442222y −<−或0424222y <≤+− 故2112k k k k −的取值范围是)(422,22,422⎡−⋃+⎣. ②由①知2200142x y +=,即2220004x y y +=−.设()()12,0,,0M x N x . 因为,,P C M 三点共线, 所以00120222y x x −−=−−,得0001002422222x y x x y y −+−=+=−−.因为,,P D N 三点共线,所以00220222y x x −−=++, 得0002002422222x x y x y y −−−−=−=−−.所以()()222222000012002222222222y x x y AM BN x x y y ⎛⎫⎛⎫−−−+=++−=++−= ⎪ ⎪−−⎝⎭⎝⎭()220002008816822x y y y y +++=−−()()()()()2000220000848221616882222y y y yy y y y y −+−++=++=−−−−()0000821681622y y y y −+++=−−.故22||AM BN +为定值16.【变式4-1】(2024·高三·上海闵行·期中)已知双曲线C :()222210,0x y a b a b −=>>2()3,1−在双曲线C 上.过C 的左焦点F 作直线l 交C 的左支于A 、B 两点. (1)求双曲线C 的方程;(2)若()2,0M −,试问:是否存在直线l ,使得点M 在以AB 为直径的圆上?请说明理由.(3)点()4,2P −,直线AP 交直线2x =−于点Q .设直线QA 、QB 的斜率分别1k 、2k ,求证:12k k −为定值.【解析】(1)由双曲线2222y :1x C a b −=2,且()3,1M −在双曲线C 上,可得222229112a b c e a c a b ⎧−=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得228,8a b ==,∴双曲线的方程为22188x y −=.(2)双曲线C 的左焦点为()4,0F −,当直线l 的斜率为0时,此时直线为0y =,与双曲线C 左支只有一个交点,舍去; 当直线l 的斜率不为0时,设:4l x my =−,联立方程组2248x my x y =−⎧⎨−=⎩,消x 得()221880m y my −−+=,易得Δ0>, 设()()1122,,,A x y B x y ,则12122288,011m y y y y m m +==<−−,可得11m −<<, ∵()()11222,,2,MA x y MB x y =+=+,则()()()()211212122222MA MB x x y y my my y y ⋅=+++=−−+()()()22212122281161244411m mm y y m y y m m +=+−++=−+=−−−,即0MA MB ⋅≠,可得MA 与MB 不垂直,∴不存在直线l ,使得点M 在以AB 为直径的圆上. (3)由直线()1:24AP y k x −=+,得(12,22)Q k −+, ∴2121222222222y k y k k x my −−−−==+−,又11111224PAy y k k x my −−===+,∴()()()()12121121121212222222222y my my y k y y k k k my my my my −−−−−−−−−=−=−− ()2111112224222my y my mk y my my −−+++=−,∵1112y k my −=,∴1112k my y =−,且1212y y my y +=, ∴()()()1212121212122222m y y y y k k my my y y y −−−===−−+−,即12k k −为定值.【变式4-2】(2024·全国·模拟预测)已知双曲线2222:1(0,0)x y C a b a b−=>>的左、右焦点分别为12,F F ,从下面3个条件中选出2个作为已知条件,并回答下面的问题:①点()32,1P −在双曲线C 上;②点Q 在双曲线C 上,1290QF F ∠=︒,且113QF =;③双曲线C 的一条渐近线与直线33y x =−垂直. (1)求双曲线C 的方程;(2)设,A B 分别为双曲线C 的左、右顶点,过点()0,1−的直线l 与双曲线C 交于,M N 两点,若AMBNk a k =−,求直线l 的斜率.【解析】(1)选①②,因为点()32,1P −在双曲线C 上,所以221811a b −=, 由题意可设()1(,0),,Q F c Q c y −−,因为点Q 在双曲线C 上,所以22221Q y ca b−=,所以2Q b y a =±,又113QF =,所以213b a =,联立222181113a b b a ⎧−=⎪⎪⎨⎪=⎪⎩,所以3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=;选①③, 由①,得221811a b −=,由③,得31ba−⨯=−, 联立22181131a b b a⎧−=⎪⎪⎨⎪−⨯=−⎪⎩,解得3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=,选②③,由题意可设()1(,0),,Q F c Q c y −−,因为点Q 在双曲线C 上,所以22221Q y ca b−=,所以2Q b y a =±,又113QF =,所以213b a =,又由③,得31ba−⨯=−,联立21331b a b a⎧=⎪⎪⎨⎪−⨯=−⎪⎩,解得3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=.(2)依题意可知()()3,0,3,0A B −,易知直线l 的斜率存在,设直线l 的方程为1y kx =−,()()1122,,,M x y N x y ,联立22119y kx x y =−⎧⎪⎨−=⎪⎩,消去y 并整理,得()221918180k x kx −+−=, 由()()()222Δ(18)4191836290k k k =−−⨯−=−>,且2190k −≠,得229k <且219k ≠,所以1212221818,1919k x x x x k k +=−=−−−, 又221119x y −=,即221199x y −=,则1111339y x x y −=+, 所以()()11121122122233339933AMBNy x x x k x y y y k y y x x −−−+===−−()()()()()121212122121212393991191x x x x x x x x kx kx k x x k x x −++−++==−−⎡⎤−++⎣⎦2222222218183996119193911818911919kk k k k k k k k k −+⨯+−+−−===−−⎛⎫−++ ⎪−−⎝⎭, 整理得218310k k −−=,解得16k =−或13k =(舍去),故直线l 的斜率为16−.05 定点定值问题1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明; (2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x −=−或截距式y kx b =+来证明. 一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m . ③参数无关找定点:找到和k 没有关系的点.【典例5-1】(2024·全国·模拟预测)已知离心率为23的椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,点P 为椭圆C 上的动点,且12A PA 面积的最大值为35():20l x my m =−≠与椭圆C 交于,A B 两点,点()1,0D −,直线,AD BD 分别交椭圆C 于,G H 两点,过点2A 作直线GH 的垂线,垂足为M . (1)求椭圆C 的方程.(2)记直线GH 的斜率为k ,证明:km 为定值.(3)试问:是否存在定点N ,使MN 为定值?若存在,求出定点N 的坐标;若不存在,说明理由. 【解析】(1)由题意,得22235,2,3,ab c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩解得2229,5,4.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为22195x y +=. (2)证明:设()()()()11223344,,,,,,,A x y B x y G x y H x y . 又()1,0D −,所以可设直线AD 的方程为1111x x y y +=−. 联立椭圆方程与直线AD 的方程,得112211,1.95x x y y x y +⎧=−⎪⎪⎨⎪+=⎪⎩ 消去x ,得()()222211111519101400x y y x y y y ⎡⎤++−+−=⎣⎦. 又2211195x y +=,所以22115945x y +=,可得()()2211115140x y x y y y +−+−=.由根与系数的关系,得2113145y y y x −=+,则13145y y x −=+,所以11131111459155x y x x y x x +−−−=⋅−=++,同理,得224422594,55x y x y x x −−−==++. 从而直线GH 的斜率()()()()()()2112214321214312212144454555595959559555y y y x y x y y x x k x x x x x x x x x x −−−+−+−++====−−−−−++−++−++()()()122112454516y x y x x x +−+−.又11222,2x my x my =−=−, 所以()()()()()1221121212434312316164y my y my y y k x x x x m +−+−===−−,即34km =,为定值. (3)由(2)可得直线GH 的方程为11114594355y x m x y x x ⎛⎫+=⋅+− ⎪++⎝⎭. 由椭圆的对称性可知,若直线GH 恒过定点,则此定点必在x 轴上, 所以令0y =,得()()()()()11111111116235916595135535353x x my x x x x x x x +−+++=−===++++.故直线GH 恒过定点T ,且点T 的坐标为1,03⎛⎫⎪⎝⎭.因为2A M GH ⊥,垂足为M ,且()23,0A ,所以点M 在以2A T 为直径的圆上运动.故存在点5,03N ⎛⎫⎪⎝⎭,使21423MN A T ==.【典例5-2】(2024·黑龙江双鸭山·模拟预测)已知双曲线2222:1(0,0)x y C a b a b −=>>的焦距为25点3)D 在C 上. (1)求C 的方程;(2)直线:1l x my =+与C 的右支交于A ,B 两点,点E 与点A 关于x 轴对称,点D 在x 轴上的投影为点G . (ⅰ)求m 的取值范围; (ⅱ)求证:直线BE 过点G .【解析】(1)由已知得222251631a b a b ⎧+=⎪⎨−=⎪⎩,解得224,1a b ==,所以C 的方程为2214x y −=.(2)(i )设()11,A x y ,()22,B x y ,则()11,E x y −,联立22144x my x y =+⎧⎨−=⎩, 消去x 得()224230m y my −+−=,则240m −≠,()()222Δ41241630m m m =+−=−>,解得||3m >||2m ≠.又l 与C 的右支交于A ,B 两点,C 的渐近线方程为12y x =±,则11||2m >,即0||2m <<, 所以|m 的取值范围为(3,2). (ii )由(i )得12224my y m +=−−,12234y y m −=−, 又点3)D 在x 轴上的投影为(4,0)G ,所以()224,GB x y =−,()114,GE x y =−−, 所以()()122144x y x y −+−()()122133my y my y =−+−()121223my y y y =−+,223223044mm m m −−=⋅−⋅=−−, 所以//GB GE ,又GB ,GE 有公共点G ,所以B ,G ,E 三点共线,所以直线BE 过点G .【变式5-1】(2024·陕西西安·一模)已知椭圆2222:1(0)x y E a b a b +=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的一个端点Q 构成一个等腰直角三角形,点23P ⎝⎭在椭圆E ,过点2F 作互相垂直且与x 轴不重合的两直线AB ,CD 分别交椭圆E 于A ,B 和点C ,D ,且点M ,N 分别是弦AB ,CD 的中点.(1)求椭圆E 的标准方程;(2)若()0,1D ,求以CD 为直径的圆的方程;(3)直线MN 是否过x 轴上的一个定点?若是,求出该定点坐标;若不是,说明理由. 【解析】(1)因为椭圆2222:1(0)x y E a b a b +=>>经过点23P ⎝⎭, 且1F ,2F 与短轴的一个端点Q 构成一个等腰直角三角形, 可得b c =,则22222a b c b =+=,所以2223122b b+=⨯,解得222,1a b ==, 所以椭圆E 的标准分别为2212x y +=.(2)由(1)得1(1,0),(0,1)F D −,所以直线CD 的方程为1x y +=,联立方程组22112x y x y +=⎧⎪⎨+=⎪⎩,解得41,33x y ==−或0,1x y ==,所以41(,)33C −, 则CD 的中点为21(,)33N 且423CD =CD 为直径的圆的方程为22218()()339x y −+−=. (3)设直线AB 的方程为1x my =+,且0m ≠,则直线CD 的方程为11x y m=−+, 联立方程组22112x my x y =+⎧⎪⎨+=⎪⎩,整理得22(2)210m y my ++−=, 设1122(,),(,)A x y B x y ,则0∆>且12122221,22y y y y m m +=−=−++, 所以12121224(1)(1)()22x x my my m y y m +=+++=++=+, 由中点坐标公式得222(,)22mM m m −++, 将M 的坐标中的用1m −代换,可得CD 的中点为2222(,)2121m mN m m ++,所以232(1)MN mk m =−,所以直线MN 的方程为22232()22(1)2m m y x m m m +=−+−+,即23(1)12m y x m =−−,则直线MN 过定点2(,0)3. 【变式5-2】(2024·浙江·二模)已知双曲线()2222:10,0x y C a b a b−=>>左右焦点分别为1F ,2F ,点()3,2P 在双曲线上,且点()3,2P 到双曲线两条渐近线的距离乘积为65,过1F 分别作两条斜率存在且互相垂直的直线1l ,2l ,已知1l 与C 双曲线左支交于A ,B 两点,2l 与C 左右两支分别交于E ,F 两点. (1)求双曲线C 的方程;(2)若线段AB ,EF 的中点分别为M ,N ,求证:直线MN 恒过定点,并求出该定点坐标. 【解析】(1)设双曲线C 的两渐近线方程分别为b y x a=,by x a =−,点()3,2P 到双曲线两渐近线的距离乘积为22294323265b a b a b a ccc −−+⨯==,由题意可得:222222229465941a b c b a c a b ⎧+=⎪⎪−⎪=⎨⎪⎪−=⎪⎩,解得23a =,22b =, 所以双曲线C 的方程为22132x y −=.(2)设直线1l 的方程为(5y k x =, 由1l ,2l 互相垂直得2l 的方程(15y x k=−, 联立方程得(225132y k x x y ⎧=⎪⎨⎪−=⎩,消y 得()222223651560k x k x k −−−−=,0∆>成立,所以212352M x x k x +=,(255M M ky k x == 所以点M 坐标为23525k k ⎝⎭,联立方程得(2215132y x k x y ⎧=−⎪⎪⎨⎪−=⎪⎩,所以34352N x x x +==(1255N N k y x k −=−=, 所以点N 坐标为223525,2323k k k ⎛⎫− ⎪ ⎪−−⎝⎭,根据对称性判断知定点在x 轴上, 直线MN 的方程为()N MM M N My y y y x x x x −−=−−,则当0y =时,222223525352523232323351252525M N N M N M k k kx y x y k k k k x y y kk k −−−−−−===−−−−−−所以直线MN 恒过定点,定点坐标为()35,0−.1.已知椭圆Γ:()222210x y a b a b +=>>的上顶点为()0,1A ,离心率3e =()2,1P −的直线l 与椭圆Γ交于B ,C 两点,直线AB 、AC 分别与x 轴交于点M 、N .(1)求椭圆Γ的方程;(2)已知命题“对任意直线l ,线段MN 的中点为定点”为真命题,求AMN 的重心坐标;(3)是否存在直线l ,使得2AMN ABC S S =△△?若存在,求出所有满足条件的直线l 的方程;若不存在,请说明理由.(其中AMNS、ABCS分别表示AMN 、ABC 的面积)【解析】(1)依题意1b =,3c e a ==222c a b =−, 解得2a =,所以椭圆Γ的方程为2214x y +=;(2)因为命题“对任意直线l ,线段MN 的中点为定点”为真命题,。
全国名校高考专题训练8-圆锥曲线解答题1(数学)

过点B且与AB垂直的直线为 : y 2 3
又由 y 3 ( x 1)解得y 2 3 , 所以, 当点C的坐标为(1,2 3 )时, x 1 A,B,C三点共 线,不构成三角形. 因此,当△ABC为钝角三角形时,点C的纵坐标y的取值范围是:
y 10 3 2 3 或y ( y 2 3 ). 3 9
k ,两端点 A,B 到 y 轴距离之差为 4k (k 0) ,
(1)求以 O 为顶点, y 轴为对称轴,且过 A,B 两点的抛物线方程; (2)设 Q 为抛物线准线上任意一点,过 Q 作抛物线的两条切线,切点分别为 M,N, 求证:直线 MN 过一定点; 解:(1)设抛物线方程为 x 2 py ( p 0) ,AB 的方程为 y kx m ,
∴ MQ 的方程为 y
x12 x1 ( x x1 ) x12 2 x1 x 4 y 0 ; 4 2
4
∵ MQ 过 Q ,∴ x1 2 x1 x 0 4 0 ,同理 x 2 2 x 2 x 0 4 0
2 2
∴ x1 , x 2 为方程 x 2 x 0 x 4 0 的两个根;∴ x1 x 2 4 ;
k k F2 R
20k ) 2 20k 2 5 k 4 k 1 25k 2 4 20k 2 1 2 5k 4 0 (
∴20k2=20k2-4,而 20k2=20k2-4 不成立, 所以不存在直线 l ,使得|F2C|=|F2D| 综上所述,不存在直线 l,使得|F2C|=|F2D| 2、(江苏省启东中学高三综合测试二)已知动圆过定点P(1,0) ,且与定直线L:x=-1相切, 点C在l上. (1)求动圆圆心的轨迹M的方程;
2
2023届高考数学复习:精选好题专项(圆锥曲线)练习 (附答案)

2023届高考数学复习:精选好题专项(圆锥曲线)练习题组一、 圆锥曲线中的直线问题1‐1、(山东省“学情空间”区域教研共同体2023届高三入学检测)椭圆的左右焦点分别为,焦距为,点M 为椭圆上位于x 轴上方的一点,,且的面积为2.(1)求椭圆C 的方程;(2)过点的直线l 与椭圆交于A ,B 两点,且,求直线l 的方程.1‐2、(湖北省重点高中2023届高三上学期10月联考) 已知直线1l:22y x =+与椭圆E :22142x y +=相切于点M ,与直线2l:2y x t =+相交于点 N (异于点M ).(1)求点M 的坐标;(2)直线2l 交E 于点()11,A x y ,()22,B x y 两点,证明:ANM MNB ∽△△.2222:1(0)x y C a b a b+=>>12,FF 120MF MF ⋅=12MF F △2F 2AMB π∠=1-3、(南京六校联合体2023届高三8月联合调研)(本小题满分12分)已知椭圆C :22154x y +=的上下顶点分别为A,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M,N 两点,直线BM 与AN 交于点G . (1)设AN,BN 的斜率分别为k ,k ,求k ∙k 的值; (2)求证:点G 在定直线上.1-4、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知双曲线22:12x C y -=上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ 的面积.题组二、 圆锥曲线中的最值问题2‐1、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.()2:20C x py p ->AB OP 22‐4、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.题组三、圆锥曲线中的定点、定值问题3‐1、(南京师大附中2022—2023学年度高三第一学期10月检测)(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求OA OB ⋅的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点 【3‐2、(江苏省海安高级中学2023届高三期初学业质量监测)已知椭圆:的离心率为,短轴长为2.(1)求的方程;(2)过点且斜率不为0的直线与自左向右依次交于点,,点在线段上,且,为线段的中点,记直线,的斜率分别为,,求证:为定值.()2:20C x py p ->E ()222210x y a b a b +=>>2E ()4,0M -l E B C N BC MB NBMC NC=P BC OP ON 1k 2k 12k k3‐3、(江苏连云港2023届高三上学期期中考试) 已知椭圆C :()222210x y a b a b +=>>经过点2P ⎛⎫ ⎪ ⎪⎝⎭,31,2Q ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)过椭圆C 右焦点的直线l 交椭圆于A ,B 两点,交直线x =4于点D .设直线QA ,QD ,QB 的斜率分别为1k ,2k ,3k ,若20k ≠,证明:132k k k +为定值.题组四、 圆锥曲线中的探索性问题4-1、(湖南师大附中2023届高三年级开学初试卷)(本小题满分12分)设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M 是C 上一点,2MF与x 轴垂直,直线1MF 与C 的另一个交点为N ,且直线MN 的斜率为42. (1)求椭圆C 的离心率.(2)设)1,0(D 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于B A .两点,过点D 作线段AB 的垂线,垂足为Q ,判断在y 轴上是否存在定点R ,使得||RQ 的长度为定值?并证明你的结论.4‐2、(南京市2023届高三年级学情调研) 已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数; 若不存在,说明理由.4‐3、(湖北省鄂东南省级示范高中教改联盟学校2023届高三上学期期中联考)(本题满分12分)设点P 为圆上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点的动直线与轨迹E 交于A 、B 两点,定点N 为,直线NA 的斜率为,直线NB 的斜率为,试判断是否为定值.若是,求出该定值;若不是,请说明理由.22:4C x y +=2MQ =(4,0)T 31,2⎛⎫⎪⎝⎭1k 2k 12k k +参考答案题组一、 圆锥曲线中的直线问题1‐1、(山东省“学情空间”区域教研共同体2023届高三入学检测)椭圆的左右焦点分别为,焦距为,点M 为椭圆上位于x 轴上方的一点,,且的面积为2.(1)求椭圆C 的方程;(2)过点的直线l 与椭圆交于A ,B 两点,且,求直线l 的方程.【答案解析】【要点分析】(1)依题意可得,根据椭圆的定义、三角形面积公式及勾股定理求出,即可求出,从而得解;(2)首先求出的坐标,分直线的斜率为与不为两种情况讨论,当直线的斜率不为时,设直线的方程为,,,,联立直线与椭圆的方程,结合韦达定理可得,,由,推出,解得,进而可得答案.【小问1详解】解:因为,所以,即,所以,所以又,,,所以,即,所以,所以,所以椭圆方程为.【小问2详解】解:由(1)知,,所以,即, 当直线的斜率为时,此时,不合题意,2222:1(0)x y C a b a b+=>>12,FF 120MF MF ⋅=12MF F △2F 2AMB π∠=122F MF π∠=2a 2b M l 00l 0l x my =+11(,)A x y 22(,)B x y l 12y y +12y y MA MB⊥1212(0x x y y +-=m 120MF MF ⋅= 12MF MF ⊥ 122F MF π∠=1212122MF F MF MF S ⋅==△124MF MF ⋅=122MF MF a +=122F F c ==2221212MF MF F F +=()2121228MF MF MF MF +-=⋅24248a -⨯=24a =2222b a c =-=22142x y +=124MF MF ⋅=124MF MF +=122MF MF ==(M l 090AMB ∠≠︒当直线的斜率不为时,设直线的方程为,,,联立,得,所以,, 因为, 所以,所以,所以,所以, 所以, 解得或,当时,直线过点,不符合题意, 所以直线的方程为.1‐2、(湖北省重点高中2023届高三上学期10月联考) 已知直线1l:22y x =+与椭圆E :22142x y +=相切于点M ,与直线2l:2y x t =+相交于点 N (异于点M ).(1)求点M 的坐标;(2)直线2l 交E 于点()11,A x y ,()22,B x y 两点,证明:ANM MNB ∽△△. 【答案解析】【要点分析】(1)通过解方程组进行求解即可;(2)将直线2l 方程与椭圆方程联立,结合椭圆弦长公式、相似三角形判定定理进行运算证明即可. 【小问1详解】l 0l x my =+11(,)A x y 22(,)B xy 22142x my x y ⎧=⎪⎨+=⎪⎩22(2)20m y ++-=1222y y m+=-+12222y y m -=+90AMB ∠=︒MA MB⊥1212(0x x y y +-=21212(1)1)()40m y y m y y ++-++=2222(1)4(1)4022m m m m m -+--+=++2230m m --=1m =-3m =1m =-l Ml 30x y --=解:222224y x x y ⎧=-+⎪⎨⎪+=⎩,消y得:220x -+=,解得:x =,故)M ;【小问2详解】联立222y x y x t⎧=-+⎪⎪⎨⎪=+⎪⎩,解之得:,122t N t ⎫-+⎪⎪⎝⎭联立22224y x t x y ⎧=+⎪⎨⎪+=⎩,消y得:2220x t +-=, 由题可得:2Δ820t =->,∴12x x +=,2122x x t =-.12NA t ⎫=-⎪⎪⎭,22NB t ⎫=--⎪⎪⎭,()()212122223222332,2224NA NB x x t x x t t t t t ⎫⎫=--++⎪⎪⎪⎪⎭⎭⎫⎫=--+=⎪⎪⎪⎪⎭⎭2NM t ⎫=--=⎪⎪⎭, 2NM NA NB =,∴AN MNNM NB =,又ANB MNB ∠=∠,∴ANM MNB ∽△△ 1-3、(南京六校联合体2023届高三8月联合调研)(本小题满分12分)已知椭圆C :22154x y +=的上下顶点分别为A,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M,N 两点,直线BM 与AN 交于点G . (1)设AN,BN 的斜率分别为k ,k ,求k ∙k 的值; (2)求证:点G 在定直线上. .(本小题满分12分) 解:设),(),,(2211y x N y x M2222222221422x y x y x y k k -=-⋅+=⋅....................2分 2222154x y +=又22224(15x y =⋅-所以所以54451(4222221-=--=⋅x x k k .....................4分(2)设3:+=kx y PM 224520x y +=联立 得到02530)54(22=+++kx x k1223045kx x k -+=+所以2215425k x x +=⋅ 0)1(400)54(100900222>-=+-=∆k k k .....................6分直线:MB 2211-+=x x y y 直线:NA 2222+-=x x y y联立得:1212)2()2(22x y y x y y -+=-+.....................8分2121(2)(2)2524y y y y x x +++=-⋅-法一:525)(5452121212-=+++⋅-=x x x x k x x k..............10分解得34=y所以点G 在定直线34=y 上 .....................12分法二:由韦达定理得k x x x x 562121-=+2112221121(5)5221x kx kx x x y y kx x kx x x +++==-++所以5)(655)(65121221-=++-++-x x x x x x .........10分解得34=y所以点G 在定直线34=y 上 .....................12分1-4、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知双曲线22:12x C y -=上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ 的面积.解:(1)由题显然直线l 的斜率存在,设:l y kx m =+,设11(,)P x y ,22(,)Q x y ,则联立直线与双曲线得:222(21)4220k x kmx m -+++=,0> ,故122421km x x k +=--,21222221m x x k +=-,12121212111102222AP AQ y y kx m kx m k k x x x x --+-+-+=+=+=----, 化简得:12122(12)()4(1)0kx x m k x x m +--+--=,故2222(22)4(12)()4(1)02121k m kmm k m k k ++-----=--, 即(1)(21)0k m k ++-=,而直线l 不过A 点, 故l 的斜率 1.k =-(2)设直线AP 的倾斜角为α,由tan PAQ ∠=tan 22PAQ ∠=,由2PAQ απ+∠=,得tan AP k α==,即1112y x -=-联立1112y x -=-221112x y -=得1103x -=,153y =,同理,2103x +=,253y --=, 故12203x x +=,12689x x =而1|||2|AP x =-,2|||2|AQ x =-,由tan PAQ ∠=sin 3PAQ ∠=,故12121||||sin |2()4|29PAQ S AP AQ PAQ x x x x =∠=-++= 题组二、 圆锥曲线中的最值问题2‐1、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值..答案解析:(1)当在轴上时,即,设过点的切线方程为,与联立得,由直线和抛物线相切可得,,,∴,,(3分)由,解得, ∴抛物线的方程为.(5分) (2),∴,设,,则, 即,同理可得,(8分) 又为直线上的动点,设, 则,,由两点确定一条直线可得的方程为,()2:20C x py p ->P y ()0,1P -P 1y kx =-22x py =2220x pkx p -+=22Δ480p k p =-=2A B x x p =A B y y =)A()B OA OB ⊥(110+⨯=12p =C 2x y =2x y =2y x '=()11,A x y ()22,B x y ()1112y y x x x -=-112x x y y =+222x x y y =+P 1y x =-(),1P t t -1121x t t y =-+2221x t t y =-+AB 21xt t y =-+2AB =OP1c =1EF 2212x y +=1OP =y kx m=+2212x y y kx m ⎧+=⎪⎨⎪=+⎩()222214220kx kmx m +++-=2216880k m ∆=-+>122421kmx x k -+=+21222221m x x k -=+∵,化简得.又设M 是弦AB 的中点,∴,, ∴,令, 则,∴(仅当时取等),又∵(仅当时取等号). 综上,.2‐3、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知椭圆2222:1(0)x y E a b a b +=>>的左,右焦点分别为1(1,0)F -,2(1,0)F ,点P 在椭圆E 上,212PF F F ⊥,且12||3||.PF PF =(1)求椭圆E 的标准方程;(2)设直线:1()l x my m R =+∈与椭圆E 相交于A ,B 两点,与圆222x y a +=相交于C ,D 两点,求2||||AB CD ⋅的取值范围.解:(1)因为P 在椭圆上,所以12||||2PF PF a +=, 又因为12||3||PF PF =,所以2||2a PF =,13||2aPF =, 因为212PF F F ⊥,所以2222121||||||PF F F PF +=,又12||2F F =,所以22a =,2221b a c =-=,所以椭圆的标准方程为:22 1.2x y +=(2)设11(,)A x y ,22(,)B x y ,2221AB k ==+2222122k m k +=+222,2121kmm M k k -⎛⎫ ⎪++⎝⎭()222224121k OM m k +=⋅+()()()22222222241214122212221k k k OM k k k k +++=⋅=++++2411k t +=≥()()24443134t OMt t t t==≤=-++++1OM ≤=-t=1OP OM MP OM ≤+=+≤214k -=max OP =联立直线l 与椭圆E 的方程:221220x my x y =+⎧⎨+-=⎩,整理可得22(2)210m y my ++-=, 12222m y y m -+=+,12212y y m-=+,所以弦长2122)||||2m AB y y m+=-=+, 设圆222x y +=的圆心O 到直线l的距离为d =,所以||CD ==,所以2222222212)2)3||||41222m m m AB CD m m m m+++⋅=⋅⋅==-++++ 因为233022m <+…,2132222m ∴-<+…,2||||AB CD ∴⋅<,所以2||||AB CD ⋅的取值范围2‐4、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.答案解析:(1)当在轴上时,即,设过点的切线方程为,与联立得,由直线和抛物线相切可得,,,∴,,(3分)由,解得, ∴抛物线的方程为.(5分)(2),∴,()2:20C x py p ->P y ()0,1P -P 1y kx =-22x py =2220x pkx p -+=22Δ480p k p =-=2A B x x p =A B y y =)A()B OA OB ⊥(110+⨯=12p =C 2x y =2x y =2y x '=设,,则, 即,同理可得,(8分) 又为直线上的动点,设, 则,,由两点确定一条直线可得的方程为, 即,(10分) ∴直线恒过定点, ∴点到直线距离的最大值为.(12分)题组三、圆锥曲线中的定点、定值问题3‐1、(南京师大附中2022—2023学年度高三第一学期10月检测)(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求OA OB ⋅的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点【答案解析】(1)由已知得22222()1c e a ba c c a b⎧==⎪⎪⎪⋅-=-⎨⎪=+⎪⎪⎩,解得3a b c ⎧=⎪=⎨⎪=⎩,即22:139x y C -=;(2)由题意设()()1122:2,,,,AB l y kx A x y B x y =+()11,A x y ()22,B x y ()1112y y x x x -=-112x x y y =+222x x y y =+P 1y x =-(),1P t t -1121x t t y =-+2221x t t y =-+AB 21xt t y =-+()()2110t x y ---=AB 1,12M ⎛⎫⎪⎝⎭OAB 2OM ==则()12122222222121222124233341301312913933k y kx y y x x k k k x kx x y kx x y y k k ⎧⎧⎧=++=+=⎪⎪⎪⎪⎪⎪--⇒---=⇒⇒⎨⎨⎨---=⎪⎪⎪==⎪⎪⎪--⎩⎩⎩由题意得2120030k x x ∆>⎧⇒<<⎨<⎩①221212222131299128193333k k OA OB x x y y k k k -+-+⋅=+===+<---- ; ②由对称性得直线AD 过定点在y 轴上,设定点(0,)T t ,则有A ,T ,D 三点共线, 即1221122121211212AT DT y t y t x y x yk k x y x t x y x t t x x x x ---+=⇒=⇒+=+⇒=+()()21121212122222x kx x kx kx x t x x x x +++⇒==+++代入韦达定理得92t =-,即直线AD 过定点90,2⎛⎫- ⎪⎝⎭.3‐2、(江苏省海安高级中学2023届高三期初学业质量监测)已知椭圆:的离心率为,短轴长为2.(1)求的方程;(2)过点且斜率不为0的直线与自左向右依次交于点,,点在线段上,且,为线段的中点,记直线,的斜率分别为,,求证:为定值. 【答案解析】【要点分析】(1)根据条件列出关于a,b 的方程,求得a,b 的值,即得答案; (2)设直线方程,,联立椭圆方程,可得根与系数的关系式,表示P点坐标,结合,可得N 点坐标,从而可证明结论. 【小问1详解】E ()222210x y a b a b +=>>2E ()4,0M -l E B C N BC MB NBMC NC=P BC OP ON 1k 2k 12k k (4)y k x =+11223300(,),(,),(,),(,)B x y C x y N x y P x y MB NBMC NC=由椭圆:的离心率为,短轴长为2,可知 ,则 ,故的方程为;【小问2详解】证明:由题意可知直线的斜率一定存在,故设直线的方程为,设,联立,可得,, 则, 所以,又,所以, 解得, 从而 , 故,即为定值.3‐3、(江苏连云港2023届高三上学期期中考试) 已知椭圆C :()222210x y a b a b +=>>经过点2P ⎛⎫ ⎪ ⎪⎝⎭,E ()222210x y a b a b +=>>2,222c b a==22231,44b a a -=∴=E 2214x y +=l l (4)y k x =+11223300(,),(,),(,),(,)B x y C x y N x y P x y 2214(4)x y y k x ⎧+=⎪⎨⎪=+⎩2222(41)326440k x k x k +++-=22116(112)0,012k k ∆=->∴<<2212122232644,4141k k x x x x k k --+==++220002222164164,,(,414114)4(41k k k kx y x P k k k k k --==∴++++=+MB NB MC NC=31122344x x x x x x -+=+-2222121233212264432424()41411,3328841k k x x x x k k x y k k x x k --⨯+⨯++++===-=-++++(1,3)N k -03120313(3)44y y k k k x x k ⋅=⋅=-⨯-=12k k31,2Q ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过椭圆C 右焦点的直线l 交椭圆于A ,B 两点,交直线x =4于点D .设直线QA ,QD ,QB 的斜率分别为1k ,2k ,3k ,若20k ≠,证明:132k k k +为定值. 【答案解析】【要点分析】(1)将椭圆上两点代入方程,得到方程组,求解,可得到a 、b ;(2)设出直线AB 方程y =k (x -1),得到D 点坐标()4,3k ,联立直线AB 与椭圆方程,得到A ,B 两点坐标之间的关系,根据坐标,分别表示出1k ,2k ,3k ,化简代入即可得到定值. 【小问1详解】将点2P ⎛⎫ ⎪ ⎪⎝⎭,点31,2Q ⎛⎫ ⎪⎝⎭代入椭圆方程()222210x y a b a b +=>>, 得222233141914a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2243a b ⎧=⎨=⎩,所以椭圆方程为22143x y +=.【小问2详解】由题意直线AB 的斜率一定存在,由(1)知,c =1,则椭圆的右焦点坐标为()1,0, 设直线AB 方程为:y =k (x -1),D 坐标为()4,3k .所以23312412k k k -==--, 设()11,A x y ,()22,B x y ,将直线AB 方程与椭圆方程联立得()22223484120kxk x k +-+-=.()()()()22222844341214410k k k k ∆=--+-=+>恒成立,由韦达定理知2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,且()111y k x =-,()221y k x =-, 则()()121213121233331122221111y y k x k x k k x x x x ------+=+=+----()12121223221x x k x x x x +-=-⋅-++2222228233424128213434k k k k k k k-+=-⋅--+++21k =-.故13221212k k k k k +-==-(定值). 题组四、 圆锥曲线中的探索性问题4-1、(湖南师大附中2023届高三年级开学初试卷)(本小题满分12分)设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M 是C 上一点,2MF与x 轴垂直,直线1MF 与C 的另一个交点为N ,且直线MN 的斜率为42. (1)求椭圆C 的离心率.(2)设)1,0(D 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于B A .两点,过点D 作线段AB 的垂线,垂足为Q ,判断在y 轴上是否存在定点R ,使得||RQ 的长度为定值?并证明你的结论.【答案解析】(1)由题意知,点M 在第一象限.M 是C 上一点且2MF 与x 轴垂直,M ∴的横坐标为c ,当c x =时,a b y 2=,即.,2⎪⎪⎭⎫ ⎝⎛a b c M …………………(2分) 又直线MN 的斜率为42,所以4222tan 2221===∠acb c a b F MF , 即22222c a ac b -==,即02222=-+a ac c ,………………………………(4分)则01222=-+e e ,解得22=e 或2-=e (舍去), 即.22=e …………………………………(5分)(2)已知)1,0(D 是椭圆的上顶点,则1=b ,椭圆的方程为1222=+y x ,………(6分)设直线AB 的方程为m kx y +=,),(),,(2211y x B y x A ,由⎩⎨⎧=++=2222y x m kx y 可得)*(0)1(24)21(222=-+++m kmx x k , 所以221214kkm x x +-=+,222121)1(2k m x x +-=, 又)1,(11-=y x DA )1,(.22-=y x DB , ………………………………(8分))1)(1()1)(1(21212121-+-++=--+=⋅m kx m kx x x y y x x DB DA221212)1())(1()1(-++-++=m x x m k x x k021)1)(21()(4)1)(1(2)1(214).1(21)1(2).1(222222222222=+-++--+-=-++--++-+=k m k m m k k m m k km m k k m k , 化简整理有01232=--m m ,得31-=m 或.1=m 当1=m 时,直线AB 经过点D ,不满足题意; ………………………………(10分) 当31-=m 时满足方程(*)中0>∆,故直线AB 经过y 轴上定点.31,0⎪⎭⎫ ⎝⎛-G 又Q 为过点D 作线段AB 的垂线的垂足,故Q 在以DG 为直径的圆上,取DG 的中点为⎪⎭⎫ ⎝⎛31,0R ,则||RQ 为定值,且=||RQ .32||21=DG …………………………(12分)4‐2、(南京市2023届高三年级学情调研) 已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数; 若不存在,说明理由.【答案解析】【要点分析】(1)结合中点坐标公式表示出点A 的坐标带入抛物线的方程即可求出结果; (2)设出直线的方程与抛物线联立,进而结合根与系数的关系得到TA TB ⋅的表达式,从而可得4040m ⎧+-=⎪⎨-=⎪⎩,因此解方程组即可求出结果.【小问1详解】 因为(),0,0,22p F P ⎛⎫⎪⎝⎭,且点A 恰好为线段PF 中点,所以,14p A ⎛⎫ ⎪⎝⎭,又因为A 在抛物线上,所以2124p p =⋅,即22p =,解得P =【小问2详解】设(),T m n ,可知直线l 斜率存在;设l :2y kx =+,()()1122,,,A x y B x y联立方程得:22y y kx ⎧=⎪⎨=+⎪⎩,所以220y k -+=,所以1212,y y y y k k+==, 又:()()()1212)(TA TB x m x m y n y n ⋅=--+--()()22121244y m y m y n y n ⎛⎫⎛⎫--+-- ⎪⎪ ⎪⎪⎭⎝⎭= ⎝()()222222*********y y m y y m n y y n -++-++=2222484m m n k k k k k ⎛⎫=--++-+ ⎪ ⎪⎝⎭22244m m n k k+-+++=-,令4040m ⎧+=⎪⎨-=⎪⎩,解之得:4m n ⎧=⎪⎨=⎪⎩,即)4T ,此时2218TA TB m n ⋅=+=4‐3、(湖北省鄂东南省级示范高中教改联盟学校2023届高三上学期期中联考)(本题满分12分)设点P 为圆上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点的动直线与轨迹E 交于A 、B 两点,定点N 为,直线NA 的斜率为,直线NB 的斜率为,试判断是否为定值.若是,求出该定值;若不是,请说明理由.22:4C x y +=2MQ =(4,0)T 31,2⎛⎫⎪⎝⎭1k 2k 12k k +答案解析:(1)设点P 为,动点M 为,则Q 点为求得:又即点M 的轨迹方程为:4分(2)设直线AB 方程为:则消x 得 或设A 点,B 点则求得: 8分()00,x y (,)x y ()0,0x ()()00,,0,MQ x x y PQ y =--=-())0022,0,MQ x x y y =∴--=-002x x y =⎧⎪⎨-=⎪⎩2222004443x y x y +=∴+= 221(0)43x y y +=≠4x my =+224143x my x y=+⎧⎪⎨+=⎪⎩()223424360m y my +++=()22(24)436340m m =-⨯+> △2m ∴>2m <-()11,x y ()22,x y 1212222436,3434m y y y y m m +=-⋅=++()121232my y y y =-+()()1212121221212123332392223339my y m y y y y k k my my m y y m y y ⎛⎫+-+--- ⎪⎝⎭∴+=+=+++++()()()1212123923392m y y m y y m y y -+-=-++++()()1212392392m y y m y y -+-=++1=-。
11.5 圆锥曲线专项训练(原卷版)(新高考专用)-高考数学一轮复习

第11章 圆锥曲线11.5 圆锥曲线专项训练一.选择题(共8小题) 1.若双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则C 的渐近线方程为( ) A .y =±13xB .y =±√33xC .y =±√3xD .y =±3x2.已知抛物线y 2=4x 的焦点为F ,过点F 的直线AB 交抛物线于A ,B 两点,交准线于点C ,若|BC |=2|BF |,则|AB |=( ) A .103B .163C .3D .53.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x ﹣3)2+y 2=4上的点,则|PM |+|PN |的最小值为( ) A .5B .7C .13D .154.根据天文物理学和数学原理,月球绕地球运行时的轨道是一个椭圆,地球位于椭圆的两个焦点位置中的一个,椭圆上的点距离地球所在焦点最短距离约为36万千米,月球轨道上点P 与椭圆两焦点F 1,F 2构成的三角形PF 1F 2面积约为480√3(万千米)2,∠F 1PF 2=π3,则月球绕地球运行轨道的一个标准方程为( ) A .x 2382+y 240×36=1 B .x 2362+y 2142=1 C .x 2482+y 248×36=1D .x 2482+y 236×24=15.已知双曲线x 24−y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形ABCD 的面积为2b ,则双曲线方程为( ) A .x 24−3y 24=1 B .x 24−4y 23=1C .x 24−y 28=1D .x 24−y 212=16.设F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,P 是C 上的点,圆x 2+y 2=a 29与直线PF 交于A ,B 两点,若A ,B 是线段PF 的两个三等分点,则C 的离心率为( )A .√33B .√53C .√104D .√1757.已知抛物线C :y 2=4x 的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于A 、B 两点,若在以线段AB 为直径的圆上存在两点M 、N ,在直线l :x +y +a =0上存在一点Q ,使得∠MQN =90°,则实数a 的取值范围为( ) A .[﹣13,3] B .[﹣3,1]C .[﹣3.13]D .[﹣13.13]8.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆上一点,|PF 2|=|F 1F 2|=2c ,若∠PF 2F 1∈(π3,π),则该椭圆的离心率的取值范围是( ) A .(0,12)B .(0,13)C .(12,1)D .(13,12)二.多选题(共4小题)(多选)9.已知双曲线C 过点(3,√2)且渐近线方程为y =±√33x ,则下列结论正确的有( )A .双曲线C 的方程为x 23−y 2=1B .双曲线C 的离心率为√3C .曲线y =e x ﹣2﹣1经过双曲线C 的一个焦点D .直线x −√2y ﹣1=0与双曲线C 有两个公共点 (多选)10.已知椭圆C :x 225+y 29=1,F 1,F 2分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中正确的有( ) A .存在P 使得∠F 1PF 2=π2 B .cos ∠F 1PF 2的最小值为−725C .若PF 1⊥PF 2,则△F 1PF 2的面积为9D .直线P A 与直线PB 斜率乘积为定值925(多选)11.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过点F 的直线与抛物线交于两个不同的点P (x 1,y 1),Q (x 2,y 2),作PP 1⊥l ,垂足为P 1( ) A .若x 1+x 2=6,则|PQ |=8 B .以PQ 为直径的圆与准线l 相交C .设M (3,4),则|PM|+|PP 1|≥2√5D .过点E (0,1)与抛物线C 有且只有一个公共点的直线共有2条(多选)12.已知双曲线C :x 29−y 216=1的左、右焦点分别为F 1、F 2,过坐标原点O 的直线与双曲线C 交于A 、B 两点,点P 为双曲线C 上异于A 、B 的一动点,则下列结论正确的有( )A .F 2A →⋅F 2B →的最大值为9B .若以AB 为直径的圆经过双曲线的右焦点F 2,则S △AF 1F 2=16C .若|PF 1|=7,则有|PF 2|=1或13D .设P A ,PB 的斜率分别为k 1、k 2,则1k 12+4k 22的最小值为94三.填空题(共4小题)13.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的离心率为2√63,顶点与椭圆x 28+y 25=1的焦点相同,那么该双曲线的焦点坐标为 ,渐近线方程为 .14.过抛物线y 2=2px (p >0)的焦点F 作直线与抛物线交于A ,B 两点,若以AB 为直径的圆与直线x =﹣1相切,则抛物线的方程为 . 15.已知圆C 的方程(x ﹣1)2+y 2=1,P 是椭圆x 24+y 23=1上一点,过P 作圆的两条切线,切点为A ,B ,则PA →•PB →的取值范围为 . 16.已知双曲线C :x 2a 2−y 2b 2=1(b >a >0)的右焦点为F ,O 为坐标原点,若存在直线l过点F 交双曲线C 的右支于A ,B 两点,使OA →•OB →=0,则双曲线离心率的取值范围是 .四.解答题(共6小题) 17.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点A ,B 分别为椭圆E 的左右顶点,点C 在E 上,且△ABC 面积的最大值为2√3. (Ⅰ)求椭圆E 的方程;(Ⅱ)设F 为E 的左焦点,点D 在直线x =﹣4上,过F 作DF 的垂线交椭圆E 于M ,N 两点.证明:直线OD 平分线段MN .18.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,左顶点为A ,右顶点为B ,上顶点为C ,△ABC 的内切圆的半径为2√5−4. (1)求椭圆E 的标准方程;(2)点M 为直线l :x =1上任意一点,直线AM ,BM 分别交椭圆E 于不同的两点P ,Q ,求证:直线P ,Q 恒过定点,并求出定点坐标.19.已知抛物线y 2=2px (p >0)上一点M (t ,8)到焦点F 的距离是54t .(1)求抛物线C 的方程;(2)过F 的直线与抛物线C 交于A ,B 两点,是否存在一个定圆与以AB 为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由.20.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ⋅k ON =54,求证:点(m ,k )在定圆上.21.设A ,B 两点的坐标分别为A(−√2,0),B(√2,0),直线AD ,BD 相交于点D ,且它们斜率之积为−12.(Ⅰ)求点D 的轨迹方程C ;(Ⅱ)若斜率为k (其中k ≠0)的直线l 过点G (1,0),且与曲线C 交于点E ,F ,弦EF 的中点为H ,O 为坐标原点,直线OH 与曲线C 交于点M ,N ,求四边形MENF 的面积S 的取值范围.22.已知点P 是圆Q :(x +2)2+y 2=32上任意一点,定点R (2,0),线段PR 的垂直平分线l 与半径PQ 相交于M 点,当P 在圆周上运动时,设点M 的运动轨迹为Γ. (1)求点M 的轨迹Γ的方程; (2)若点N 在双曲线x 24−y 22=1(顶点除外)上运动,过点N 、R 的直线与曲线Γ相交于A 、B ,过点N ,Q 的直线与曲线Γ相交于C 、D ,试探究|AB |+|CD |是否为定值,若为定值请求出这个定值,若不为定值,请说明理由.。
全国名校2024届高三年级专项(圆锥曲线小题)练习卷(附答案)

全国名校2024届高三年级专项(圆锥曲线小题)练习卷 一、单选题4条二、多选题PF上的切点为的内切圆在边1)的左右焦点,O为坐标原点,以FO 在第二象限),射线1F A与双曲线的另一条渐近,则双曲线的离心率为.参考答案离心率为5的双曲线2C以A,∵,C D 分别是线段AB 的两个三等分点,∴()1,0C x -,10,2y D ⎛⎫⎪⎝⎭y易知△PEH ≅△2PEF ,即112OE F H a ==, 故可得cos cos F OE FOE ∠=-∠【名师点评】关键点名师点评:解决本题关键是利用双曲线的定义以及三角形内切圆的相关性质,结合图形详细分析得出相应关系,运算整理17.BCD【详细分析】由C在准线上,OC=点纵坐标,由此得直线AB方程,从而求得由双曲线方程和圆D 方程可知,3,4,5a b c ===, 所以左焦点为0()5,D -,右焦点2(5,0)F ;对于A ,由于P 在双曲线左支上,根据焦半径公式可知对于B ,由过点M 的直线与双曲线有一个公共点可知,直线的斜率一定存在,设直线斜率为k ,则直线l 的方程为2(1)y k x -=-,所以||3PF PF PF ''+==由余弦定理可得2(2)|c PF =11.23.AC【详细分析】对于A ,利用椭圆与=y kx 得到8AF BF +=;对于B ,利用A 中的结论及基本不等式.对于B ,()1418AF BF AF BF ⎛+=+ ⎝419BF AF ⎛⎫25.32【详细分析】由抛物线与圆的对称性可得由抛物线的定义求得2 d=26.4【详细分析】先由AB AD ⊥,CB CD ⊥判断出表示出圆的方程,将()0,b 代入椭圆及圆的方程,可求出【答案详解】由题意得()0,A b ,(0,C -【名师点评】关键点名师点评:由此得到A,B,C,27.328.2【详细分析】由题干条件得到1F 1OB OF c ==,由焦点到渐近线距离及勾股定理得到故答案为:2。
(完整版)全国卷高考数学圆锥曲线大题集大全,推荐文档

高考二轮复习专项:圆锥曲线大题集1.如图,直线 l1与l2是同一平面内两条互相垂直的直线,交点是 A,点 B、D 在直线 l1上(B、D 位于点 A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是 N,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点 M 的轨迹 C 的方程.(Ⅱ)过点 D 且不与 l1、l2垂直的直线 l 交(Ⅰ)中的轨迹 C 于E、F 两点;另外平面上的点G、H 满足:①AG =AD(∈ R); ②GE +GF ③求点 G 的横坐标的取值范围.e =2.设椭圆的中心是坐标原点,焦点在x 轴上,离心率上的点的最远距离是 4,求这个椭圆的方程. ,已知点P(0,3) 到这个椭圆x 2 y 2 253.已知椭圆C1 :2+2= 1(a >b > 0) x =的一条准线方程是,4 其左、右顶点分别3l2MA D NB l1a b是A、B;双曲线x 2 y 2C2 :a 2-b 2= 1的一条渐近线方程为 3x-5y=0.(Ⅰ)求椭圆 C1的方程及双曲线 C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP 交椭圆C1于点M,连结PB 并延长交椭圆C1于点 N,若 AM =MP . 求证: MN •AB = 0.4.椭圆的中心在坐标原点 O,右焦点 F(c,0)到相应准线的距离为 1,倾斜角为45°的直线交椭圆于 A,B 两点.设 AB 中点为 M,直线 AB 与OM 的夹角为 a.(1)用半焦距 c 表示椭圆的方程及 tan;(2)若2<tan<3,求椭圆率心率 e 的取值范围.x2 +y2 e =65.已知椭圆a2b2 (a>b>0)的离心率 3 ,过点 A(0,-b)和 B(a,0)的直3线与原点的距离为2(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D 两点问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由6. 在直角坐标平面中, ∆ABC 的两个顶点 A , B 的坐标分别为 A (-1,0) , B (1,0) ,平面内两点G , M 同时满足下列条件:① GA + GB + GC = 0 ;② == ;③ GM ∥ AB (1) 求∆ABC 的顶点C 的轨迹方程; (2) 过点P (3,0) 的直线l 与(1)中轨迹交于 E , F 两点,求 PE ⋅ PF 的取值范围x , y ∈ Ri , j7.设,为直角坐标平面内 x 轴.y 轴正方向上的单位向量,若= a = xi + ( y + 2) j , bxi + ( y - 2) j | a ,且 | +| b |= 8 (Ⅰ)求动点 M(x,y)的轨迹 C 的方程;(Ⅱ)设曲线 C 上两点 A .B ,满足(1)直线 AB 过点(0,3),(2)若OP = OA + OB ,则 OAPB为矩形,试求 AB 方程.yD CEAO A 1 xD 1C 1y 2= m (x + n ),(m ≠ 0, n > 0) 8. 已知抛物线 C :的焦点为原点,C 的准线与直线l : kx - y + 2k = 0(k ≠ 0) 的交点 M 在x 轴上, l 与 C 交于不同的两点 A 、B ,线段 AB 的垂直平分线交 x 轴于点 N (p ,0).(Ⅰ)求抛物线 C 的方程; (Ⅱ)求实数 p 的取值范围;(Ⅲ)若 C 的焦点和准线为椭圆 Q 的一个焦点和一条准线,试求 Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴 AA 1 在x 轴上.以 A 、A 1 为焦点的双曲线交椭圆于1 AE =C 、D 、D 1、C 1 四点,且|CD|= 2 |AA 1|.椭圆的一条弦 AC 交双曲线于E ,设 EC ,当 2 ≤ ≤ 334 时,求双曲线的离心率 e 的取值范围.4x 2+ 5 y =2 80 10. 已知三角形 ABC 的三个顶点均在椭圆点(点 A 在 y 轴正半轴上).上,且点 A 是椭圆短轴的一个端 若三角形 ABC 的重心是椭圆的右焦点,试求直线 BC 的方程; 若角 A 为900,AD 垂直 BC 于 D ,试求点 D 的轨迹方程.x 2 = 4 yP (0, m ) (m > 0)11.如图,过抛物线的对称轴上任一点作直线与抛物线交于A ,B 两点,点Q 是点 P 关于原点的对称点.(1) 设点 P 分有向线段 AB 所成的比为,证明:QP ⊥ (QA -QB ) ;(2) 设直线 AB 的方程是 x - 2 y +12 = 0 ,过 A , B 两点的圆C 与抛物线在点 A 处有共同的切线,求圆C 的方程.1 +p 2 p12. 已知动点 P (p ,-1),Q (p , 2 ),过 Q 作斜率为 2 的直线 l ,P Q 中点 M 的轨迹为曲线 C.(1) 证明:l 经过一个定点而且与曲线 C 一定有两个公共点; (2) 若(1)中的其中一个公共点为 A ,证明:AP 是曲线 C 的切线; (3) 设直线 AP 的倾斜角为,AP 与l 的夹角为,证明:+ 或- 是定值.7 3 113.在平面直角坐标系内有两个定点F 1、F 2 和动点 P , F 1、F 2 坐标分别为 F 1 (-1,0) 、| PF 1 | =F 2 (1,0) ,动点 P 满足| PF 2 | 2 ,动点 P 的轨迹为曲线C ,曲线C 关于直线 y = x 的对称曲线为曲线C ' ,直线 y = x + m - 3 与曲线C' 交于 A 、B 两点,O 是坐标原点,△ABO 的 面积为 ,(1)求曲线 C 的方程;(2)求m 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国名校高考专题训练——圆锥曲线选择填空100题一、选择题(本大题共60小题)1.(江苏省启东中学高三综合测试二)在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为5,则p 的值为( )A.12B.1C. 2D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于( )A.35B.45C.513D.12133.(江苏省启东中学高三综合测试四)设F 1,F 2是椭圆4x 249+y 26=1的两个焦点,P 是椭圆上的点,且|PF 1|:|PF 2|=4:3,则△PF 1F 2的面积为( ) A.4 B.6 C.2 2 D.4 2 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l 过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 交椭圆于A ,B 两点,P 为右准线上任意一点,则∠APB 为( )A.钝角B.直角C.锐角D.都有可能5.(江西省五校高三开学联考)从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b 2,4b 2],则这一椭圆离心率e 的取值范围是( ) A.[53,32] B.[33,22] C.[53,22] D. [33,32] 6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) A.5-12 B.3-12 C.52 D.22 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) A.23 B.63 C.49 D.328.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线C 1的离心率为( )A. 2B. 3C.233D.2 29.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2b 2=1(a >b >0)的中心,右焦点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA ||OH |的最大值为( ) A.12 B.13 C.14 D.110.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥π4,则|FA |的取值范围是( ) A.[14,32) B.(14,34+22] C.(14,32] D.(14,1+22] 11.(北京市十一学校高三数学练习题)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1,F 2,点A 在双曲线第一象限的图象上,若△AF 1F 2的面积为1,且tan ∠AF 1F 2=12,tan ∠AF 2F 1=-2,则双曲线方程为( )A.5x 212-y 23=1B.12x 25-3y 2=1C.3x 2-12y 25=1D.x 23-5y 212=1 12.(北京市西城区高三抽样测试)若双曲线x 2+ky 2=1的离心率是2,则实数k 的值是( )A.-3B.-13C.3D.1313.(北京市西城区高三抽样测试)设x ,y ∈R ,且2y 是1+x 和1-x 的等比中项,则动点(x ,y )的轨迹为除去x 轴上点的( )A.一条直线B.一个圆C.双曲线的一支D.一个椭圆14.(北京市宣武区高三综合练习一)已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(6,172),则|PA |+|PM |的最小值是( ) A.8 B.192 C.10 D.21215.(北京市宣武区高三综合练习二)已知F 1,F 2是双曲线的两个焦点,Q 是双曲线上任一点(不是顶点),从某一焦点引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹是( )A.直线B.圆C.椭圆D.双曲线16.(四川省成都市高中毕业班摸底测试)已知定点A (3,4),点P 为抛物线y 2=4x 上一动点,点P 到直线x =-1的距离为d ,则|PA |+d 的最小值为( )A.4B.2 5C.6D.8-2 317.(东北区三省四市第一次联合考试)椭圆的长轴为A 1A 2,B 为短轴一端点,若∠A 1BA 2=120°,则椭圆的离心率为( ) A.33 B.63 C.32 D.1218.(东北三校高三第一次联考)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且它的一条准线与抛物线y 2=4x 的准线重合,则此双曲线的方程为( )A.x 23-y 26=1B.x 23-2y 23=1C.x 248-y 296=1D.x 212-y 224=1 19.(东北师大附中高三第四次摸底考试)已知椭圆x 29+y 25=1,过右焦点F 做不垂直于x 轴的弦交椭圆于A ,B 两点,AB 的垂直平分线交x 轴于N ,则|NF |:|AB |=( )A.12B.13C.23D.1420.(福建省莆田一中期末考试卷)已知AB 是椭圆x 225+y 29=1的长轴,若把线段AB 五等分,过每个分点作AB 的垂线,分别与椭圆的上半部分相交于C ,D ,E ,G 四点,设F 是椭圆的左焦点,则|FC |+|FD |+|FE |+|FG |的值是( )A.15B.16C.18D.2021.(福建省泉州一中高三第一次模拟检测)过抛物线y 2=4x 的焦点作直线l 交抛物线于A ,B两点,若线段AB 中点的横坐标为3,则|AB |等于( )A.10B.8C.6D.422.(福建省厦门市高三质量检查)若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A.-2B.2C.-4D.423.(福建省仙游一中高三第二次高考模拟测试)已知双曲线的中心在原点,离心率为3,若它的一条准线与抛物线y 2=4x 的准线重合,则此双曲线与抛物线y 2=4x 的交点到抛物线焦点的距离为( ) A.21 B.21 C.6 D.424.(福建省漳州一中期末考试)过抛物线y 2=4x 的焦点F 作直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,若x 1+x 2=6,则|PQ |=( )A.5B. 6C.8D.10 25.(甘肃省河西五市高三第一次联考)已知曲线C :x 2a 2+y 2b 2=1(a >b >0)是以F 1,F 2为焦点的椭圆,若以F 1F 2为直径的圆与椭圆的一个交点为P ,且tan ∠PF 1F 2=12,则此椭圆的离心率为( )A.12B.23C.13D.5326.(广东省惠州市高三第三次调研考试)椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:x 216+y 29=1,点A ,B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,再回到点A 时,小球经过的最短路程是( )A.20B.18C.16D.以上均有可能27.(广东省揭阳市第一次模拟考试)两个正数a ,b 的等差中项是92,一个等比中项是25,且a >b ,则双曲线x 2a 2-y 2b 2=1的离心率为( ) A.53 B.414 C.54 D.41528.(广东省揭阳市第一次模拟考试)已知:区域Ω={(x ,y )|⎩⎨⎧y ≥0y ≤4-x 2},直线y =mx +2m 和曲线y =4-x 2有两个不同的交点,它们围成的平面区域为M ,向区域Ω上随机投一点A ,点A 落在区域M 内的概率为P (M ),若P (M )∈[π-22π,1],则实数m 的取值范围为( ) A.[12,1] B.[0,33] C.[33,1] D.[0,1] 29.(广东省汕头市潮阳一中高三模拟)已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A.(1,+∞)B.(1,2)C.(1,1+2)D.(2,1+2) 30.(广东省韶关市高三第一次调研考试)椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14 B.12C.2D.4 31.(广东实验中学高三第三次阶段考试)过抛物线y =14x 2准线上任一点作抛物线的两条切线,若切点分别为M ,N ,则直线MN 过定点( )A.(0,1)B.(1,0)C.(0,-1)D.(-1,0)32.(贵州省贵阳六中、遵义四中高三联考)设双曲线以椭圆x 225+y 29=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( )A.±2B.±43C.±12D.±3433.(贵州省贵阳六中、遵义四中高三联考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =21,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A.必在圆x 2+y 2=2内B.必在圆x 2+y 2=2上C.必在圆x 2+y 2=2外D.以上三种情形都有可能 34.(安徽省合肥市高三年级第一次质检)已知双曲线C :x 2a 2-y 2b2=1满足条件:(1)焦点为F 1(-5,0),F 2(5,0);(2)离心率为53,求得双曲线C 的方程为f (x ,y )=0.若去掉条件(2),另加一个条件求得双曲线C 的方程仍为f (x ,y )=0,则下列四个条件中,符合添加的条件共有( )①双曲线C :x 2a 2-y 2b 2=1上的任意点P 都满足||PF 1|-|PF 2||=6; ②双曲线C :x 2a 2-y 2b 2=1的—条准线为x =253; ③双曲线C :x 2a 2-y 2b 2=1上的点P 到左焦点的距离与到右准线的距离比为53; ④双曲线C :x 2a 2-y 2b 2=1的渐近线方程为4x ±3y =0. A.1个 B.2个 C.3个 D.4个35.(河北衡水中学第四次调考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),被方向向量为k =(6,6)的直线截得的弦的中点为(4,1),则该双曲线离心率的值是( ) A.52 B.62 C.103D.2 36.(河北衡水中学第四次调考)设F 1,F 2为椭圆x 24+y 23=1的左,右焦点,过椭圆中心任作一条直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF 1→·PF 2→的值等于( )A.0B.1C.2D.4 37.(河北省正定中学高三一模)已知P 是椭圆x 225+y 29=1上的点,F 1,F 2分别是椭圆的左,右焦点,若PF 1→·PF 2→|PF 1→|·|PF 2→|=12,则△F 1PF 2的面积为( ) A.3 3 B.2 3 C. 3 D.3338.(河北省正定中学高三第四次月考)已知A ,B 是抛物线y 2=2px (p >0)上的两个点,O 为坐标原点,若|OA |=|OB |且△AOB 的垂心恰是抛物线的焦点,则直线AB 的方程是( )A.x =pB.x =3pC.x =52pD.x =32p 39.(河北省正定中学高三第五次月考)AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( ) A. 2 B.12 C.32 D.5240.(河南省濮阳市高三摸底考试)已知双曲线x 2a 2-y 2b2=1(a >0,b >0),若过右焦点F 且倾斜角为30°的直线与双曲线的右支有两个交点,则此双曲线离心率的取值范围是( )A.(1,2)B.(1,233)C.[2,+∞)D.[233,+∞)41.(黑龙江省哈尔滨九中第三次模拟考试)P 是椭圆x 225+y 29=1上一点,F 是椭圆的右焦点,OQ →=12(OP →+OF →),|OQ →|=4,则点P 到该椭圆左准线的距离为( )A.6B.4C.10D.5242.(湖北省八校高三第二次联考)经过椭圆x 24+y 23=1的右焦点任意作弦AB ,过A 作椭圆右准线的垂线AM ,垂足为M ,则直线BM 必经过点( )A.(2,0)B.(52,0)C.(3,0)D.(72,0) 43.(湖北省三校联合体高三2月测试)过双曲线M :x 2-y 2b 2=1(b >0)的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B ,C ,且|AB |=|BC |,则双曲线M 的离心率是( ) A.10 B. 5 C.103 D.5244.(湖北省鄂州市高考模拟)下列命题中假命题是( ) A.离心率为2的双曲线的两渐近线互相垂直B.过点(1,1)且与直线x -2y +3=0垂直的直线方程是2x +y -3=0C.抛物线y 2=2x 的焦点到准线的距离为1D.x 232+y 252=1的两条准线之间的距离为25445.(湖北省鄂州市高考模拟)点P 是抛物线y 2=4x 上一动点,则点P 到点A (0,-1)的距离与P 到直线x =-1的距离和的最小值是( ) A. 5 B. 3 C.2 D. 246.(湖北省黄冈市秋季高三年级期末考试)双曲线的虚轴长为4,离心率为e =62,F 1,F 2分别是它的左,右焦点,若过F 1的直线与双曲线的左支交于A ,B 两点,且|AB |是|AF 2|与|BF 2|的等差中项,则|AB |=( ) A.8 2 B.4 2 C.2 2 D.847.(湖北省荆州市高中毕业班质量检测)已知m ,n ,s ,t ∈R *,m +n =2,m s +n t=9其中m ,n 是常数,且s +t 的最小值是49,满足条件的点(m ,n )是椭圆x 24+y 22=1一弦的中点,则此弦所在的直线方程为( )A.x -2y +1=0B.2x -y -1=0C.2x +y -3=0D.x +2y -3=048.(湖北省随州市高三五月模拟)设a ,b 是方程x 2+x ·cot θ-cos θ=0的两个不等的实数根,那么过点A (a ,a 2)和B (b ,b 2)的直线与椭圆x 2+y 22=1的位置关系是( ) A.相离 B.相切 C.相交 D.随θ的变化而变化49.(湖北省武汉市武昌区高中毕业生元月调研测试)设θ是三角形的一个内角,且sin θ+cos θ=15,则方程x 2sin θ+y 2cos θ=1所表示的曲线为( ) A.焦点在x 轴上的椭圆 B.焦点在y 轴上的椭圆C.焦点在x 轴上的双曲线D.焦点在y 轴上的的双曲线 50.(湖南省长沙市一中高三第六次月考)设双曲线x 2a 2-y 2b 2=1(b >a >0)的半焦距为c ,直线l 过A (a ,0),B (0,b )两点,若原点O 到l 的距离为34c ,则双曲线的离心率为( ) A.233或2 B.2 C.2或233 D.233 51.(湖南省雅礼中学高三年级第六次月考)双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过焦点F 2且垂直于x 轴的弦为AB ,若∠AF 1B =90°,则双曲线的离心率为( ) A.12(2-2) B.2-1 C.2+1 D.12(2+2) 52.(湖南省岳阳市高三第一次模拟)Q 是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2为左,右焦点,过F 1作∠F 1QF 2外角平分线的垂线交F 2Q 的延长线于P 点.当Q 点在椭圆上运动时,P 点的轨迹是( )A.直线B.圆C.椭圆D.双曲线53.(吉林省吉林市高三上学期期末)设斜率为2的直线l ,过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,且与双曲线的左,右两支分别相交,则双曲线离心率e 的取值范围是( )A.e > 5B.e > 3C.1<e < 3D.1<e < 554.(江西省鹰潭市高三第一次模拟)若直线y =32x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的交点在实轴上射影恰好为双曲线的焦点,则双曲线的离心率是( )A. 2B.2C.2 2D.4 55.(宁夏区银川一中第六次月考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率是62,则椭圆x 2a 2+y 2b 2=1的离心率是( ) A.12 B.33 C.22 D.3256.(山东省聊城市第一期末统考)已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A.(1+2,+∞)B.(1,1+2)C.(1,3)D.(3,22)57.(山东省实验中学高三第三次诊断性测试)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c2的等差中项,则椭圆的离心率是( ) A.33 B.22 C.14 D.1258.(山东省郓城一中高三第一学期期末考试)已知对称轴为坐标轴的双曲线的两条渐近线方程为y =±b ax (a >0,b >0),若双曲线上有一点M (x 0,y 0),使b |x 0|<a |y 0|,则双曲线焦点( )A.在x 轴上B.在y 轴上C.当a >b 时,在x 轴上D.当a <b 时,在y 轴上59.(山东省郓城一中高三第一学期期末考试)已知对k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m =1恒有公共点,则实数m 的取值范围是( )A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)60.(山东省郓城一中高三第一学期期末考试)已知A ,B 是抛物线y 2=2px (p >0)上异于原点O 的两点,则“OA →·OB →=0”是“直线AB 恒过定点(2p ,0)”的( )A.充分非必要条件B.充要条件C.必要非充分条件D.非充分非必要条件二、填空题(本大题共40小题)61.(江苏省启东中学高三综合测试二)已知抛物线y 2=a (x +1)的准线方程是x =-3,那么抛物线的焦点坐标是 .62.(江苏省启东中学高三综合测试三)已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是 .63.(安徽省皖南八校高三第一次联考)已知P 为双曲线x 216-y 29=1的右支上一点,P 到左焦点距离为12,则P 到右准线距离为 . 64.(北京市东城区高三综合练习一)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,若在双曲线的右支上存在一点P ,使得|PF 1|=3|PF 2|,则双曲线的离心率e 的取值范围为 .65.(北京市东城区高三综合练习二)已知椭圆x 2a 2+y 2b 2=1的左、右焦点分别为F 1,F 2,点P 为椭圆上一点,且∠PF 1F 2=30°,∠PF 2F 1=60°,则椭圆的离心率e = .66.(北京市海淀区高三统一练习一)若双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为3x -2y =0,则a = .67.(北京市十一学校高三数学练习题)已知双曲线x 2a 2-y 2b 2=1(a ,b ∈R +)的离心率e ∈[2,2],则一条渐近线与实轴所构成的角的取值范围是 .68.(北京市西城区4月高三抽样测试)已知两点A (1,0),B (b ,0),若抛物线y 2=4x 上存在点C 使△ABC 为等边三角形,则b = .69.(北京市宣武区高三综合练习一)长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,动点C (x ,y )满足AC →=2CB →,则动点C 的轨迹方程是 .70.(北京市宣武区高三综合练习二)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A ,B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |= .71.(四川省成都市高中毕业班摸底测试)与双曲线x 29-y 216=1有共同的渐近线,且焦点在y 轴上的双曲线的离心率为 .72.(东北区三省四市第一次联合考试)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,则1|AF |+1|BF |= . 73.(东北三校高三第一次联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率的取值范围是e ∈[233,2],则两渐近线夹角的取值范围是 . 74.(东北师大附中高三第四次摸底考试)若抛物线y 2=2px 的焦点与椭圆x 28+y 24=1的右焦点重合,则p 的值为 .75.(福建省南靖一中第四次月考)过椭圆x 236+y 225=1的焦点F 1作直线交椭圆于A ,B 二点,F 2是此椭圆的另一焦点,则△ABF 2的周长为 . 76.(福建省泉州一中高三第一次模拟检测)若双曲线x 2a 2-y 2b2=1的渐近线与方程为(x -2)2+y 2=3的圆相切,则此双曲线的离心率为 .77.(福建省厦门市高三质量检查)点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1,F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为 .78.(福建省厦门市高三质量检查)已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点的坐标为(3,0),|AM →|=1且PM →·AM →=0,则|PM →|的最小值是 .79.(福建省漳州一中上期期末考试)双曲线x 29-y 216=1的两个焦点为F 1,F 2,点P 在该双曲线上,若PF 1→·PF 2→=0,则点P 到x 轴的距离为 .80.(甘肃省兰州一中高三上期期末考试)已知P (x ,y )是抛物线y 2=-8x 的准线与双曲线x 28-y 22=1的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则z =2x -y 的最大值为 .81.(广东省汕头市澄海区高三第一学期期末考试)经过抛物线y 2=4x 的焦点F 作与x 轴垂直的直线,交抛物线于A ,B 两点, O 是抛物线的顶点,再将直角坐标平面沿x 轴折成直二面角,此时A ,B 两点之间的距离为 ,∠AOB 的余弦值是 .82.(广东省五校高三上期末联考)若抛物线y 2=2px 的焦点与双曲线x 26-y 23=1的右焦点重合,则p 的值为 . 83.(河北衡水中学第四次调考)椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点为F 1,F 2,点P 为椭圆上的点,则能使∠F 1PF 2=π2的点P 的个数可能有 个.(把所有的情况填全) 84.(河北省正定中学高三第四次月考)已知m ,n ,m +n 成等差数列,m ,n ,mn 成等比数列,则椭圆x 2m +y 2n=1的离心率是 . 85.(河北省正定中学高三第五次月考)椭圆x 29+y 24=1的焦点为F 1,F 2,点P 为椭圆上的动点,当PF 1→·PF 2→<0时,点P 的横坐标的取值范围是 .86.(河南省濮阳市高三摸底考试)已知椭圆x 216+y 24=1的左右焦点分别为F 1与F 2,点P 在直线l :x -3y +8+23=0上.当∠F 1PF 2取最大值时,|PF 1||PF 2|的值为 . 87.(湖北省三校联合体高三2月测试)设中心在原点的双曲线与椭圆x 22+y 2=1有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是 .88.(湖北省黄冈市秋季高三年级期末考试)已知点P 是抛物线y 2=4x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当|a |>4时,|PA |+|PM |的最小值是 .89.(湖北省荆门市高三上学期期末)椭圆x 23+y 22=1的右焦点为F ,过左焦点且垂直于x 轴的直线为l 1,动直线l 2垂直于直线l 1于点P ,线段PF 的垂直平分线交l 2于点M ,点M 的轨迹为曲线C ,则曲线C 方程为 ;又直线y =x -1与曲线C 交于A ,B 两点,则|AB →|等于 . 90.(湖北省荆州市高中毕业班质量检测)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,P 为双曲线左支上的一点,若|PF 2|2|PF 1|=8a ,则双曲线的离心率的取值范围是 .91.(湖北省武汉市武昌区高中毕业生元月调研测试)过椭圆x 29+y 24=1内一点P (1,1)作弦AB ,若AP →=PB →,则直线AB 的方程为 .92.(湖南省十二校高三第一次联考)若双曲线x 24-y 2b2=1的一条准线与抛物线y 2=4x 的准线重合,则双曲线的渐近线方程是 .93.(湖南省岳阳市高三第一次模拟)过定点P (1,4)作直线交抛物线C :y =2x 2于A ,B 两点, 过A ,B 分别作抛物线C 的切线交于点M ,则点M 的轨迹方程为 .94.(湖南省岳阳市高三第一次模拟)设P 是曲线y 2=4x 上的一个动点,则点P 到点A (-1,2)的距离与点P 到x =-1的距离之和的最小值为 .95.(湖南省株洲市高三第二次质检)直线l 交抛物线y 2=2x 于M (x 1,y 1),N (x 2,y 2),且l 过焦点,则y 1y 2的值为 .96.(江苏省南京市高三第一次调研测试)已知抛物线y 2=mx (m ≠0)的准线与椭圆x 26+y 22=1的右准线重合,则实数m 的值是 .97.(江苏省南通市高三第二次调研考试)过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于A ,B 两点,交准线于点C .若CB →=2BF →,则直线AB 的斜率为 .98.(江苏省前黄高级中学高三调研)过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线于点C (B 在FC 之间),且|BC |=2|BF |,|AF |=12,则p 的值为 .99.(江苏省南通通州市高三年级第二次统一测试)已知中心在原点,焦点在x 轴上的双曲线的一条渐近线为mx -y =0,若m 在集合{1,2,3,4,5,6,7,8,9}中任意取一个值,使得双曲线的离心率大于3的概率是 .100.(山东省郓城一中高三第一学期期末考试)已知F 1,F 2是椭圆x 2a 2+y 2(10-a )2=1(5<a <10)的两个焦点,B 是短轴的一个端点,则△F 1BF 2的面积的最大值是 .全国名校高考专题训练——圆锥曲线解答题1.(河北省正定中学高三第五次月考)已知直线l 过椭圆E :x 2+2y 2=2的右焦点F ,且与E 相交于P ,Q 两点.(Ⅰ)设OR →=12(OP →+OQ →)(O 为原点),求点R 的轨迹方程;(Ⅱ)若直线l 的倾斜角为60°,求1|PF |+1|QF |的值.2.(河南省开封市高三年级第一次质量检测)双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,点A 在双曲线的右支上,点B 在双曲线左准线上,F 2O →=AB →,OF 2→·OA →=OA →·OB →.(Ⅰ)求双曲线的离心率e ;(Ⅱ)若此双曲线过C (2,3),求双曲线的方程;(Ⅲ)在(Ⅱ)的条件下,D 1,D 2分别是双曲线的虚轴端点(D 2在y 轴正半轴上),过D 1的直线l 交双曲线M ,N ,D 2M →⊥D 2N →,求直线l 的方程.3.(河南省濮阳市高三摸底考试)直线AB 过抛物线x 2=2py (p >0)的焦点F ,并与其相交于A ,B 两点,Q 是线段AB 的中点,M 是抛物线的准线与y 轴的交点,O 是坐标原点. (Ⅰ)求MN →·MB →的取值范围;(Ⅱ)过A ,B 两点分别作此抛物线的切线,两切线相交于N 点.求证:MN →·OF →=0,NQ →∥OF →. 4.(河南省许昌市高三上期末质量评估)已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(Ⅰ)求过点O ,F ,并且与椭圆的左准线l 相切的圆的方程;(Ⅱ)设过点F 的直线交椭圆于A ,B 两点,并且线段AB 的中点在直线x +y =0上,求直线AB 的方程.5.(黑龙江省哈尔滨九中第三次模拟考试)已知P (-3,0),点R 在y 轴上,点Q 在x 的正半轴上,点M 在直线RQ 上,且PR →·RM →=0,RM →=-32MQ →.(Ⅰ)当R 在y 轴上移动时,求M 点的轨迹C ;(Ⅱ)若曲线C 的准线交x 轴于N ,过N 的直线交曲线C 于两点AB ,又AB 的中垂线交x 轴于点E ,求E 横坐标取值范围;(Ⅲ)在(Ⅱ)中,△ABE 能否为正三角形.6.(湖北省八校高三第二次联考)已知A ,B 是抛物线x 2=2py (p >0)上的两个动点,O 为坐标原点,非零向量OA →,OB →满足|OA →+OB →|=|OA →-OB →|. (Ⅰ)求证:直线AB 经过一定点;(Ⅱ)当AB 的中点到直线y -2x =0的距离的最小值为255时,求p 的值. 7.(湖北省三校联合体高三2月测试)已知半圆x 2+y 2=4(y ≥0),动圆M 与此半圆相切且与x 轴相切.(Ⅰ)求动圆圆心M 的轨迹方程;(Ⅱ)是否存在斜率为13的直线l ,它与(Ⅰ)中所得轨迹由左到右顺次交于A ,B ,C ,D 四个不同的点,且满足|AD |=2|BC |?若存在,求出l 的方程,若不存在,说明理由.8.(湖北省鄂州市高考模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1(-c ,0),F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F 点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明1||cF P a x a=+; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.。