某高层建筑结构设计论文
高层建筑结构设计论文

对高层建筑结构设计探讨摘要:随着我国经济的快速发展,全国大中城市高层建筑迅速增多,高层建筑结构设计已成为建筑结构设计人员的重要工作内容。
高层建筑层数和高度都逐渐增加,结构形式更是多样化、复杂化。
为了使设计者对高层建筑的设计有较好地了解,我们就以杭州某工程为例,介绍高层建筑的结构设计方案,本文对该方案的计算模型、转换层的设计和构造及内力分析做了简要介绍。
关键词:高层建筑转换层总结1 概述近年来,现代建筑越来越向多功能、综合用途发展,在同一竖直线上,顶部楼层与下部楼层用途不同,不同的楼层需要大小不同的空间尺寸,采用不同的结构形式。
从建筑功能上讲,上部需要小开间的轴线布置,需要较多的墙体以满足旅馆和住宅的要求,下部共用部分则希望有尽可能大的自由灵活空间,柱网要求大,墙体要尽量少,由于高层结构下部楼层受力很大,上部结构受力相对较小,正常布置应该下部刚度大(墙多,柱网密),到上部刚度较小(墙少,柱网稀疏),但为了满足建筑功能的要求,我们必须以跟常规相反的方式进行布置,即上部布置小空间,下部布置大空间,上部布置刚度大的剪力墙,下部布置刚度较小的框架柱,为了实现这一布置就必须在结构转换的楼层设置转换层。
2 工程概况就以杭州某工程为例。
本工程位于杭州某地区,该工程是集商场、办公、住宅为一体的综合性高层建筑,地下2层为停车库及设备房,地上29层,分a,b两栋塔楼,塔楼均为住宅,主楼主体90.500m。
由于该建筑功能的要求,本工程结构采用底部大空间转换剪力墙结构,转换层在第5层顶面,属高位转换结构,该地区地震设防烈度为6度,设计地震分组为第一组,设计基本地震加速度值为0.05g,拟建场地为ⅲ类场地土。
结构抗震等级:转换层下剪力墙二级,框支柱二级,基础采用桩筏。
为了满足建筑功能,结构必须处理好以下几个问题:①转换层转换结构方式的选择;②转换层楼层结构计算层高的确定;③二级转换梁的处理。
3 概念设计与结构布置3.1 结构计算单元的确定。
高层建筑结构设计论文

高层建筑结构设计论文随着科学技术的不断发展,功能俱全的高层建筑越来越多。
高层建筑结构设计也越来越成为建筑结构工程师的重要工作内容。
下面是店铺为大家整理的高层建筑结构设计论文,供大家参考。
高层建筑结构设计论文范文一:探究高层建筑结构边节点抗震性能1试验概况1.1试验构件设计和制作边节点试验构件取用承重框架梁柱反弯点之间的一个平面组合体,即“T字形”试件。
为有效保证试件的浇筑质量和垂直度,并与工程实际相符,全部试件均采用钢模板、立模浇筑。
边节点构件柱子的截面尺寸为200mm×200mm,梁的截面尺寸为150mm×250mm,纵向受力钢筋采用HRB400级,箍筋采用HPB235级。
柱子的配筋率为1.13%,梁的配筋率为0.9%,所有构件配筋率和钢筋的强度相同。
为防止柱头破坏,柱上、下两端箍筋加密;节点核心区按照抗震要求对箍筋进行了加密处理。
本次试验共包括7根试件,详细的试验构件概况如表1所示,构件的尺寸和配筋图示,节点核心区采用柱混凝土的构件,施工缝留设在梁下部;节点核心区采用梁混凝土的构件,分别在梁上和梁下留设两道施工缝,施工缝处浇筑时间间隔为2天(48小时)。
1.2试验方法和加载装置采用低周反复试验方法进行研究,加载制度为力—位移混合控制加载,在开始加载到构件屈服前采用力控制;构件屈服后,改用屈服位移的整数倍为级差作为回载控制点,每一位移下循环3次。
在实际框架结构中,当作用水平荷载时,上柱反弯点可视为水平可移动铰,相应的下柱反弯点可视为固定铰;而节点两侧梁的反弯点可视为水平可移动铰。
这样可以有两种加载方案:一种是在柱端施加水平荷载或位移,这时梁能够左右移动而上下受到约束,产生剪力和弯矩。
这种边界条件比较符合实际结构中的受力状态;另一种是将柱保持垂直状态,在梁的自由端施加反复荷载或位移,此时边界条件变为上下柱反弯点为不动铰,梁反弯点为自由端。
本次试验采用的是柱端加载的方式,即采用在柱顶施加轴向力和水平力的方式进行试本次试验在东北电力大学结构试验室进行,采用美国MTS公司生产的MTS液压式伺服加载系统进行试验,采用MTS动态数据采集系统进行数据采集。
高层建筑结构设计要点研究论文六篇

高层建筑结构设计要点研究论文六篇关于《高层建筑结构设计要点研究论文六篇》,是我们特意为大家整理的,希望对大家有所帮助。
第一篇摘要:随着我国人口急剧上升,土地资源稀缺问题愈加明显,为了提升土地利用率,开发商开始将目光投向高层建筑。
近年来,复杂高层与超高层建筑得到广泛应用,它即满足了城市发展的需要,也实现了有限土地资源的有效利用。
因此,本文主要对复杂高层与超高层建筑结构设计要点进行探讨,用以提高高层建筑的合理性与科学性。
关键词:复杂高层;超高层;建筑结构;设计要点1引言随着复杂高层与超高层建筑的不断增加,政府对高层建筑的质量提出更高要求,尤其是建筑结构的持久性、可靠性已经成为社会关注的焦点。
因此,在进行复杂高层与超高层建筑结构设计时,要结合建筑物的形态特征、功能需要等进行,为提高复杂高层与超高层建筑的安全性能做铺垫。
2复杂高层与超高层建筑结构设计的主要控制因素2.1重力荷载与其他类型的建筑相比,复杂高层与超高层建筑具有特殊性,不仅建筑高度不可比拟,还需要面临重力荷载的挑战。
特别是随着建筑高度不断攀升,地面受力与重力荷载会逐渐上升,在力的作用下墙上的轴压力与竖向构件柱的压力也不断增加,从而加大超高层建筑的困难性。
其次,复杂高层与超高层建筑的水平位移也是建筑结构设计的矛盾点,主要体现在两个方面:①楼层越高风效应就越大,在风的作用下其合力作用点的位置就越高,由此自然风效应对超高层建筑产生的作用效应就更大。
②在建筑结构设计中,建筑的结构自重是企业必须考虑的问题,因为它关乎建筑物的稳定性。
而结构自重与重心位置相关,随着建筑楼层不断升高其重心位置随之升高,从而结构自重不断加大,成为强力作用下的薄弱环节,比如地震等。
2.2风振加速度风力大小与建设楼层的高低相关,通常楼层越高其风力效果越强,因此在超高层建筑中的风力作用特别显著。
但是,人们对风作用的舒适度有一定的感知,若风振作用过强则会令人产生不适感,从而降低居住品质。
高层建筑结构设计技术分析论文

高层建筑结构设计技术分析探讨【摘要】随着国民经济的快速发展,人民生活水平的不断提高,功能俱全的高层建筑越来越多,下文针对高层建筑结构的设计特点进行了分析及探讨。
【关键词】高层建筑;结构设计1 常用高层建筑结构体系受力特点分析比较1.1 框架结构框架结构体系它是由基础、楼板、柱、梁这4种承重构件所组成的。
基础、柱和梁一起构成平面框架是主要的承重结构。
框架结构建筑平面布置灵活,可形成较大的建筑空间,建筑立面处理也较方便;整体性、抗震性能好,具有较好的塑性变形能力。
但是,框架结构侧向刚度小,当层数过多时,会产生过大的侧移,从而限制了框架结构的建造高度。
1.2 框架——剪力墙结构高层建筑结构设计中通常采用的是框架——剪力墙结构体系,即把框架和剪力墙两种结构共同组合在一起形成的结构体系,竖向荷载由框架和剪力墙等竖向承重单体共同承担,水平荷载则主要由剪力墙这一具有较大刚度的抗侧力单元来承担。
剪力墙的设置,大幅增加了高层建筑结构的抗侧力刚度,使其水平侧向位移大幅减小;同时,框架-剪力墙结构的协同工作使各层层间变形趋于均匀,所以框架——剪力墙结构体系的建筑能建高度要显著高于框架结构。
1.3 剪力墙结构由墙体承受全部水平作用和竖向荷载的结构体系称为剪力墙结构体系。
剪力墙结构体系属于明显的刚性结构,且传力均匀、直接。
其结构的强度和刚度都相对较高,但同时也具有一定的延性。
结构在台风、地震作用等水平大荷载作用下,结构的侧向位移能有效控制,具有良好的结构整体性能,抗倒塌能力强,其能建高度大幅高于框架或框架——剪力墙结构体系。
1.4 筒体结构筒体结构体系由筒体为主的结构称为筒体结构。
筒体结构体系的高层建筑结构具有非常大的强度和刚度,结构体系中各构件的受力分配合理,抗风、抗震性能相对框架——剪力墙结构、剪力墙结构更强,往往应用于大空间、大跨度要求的高层、超高层建筑结构设计中。
2 高层建筑结构设计关键技术分析2.1 水平荷载相对于竖向荷载显得更为重要结构需同时承受竖向和水平荷载,低层结构以抵抗重力为代表的竖向荷载为主,而水平荷载所产生的内力、侧向位移很小。
高层住宅结构设计论文

高层住宅结构设计论文随着城市化进程的加速,高层住宅在城市中越来越常见。
高层住宅不仅能够有效地解决城市人口密集的居住问题,还能在一定程度上提高土地的利用率。
然而,高层住宅的结构设计是一项复杂而关键的工作,需要综合考虑多种因素,以确保建筑的安全性、稳定性和舒适性。
一、高层住宅结构设计的特点高层住宅由于其高度较高,竖向荷载和水平荷载都较大。
竖向荷载主要包括自重、活荷载等,水平荷载则主要有风荷载和地震作用。
在结构设计中,水平荷载往往成为控制因素,因为随着建筑高度的增加,水平荷载对结构的影响愈发显著。
此外,高层住宅的结构体系通常较为复杂,常见的有框架结构、剪力墙结构、框架剪力墙结构等。
不同的结构体系在受力性能、抗震性能、经济性等方面各有优缺点,需要根据具体的建筑功能、地理环境和建设要求等进行合理选择。
二、高层住宅结构设计的主要内容1、结构选型结构选型是高层住宅结构设计的首要任务。
需要综合考虑建筑的高度、使用功能、抗震要求、经济指标等因素,选择合适的结构体系。
例如,框架结构适用于层数较低、空间布局灵活的建筑;剪力墙结构适用于住宅中对房间分隔要求较高的情况;框架剪力墙结构则兼具框架结构的灵活性和剪力墙结构的抗侧力性能,适用于大多数高层住宅。
2、计算分析在确定结构体系后,需要进行详细的计算分析。
包括对竖向荷载和水平荷载的计算,以及结构的内力分析、位移计算等。
计算分析通常借助专业的结构设计软件进行,但设计师需要对计算结果进行判断和校核,确保其准确性和合理性。
3、构件设计根据计算结果,对结构中的各类构件进行设计。
包括梁、柱、墙等构件的截面尺寸、配筋等。
构件设计需要满足强度、刚度、稳定性等要求,同时还要考虑施工的可行性和经济性。
4、抗震设计地震是对高层住宅结构安全的重大威胁,因此抗震设计至关重要。
需要根据建筑所在地区的抗震设防烈度,确定结构的抗震等级,并采取相应的抗震措施,如设置抗震缝、加强节点连接等。
三、高层住宅结构设计中的关键问题1、风荷载的影响高层住宅受到的风荷载较大,可能导致结构的振动和变形。
高层建筑连体结构设计论文

高层建筑连体结构设计论文摘要:高层建筑连体结构设计时非常复杂的结构体系,在进行结构设计时要科学合理的设计连体结构,确保高层建筑连体结构在面对地震灾害时具有可靠的安全,保障人民生命财产安全。
一.引言高层建筑连体结构是指除开裙楼外,高层建筑在两个或两个以上的塔楼之间存在带有连接体的建筑结构。
在高层建筑结构中,连体结构部分是较为薄弱的,因此对高层建筑连体结构设计增加了难度。
由于高层建筑在遭受地震灾害时,容易对地震区的连体高层造成严重破坏,因此需要加强高层建筑连体结构设计,最大限度提升建筑的安全性。
二.工程概况某建筑工程建筑面积为52000㎡,项目占地面积约25000㎡,建筑抗震设防烈度为7度。
A楼和B楼由同一主楼组成,主楼的高度为16层,主楼10层以下为相互独立的建筑结构,在11层和15层之间设置一连体结构,连通A楼和B楼。
在连体部分中,将11层作为可用建筑空间,其余楼层均为架构部分。
在A楼和B楼之间设置连通的地下室。
三.高层建筑的连体结构设计1. 高层建筑连体结构设计基本原则(1)计算数据分析按照JGJ3-2002《高层建筑混凝土结构技术规程》的规定,对高层建筑的复杂体型进行分析,需要符合下列基本要求:1)至少需要采用两个具有不同力学模型的三维空间软件对整体内力位移进行数据计算;由于高层建筑连体结构的体型具有特殊性,连体部位的承受力非常复杂,因此需要采用有限元模型对结构整体进行建模分析,并采用弹性盖楼对连体部分进行分析计算。
2)在计算结构抗震系数时,需要考虑平扭耦联计算结构的扭转效应,设置振型数高于15,计算振型数要使振型参与质量不得小于总质量的90%。
3)需要采用弹性时,要采用程分析法补充进行计算。
4)需要采用弹塑性动力或静力分析方法对薄弱层弹塑性变形进行验算。
2. 结构选型高层建筑的连体结构由于各独立部分存在相同或相近的体型、刚度或平面,抗震设计为7度或8度时,刚度和层数差别较大的建筑,不适合简单采用强连接方式。
高层建筑结构设计要点分析论文

高层建筑结构设计要点分析【摘要】根据笔者从事建筑结构设计的工作经验,结合某高层建筑,对高层建筑结构设计的特点进行了简要的概述与分析,指出了在高层建筑结构设计和构造要求,以及高层建筑结构设计过程中应注意控制事项,以提高建筑结构设计的经济性和安全性。
【关键词】高层建筑;设计特点;结构设计;整体稳定1 引言高层建筑是社会生产的需要和人们生活需求的产物,是现代工业化、商业化和城市化的必然结果。
科学技术的发展,高强轻质材料的出现以及机械化、电气化在建筑中的实现等,为高层建筑的发展提供了技术条件和物质基础。
随着高层建筑结构高度、复杂程度等的不断增加,高层建筑结构设计也带来了许多新的课题和更高的挑战。
因此,如何设计出安全、功能齐全、舒适美观、经济合理,同时又要符合人们精神生活要求,满足人们生产和生活的需求的建筑,是结构设计师们必须要面对和解决的首要问题。
为此,本文对高层建筑结构设计进行了简要的探讨。
2 高层建筑结构设计特点高层建筑结构设计特点主要有以下几点:1)水平荷载是结构设计时的决定性因素。
这是因为结构由自重等竖向荷载产生的轴力和弯矩的大小,仅与楼房高度的一次方成正比;而结构由于水平荷载产生的倾覆力矩及在竖构件中产生的轴力,是与楼房高度的两次方成正比;同时,对一建筑来说,自重等竖向荷载基本上是定值,而风荷载和地震作用等水平荷载,其数值是随结构动力特性的不同而有较大幅度的变化;2)轴向变形不容忽视。
因为在高层建筑中,自重等竖向荷载很大,能够使柱产生较大的轴向变形,从而会对连续梁弯矩产生较大的影响,对预制构件的下料长度产生影响,另外对构件的剪力和侧移也会产生影响,易使结构设计不够安全;3)侧移是结构设计的关键因素。
水平荷载下结构的侧移变形随着楼房高度的增加迅速增大,因此水平荷载作用下结构的侧移应控制在规定限度之内;4)结构延性是重要设计指标。
与较低楼房相比,高层建筑结构在地震作用下的变形更大一些。
为了能让结构在进入塑性变形阶段后仍具有较强的变形能力,防止建筑倒塌,必须采取一定的构造措施,以保证结构具有足够的延性[1]。
高层建筑结构设计分析(1)论文

浅谈高层建筑结构设计的分析摘要:随着高层建筑在我国的迅速发展,建筑高度的不断增加,建筑类型与功能愈来愈复杂。
高层建筑作为特殊的建筑形式,加强其结构设计的实践探讨非常必要。
本文分析了高层建筑结构形式特点的基础上,从不同角度对加强高层建筑结构设计的思路进行了分析。
关键词:高层建筑结构设计设计分析abstract: with the high-level architecture in china’s rapid development, the construction of the height of the increasing, building type and function more and more complex. high-rise building as a special form of construction, strengthen the structure design practice discussion is very necessary. this paper analyzes the high-rise building structure based on the characteristics of the form, from various angles to strengthen high-level building structural design train of thought is analyzed.keywords: designing high-rise design analysis中图分类号:[tu208.3]文献标识码:a文章编号:前言随着社会经济的迅速发展和建筑功能的多样化,城市人口的不断增多及建设用地日趋紧张和城市规划的需要,促使高层建筑得以快速发展。
另一方面由于轻质高强材料的开发及新的设计计算理论的发展,抗风和抗震理论的不断完善,加之新的施工技术和设备的不断涌现,特别是计算机的普及和应用以及结构分析手段的不断提高,为高层建筑迅速发展提供了必要的技术条件。
高层建筑论文结构设计论文

高层建筑论文结构设计论文摘要:随着高层建筑规模和形式的不断发展,追求结构形式新颖、受力合理的目标将是结构设计工作者的目标和方向。
作为结构工程师,高层建筑结构设计中应根据实际情况做好结构分析,多做方案比较,加强优化设计的实施,高层建筑的结构设计不仅应保证高层建筑具有足够的安全性,还应保证结构的经济性、合理性。
高层建筑是社会经济发展和科技进步的产物。
随着大城市的发展,城市用地紧张,市区地价日益高涨,促使近代高层建筑的出现,电梯技术的改进更使高层建筑越建越高。
宏伟的高层建筑是经济实力的象征,具有重要的宣传效应,在日益激烈的商业竞争中,更扮演了重要的角色。
1、高层建筑结构设计的意义及依据1.1概念设计的意义高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理。
1.2概念设计的依据高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。
2、高层建筑结构设计的特点2.1水平力是设计主要因素在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。
而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。
因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。
另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值随着结构动力性的不同而有较大的变化。
2.2轴向变形不容忽视高层建筑中,竖向载荷很大,能在柱中引起较大的轴向变形,对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩减小,跨中正弯矩和端支座负弯矩值增大;此外还会对预测构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
高层建筑结构研究论文

高层建筑结构研究论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张等问题的有效途径。
然而,高层建筑的结构设计和安全性面临着诸多挑战,因此对高层建筑结构的研究具有重要的现实意义。
一、高层建筑结构的特点高层建筑与低层建筑在结构上有明显的区别。
首先,高层建筑的高度较大,导致其竖向荷载显著增加。
这就要求结构体系具备足够的强度和刚度来承受这些荷载。
其次,风荷载和地震作用对高层建筑的影响更为突出。
在强风或地震作用下,高层建筑容易产生较大的水平位移和振动,从而影响结构的安全性和使用功能。
此外,高层建筑的结构自重较大,对基础的要求也更高,需要确保基础能够提供足够的承载力和稳定性。
二、高层建筑结构体系常见的高层建筑结构体系主要包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
框架结构由梁和柱组成,具有布置灵活、空间大等优点,但抗侧刚度较小,适用于层数较少的高层建筑。
剪力墙结构则通过钢筋混凝土墙体来抵抗水平荷载,其抗侧刚度大,但空间布置不够灵活。
框架剪力墙结构结合了框架结构和剪力墙结构的优点,既能提供较大的空间,又具有较好的抗侧性能,是目前应用较为广泛的结构体系之一。
筒体结构包括框筒、筒中筒和束筒等形式,具有良好的整体性和抗侧能力,适用于超高层建筑。
三、高层建筑结构的分析方法在对高层建筑结构进行设计和分析时,需要采用合适的方法。
目前常用的分析方法包括静力分析、动力分析和非线性分析等。
静力分析是基于结构在恒载、活载和风载等静力作用下的响应进行计算,是结构设计的基础。
动力分析则考虑了结构在地震作用等动力荷载下的振动特性,包括振型分解反应谱法和时程分析法。
振型分解反应谱法是一种简化的动力分析方法,通过计算结构的振型和振型参与系数,并结合反应谱来确定结构的地震响应。
时程分析法则直接输入地震波,对结构在整个地震过程中的响应进行模拟,能更准确地反映结构的动力特性,但计算量较大。
高层建筑结构设计论文

高层建筑结构设计论文【摘要】高层建筑是一种更为复杂的建筑模式,然而建筑的结构设计效果并不理想,高层建筑安全问题发生的频率相对较高,由此在高层建筑结构设计过程中,建筑结构设计人员更应该根据建筑结构的特点,认真考察建筑具体实际,从而设计出合理的设计方案,保证建筑的安全性和稳定性,发挥建筑的效益,从而满足建筑使用群体的要求,同时为建筑业的更快更好发展做出贡献,使得建筑业可以有更长足的发展空间。
一、高层建筑结构的特点1.水平载荷成为决定因素高层建筑的设计和建造过程区别于低层建筑,不仅要考虑竖向载荷,更重要是考虑水平载荷的影响。
高层建筑楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
2、抗震设计要求更高相对于低楼层而言,高楼层具有独特的特性,高楼层拥有更好的柔性,由此在地震作用下的变形更大一些。
所以高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
3、轴向变形不容忽视在有外力作用的情况下,建筑结构会发生一定的位移,包括弯曲、轴向变形和剪切变形。
对于低层建筑的结构,一般的结构构件轴向和剪切变形的影响相对小,由此不会涉及到轴向变形和剪切变形问题的考虑。
但是高层建筑的轴力相对较大,由此产生的轴向变形就会比较显著,由此在建筑结构设计中就要把轴向变形考虑进去。
二、高层建筑结构体系1、框架结构体系整个结构的纵向和横向全部由框架构件组成的结构成为框架结构。
框架既负担重力荷载又负担水平荷载。
框架结构的优点是建筑平面布置灵活,可提供较大的内部空间。
但由于结构属于柔性结构体系,在水平荷载作用下,强度低,刚度小,水平位移大,在高烈度地震区不宜采用。
高层建筑结构设计论文

高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张的有效手段。
然而,高层建筑的结构设计面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和经济性。
一、高层建筑结构设计的特点高层建筑与低层建筑在结构设计上存在显著差异。
首先,高层建筑所承受的风荷载和地震作用明显增大。
随着高度的增加,风的影响愈发显著,风振效应可能导致结构的疲劳和破坏。
地震作用也会随着高度的增加而放大,对结构的抗震性能提出了更高的要求。
其次,高层建筑的竖向荷载较大。
由于层数众多,建筑物自重以及活荷载的累积效应不容忽视,这对结构的竖向承载能力和基础设计带来了考验。
再者,高层建筑的结构体系更为复杂。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
不同的结构体系在力学性能、适用高度、经济性等方面各有优劣,需要根据具体情况进行选择和优化。
二、高层建筑结构设计的主要考虑因素(一)安全性安全性是高层建筑结构设计的首要原则。
这包括结构在正常使用条件下的承载能力、稳定性,以及在极端情况下(如强烈地震、大风)的抗倒塌能力。
在设计过程中,需要依据相关的规范和标准,进行详细的力学分析和计算,确保结构能够承受各种可能的荷载组合。
(二)稳定性高层建筑的高宽比通常较大,容易产生失稳现象。
因此,在结构设计中需要通过合理的布置构件、增加抗侧力构件的刚度等措施,提高结构的整体稳定性。
(三)经济性在满足安全性和稳定性的前提下,应尽量降低工程造价。
这需要在结构选型、材料选用、构件尺寸优化等方面进行综合考虑,以达到经济合理的设计目标。
(四)使用功能高层建筑往往具有多种功能,如办公、居住、商业等。
结构设计应满足不同功能区域的使用要求,如大开间的办公区域需要采用较为灵活的结构体系,而住宅区域则更注重房间的规整和隔音效果。
(五)施工可行性设计方案应便于施工,考虑施工过程中的技术难度、施工周期和成本等因素。
某高层大底盘建筑结构设计论文

浅析某高层大底盘建筑的结构设计摘要:随着社会经济的发展,城市建设中的高层建筑不断涌现,高层建筑的类型与功能愈来愈复杂,结构体系更加多样化,高层及超高层建筑结构设计也越来越成为结构工程师设计工作的主要重点和难点之所在。
本文针对大底盘上的多塔建筑的不同特点,从概念设计、结构分析、构造措施等方面进行结构设计,使结构具有较好的抗震性能。
关键词:高层;大底盘;多塔楼;抗扭梁技术;抗震设计;构造措施中图分类号:s611 文献标识码:a 文章编号:1.结构分析1.1结构选型本工程地下两层,为地下车库;地上三栋塔楼,分别为酒店塔楼为25层,公寓式酒店塔楼为12层,商住塔楼为20层;塔楼间设2层商业裙房。
为满足建筑的使用功能需求,选用框支-剪力墙结构体系,转换层设置在3层架空层(即裙房屋面)。
该工程为带转换层的复杂高层结构,采用框支梁转换上部酒店及商住楼的剪力墙。
1.2抗震设计方面的问题本工程大底盘多塔的各塔楼质量和刚度分布不均匀,且在平面布置上又不对称于大底盘,在地震作用下结构扭转振动反应较大。
大底盘顶层楼盖起着协同各塔楼共同工作的作用,而转换层设置于该层,故此处也为结构上下刚度突变处。
理论分析和试验结果均表明,在地震作用下,裙房顶层及上一层是最先破坏且破坏最严重的位置。
为保证结构的抗震性能要求,结构整体力学分析与抗震性能分析应选择合理的计算模型,以找出可能出现的薄弱部位,并在设计中采取构造加强措施提高其抗震能力。
1.3结构整体计算结构整体动力分析,采用中国建科院开发的satwe和pmsap两种不同力学模型程序,pmsap主要作为校核程序。
本工程为非对称的多塔结构,由于存在双向偏心,在自由振动条件下结构存在平扭耦连振动。
因此,结构计算时,除考虑双向地震作用外,还需要考虑平扭耦连计算结构的扭转效应。
本设计采用的计算振型数为30,计算得到x、y方向的振型参与质量系数分别为95.3%、97.1%。
通过对结构整体空间振动简图与振型图分析可知,结构整体扭转不明显,未出现整体结构扭转振型特征。
现代高层建筑结构设计论文

试论现代高层建筑结构设计【摘要】随着科技的进步,经济的高速发展,现今社会的高层建筑向着更高、更复杂的趋势发展,本文就高层建筑的最基本原理展开讨论。
【关键词】高层建筑结构;结构体系;结构布置1 选择合理的结构类型正确认识高层建筑的受力特点高层建筑从本质上讲是一个竖向悬臂结构。
竖向荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。
从受力特性看,竖向荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向结构上的作用、作用效应和结构抗力。
结构产生各种效应的原因,统称为结构上的作用。
结构上的作用包括直接作用和间接作用。
作用在结构上的直接作用或间接作用,将引起结构或结构构件产生内力(如轴力、弯矩、剪力、扭矩等)和变形(如挠度、转角、侧移、裂缝等),这些内力和变形总称为作用效应,其中由直接作用产生的作用效应称为荷载效应。
结构或结构构件承受内力和变形的能力,称为结构的抗力,如构件的承载能力、刚度的大小、抗裂缝的能力等。
结构抗力与结构构件的截面形式、截面尺寸及材料强度等级等因素有关。
结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。
因此,高层建筑采用何种结构形式,应取决于其结构体系和材料特性。
2 正确选择合理的结构体系建筑设计与结构设计是整个建筑设计过程中的两个重要的环节,对整个建筑物的外观效果、结构稳定起着至关重的作用。
二者相互协调也相互制约,是伙伴还是冤家,就在于能否和谐工作。
建筑设计师常常把结构放在从属地位,要求结构必须服从建筑,一切以建筑为先导。
通过受力因素分析,下一步就考虑采用什么结构体系,有下面几种高层建筑结构体系可供选择,其结构体系有:框架结构、剪力墙结构、框架一剪力墙结构、筒中筒结构等。
钢筋混凝土常用的结构形式:框架结构:平面布置灵活,抗侧刚度小,但建筑物较高时就需要较大的梁柱,减小了有效的使用空间,经济指标不太好。
高层建筑结构设计论文

高层建筑结构设计论文摘要:高层建筑的结构设计是一项技术性很强的综合性工作,是整个建筑质量最基础保证。
尽管近几年来高层建筑得到了迅猛的发展,但单从设计质量方面来看,并不是很理想。
在高层的结构设计中,工程师不能只重视结构计算的准确性,亦或是只重视结构方案的结构方案,应当做多方面的综合考量,选择最为经济适用的方案选择。
面对以往高层建筑中出现过的问题加以重视,及时的做好应对措施,这样才能将高层建筑结构推向新的高度。
前言随着社会经济的不断发展,高层就越来越广泛地得到应用。
高层建筑是一个是非常复杂而庞大的系统,其结构的设计就成为人们关注的重点内容。
1高层建筑结构的特点高层建筑结构受到自身特性的约束,和一般的建筑有个很大程度的不用。
它在承受建筑结构自身自重和活动荷载组成的竖向荷载的同时,还要承受有外界由风压以及水平地震作用所产生的水平荷载。
很多时候,高层结构还应该考虑地震发生时产生的竖向地震作用影响。
由此可见高层建筑对于抗震能力的要求有多么苛刻。
一般来讲,多层建筑结构在水平荷载和竖向荷载作用下,受到的影响有限,但是高层就不同了。
在外界地震作用之下,高层建筑受到的结构破坏是毁灭的,而就风压方面而言,高层的外界风力也是多层所不能比拟的。
随着建筑物高度的不断增加,高层建筑过大的侧移不会影响居住者的舒适程度,但是对于结构的影响很大,过大的侧移会损坏建筑的结构与非结构构件。
鉴于此,在进行高层建筑设计的过程中,把侧移控制在合理的范围之内是重要的标准,这样才能在实用性和安全性方面得到平衡。
因此,可以说,在高层建筑结构设计中的核心内容就是通过对外界地震作用以及风压作用的计算,做好抗侧力结构的设计。
2高层建筑的结构设计原则高层建筑结构的设计是一个复杂繁琐的内容,其中需要注意的内容涉及也十分广泛,根据多年的工作经验总结,主要集中在以下几个方面:2.1高层建筑结构方案的选择合理的结构设计方案对于工程来讲是十分关键的,好的设计方案在满足结构形式和体系的基础上,还要充分考虑造价成本,把经济适用发挥到最大程度。
高层建筑结构设计论文

高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张等问题的有效途径。
然而,高层建筑的结构设计是一项极其复杂且具有挑战性的工作,需要综合考虑众多因素,以确保建筑的安全性、稳定性和功能性。
一、高层建筑结构设计的特点高层建筑由于其高度较高、自重较大、水平荷载影响显著等特点,使得其结构设计与低层建筑有很大的不同。
首先,高层建筑所承受的竖向荷载远大于低层建筑。
除了自重外,还包括大量的人员、设备和家具等荷载。
这就要求结构具有足够的强度来承受这些竖向压力,以避免出现过大的变形和破坏。
其次,水平荷载成为了高层建筑结构设计的控制因素。
风荷载和地震作用对高层建筑的影响非常显著。
在强风或地震作用下,高层建筑会产生较大的水平位移和内力,因此需要结构具有良好的抗侧力性能。
再者,高层建筑的结构体系更为复杂多样。
常见的结构体系如框架结构、剪力墙结构、框架剪力墙结构、筒体结构等,每种结构体系都有其特点和适用范围,设计时需要根据具体情况进行合理选择。
二、高层建筑结构设计的原则在进行高层建筑结构设计时,需要遵循一系列的原则,以确保设计的合理性和可靠性。
安全性是首要原则。
结构设计必须能够承受各种可能的荷载组合,包括正常使用情况下的荷载以及极端情况下的风荷载、地震作用等,确保在其使用寿命内不会发生倒塌或严重破坏。
适用性原则要求结构在正常使用过程中,具有良好的变形性能和舒适度,不出现过大的振动或裂缝,满足建筑的使用功能。
经济性原则也是不可忽视的。
在保证结构安全和适用的前提下,应通过合理的设计和优化,降低工程造价,提高建筑的经济效益。
耐久性原则则要求结构具有足够的抗腐蚀、抗老化能力,以保证其在长期使用过程中的性能稳定。
三、高层建筑结构设计的主要内容1、结构选型结构选型是高层建筑结构设计的关键环节。
需要根据建筑的高度、使用功能、地质条件、施工条件等因素,综合考虑选择合适的结构体系。
广州某超高层建筑结构设计论文

广州某超高层建筑结构设计【摘要】超高层建筑是近代经济发展和科学技术进步的产物,如何对超高层建筑进行合理的结构设计,一直都是结构设计中值得探讨的课题。
本文合计广州太古汇办公楼1的工程实践, 对超高层建筑结构设计进行了初浅的介绍, 以供结构设计人员参考。
【关键词】超高层建筑;结构设计1. 工程概况太古汇为太古汇广州发展有限公司在广州市天河路与天河东路交汇处的西北角建造的大型综合式项目。
本项目的净用地面积为43980平方米,总建筑面积约为457584 平方米。
项目包括三座塔楼:一号塔楼为一座主体39层高的办公楼,二号塔楼为一座主体29层高的办公楼,酒店a为一座主体28层高的酒店;一座约58米高的文化中心(包括剧院、图书馆、展览厅等),及用作商场、电影院、宴会厅、停车场的裙楼及四层地库。
地库深度为21米,开挖深度约为23米。
办公楼1为太古汇项目最高的一栋塔楼,其中主体结构高度182.6米,并在顶部设29.4米钢结构屋顶,建筑总高度212米。
主体结构采用混凝土框架-核心筒结构体系。
办公楼1平面大致成正方形;东南及西北角做切角设计,切角尺寸每层变化,营造出弧形建筑立面;同时为配合弧形外立面,办公楼1东南及西北角4根柱子设计为斜柱,最大斜率约6°。
办公楼1标准层层高4.2米;一层大堂部分贯通二层,层高达14米;四层层高8.4米,中段设两个设备层/避难层,层高达8.1m。
1)办公楼1标准层结构平面图2)办公楼1剖面图2. 设计标准确定1)结构设计标准确定办公楼结构安全等级为二级;结构设计使用年限为50年;根据《建筑工程抗震设防分类标准》(gb50223-2004),办公楼1为标准设防类(丙类)建筑。
2)高层建筑类别确定根据《高层建筑混凝土结构技术规程》(jgj3-2002)4.2.1条要求,钢筋混凝土高层建筑结构的最大适用高度和宽高比应分为a级和b级。
b级高度高层建筑结构的最大适用高度和高宽比可较a级适当放宽,其结构抗震等级、有关的计算和构造措施应相应加严,并应符合相关条文规定。
高层建筑结构设计案例分析论文

高层建筑结构设计案例分析【摘要】高层建筑的结构设计是一项综合性的技术工作,对于建筑的设计有着非常重要的作用和意义。
本文以某高层建筑为例,采用结构三维设计与分析软件satwe对结构进行了设计计算。
【关键词】结构设计;高层建筑;建筑工程1 工程概况耐火等级为一级,屋面防水等级为二级,地下室防水等级为二级(配电室为一级)。
2 自然条件及地质情况本工程场地地震基本烈度8度,设计基本地震加速度0.2g,设计地震分组第一组,建筑场地类别ⅲ类。
100年遇基本风压0.45kn/m2,50年遇基本雪压0.25kn/m2,场地标准冻深0.68m。
场地地基土自上而下可划分为16层,从上至下依次为耕土,层厚楼梯、阳台和上人屋面栏杆顶部水平荷载取0.5kn/m。
高低层相邻的屋面,低层屋面考虑施工时临时荷载取4kn/m2。
大型设备按实际情况考虑。
地震参数:场地特征周期0.45s,建筑结构的阻尼比0.05,多遇地震水平地震影响系数最大值0.16。
3.主要受力构件尺寸取值表2结构主要竖向构件尺寸变化值mm ×mm除地下车库顶板板厚为200mm、地下一层顶板厚为180mm外,其他各层楼板厚度均为120mm。
4.主要结构材料选取圈梁、构造柱、挑檐、雨篷及楼梯均采用c30混凝土。
主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用hpb235、hrb335、hrb400级钢筋。
标高正负零以上填充墙采用加气混凝土砌块,容重≤6.5kn/ m,标高正负零以下墙体采用mu10粉煤灰砖,其余内隔墙均采用轻质隔墙,其重量不应大于1.00kn/m。
标高正负零以上采用m5混合砂浆,标高正负零以下采用m7.5水泥砂浆。
结构中所采用的型钢、钢板和钢管均采用q235-b级钢。
5.计算软件及计算依据本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 satwe。
计算依据为建筑条件图及《混凝土结构设计规范》gb50010-2002、《建筑抗震设计规范》gb50011-2010、《高层建筑钢筋混凝土结构技术规程》jgj3-2002、《建筑地基基础设计规范》gb50007-2002等国家相关规范。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某高层建筑结构设计与分析
【摘要】本文结合笔者多年工作的实践经验,以某高层建筑为分析对象,对其结构设计从多方面进行了深入地分析,谨供大家作参考之用。
【关键词】高层建筑;结构设计;结构分析
【中图分类号】tu185【文献标识码】a【文章编号】1674-3954(2011)02-0101-01
一、前言
多层和高层结构的差别主要是层数和高度上,但从实际情况上
分析两者并没有实质性差别,它们都要抵抗竖向及水平荷载作用,从设计原理及设计方法而言,基本上是相同的。
但是在高层建筑中,要使用更多结构材料来抵抗外荷载,特别是水平荷载,因此抗侧力结构成为本工程结构设计的主要问题,设计时要满足更多的要求,尤其自身有别于多层建筑的特殊要求和设计特点。
二、某高层住宅结构分析
本工程系一个大地盘、多塔楼、带高位转换层的高层建筑,设计过程中主要把握以下几个方面:
1、水平荷载成为控制结构设计的主要因素。
结构内力、位移与高度的关系,除轴向力与高度成正比之外,弯矩和位移随高度都呈指数曲线上升,因此,随着高度的增加,水平荷载将成为控制因素。
水平力作用下结构是否优化,材料用量将有很大差别。
2、特别是在地震区,随着层数的增加,地震作用对高层建筑危
害的可能性也比对多层建筑大,高层建筑结构的抗震设计应受到加倍重视,本工程位于非地震区,无需进行地震作用计算,仍需要考虑抗震的构造措施。
3、侧移成为控制指标。
与多层建筑不同,结构侧移已成为高层建筑结构设计中的关键因素。
随着建筑高度的增加,水平荷载下结构的侧移变形迅速增大,因而应将结构在水平荷载作用下的侧移控制在某一限度之内。
4、轴向变形不容忽视。
高层建筑中竖向荷载数值很大,使得柱产生较大的轴向变形,从而会使得连续梁中间支座处的负弯矩值减小,跨中正弯矩和端支座负弯矩值增大。
轴向变形还会对预制构件的下料长度产生影响,需要根据轴向变形的计算值调整下料长度进行。
另外轴向变形对构件的剪力和侧移产生影响,如不考虑构件竖向变形将会得出偏于不安全的计算结果。
5、结构延性是重要设计指标。
相对于多层建筑而言,高层建筑更柔一些,在地震作用下的变形更大一些。
为了避免倒塌,特别需要在构造上采取合理措施,使结构在进入塑性变形阶段后仍具有较强的变形能力,即保证结构具有足够的延性。
三、结构分析的基本原则
1、整体参数的设定
开始结构计算时,首先需要根据规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对正确设置软件的初始参数。
其中有几个关系到整体计算结果的参数,必须事先确定其合理
取值,才能保证后续计算结果的正确性。
这些参数包括振型的组合数、最大地震力的作用方向和结构的基本周期等。
此计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。
2、结构体系的合理性分析
规范特别强调了整体结构的科学性和合理性。
对结构进行整体分析是为了解结构在地震作用下动力特性、判断结构的变形是否满足抗震设防要求,以及进行构件截面设计。
规范中用于控制整体结构合理性的指标主要是周期比、位移比、刚度比、刚重比和剪重比等。
(1)周期比是控制结构扭转效应的重要指标。
周期比是结构扭转为主的第一自振周期与平动为主的第一自振周期之比。
限定周期比的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至于出现过大的扭转。
也就是说,限定周期比是使得结构承载布局合理。
《高规》第4.3.5条对周期比的限值给出了规定。
如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员应增大结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。
计算软件通常不直接给出结构的周期比,需要设计人员根据计算书中周期值自行判定第一扭转和第一平动周期,然后计算得出周期比。
(2)层间位移比(位移比)是控制结构平面不规则性的重要指标。
位移比为最大层间位移与平均层间位移的比值。
在《建筑抗震
设计规范》和《高规》中均对位移比的限值作了明确的规定。
需要指出的是规范中规定的位移比限值是按刚性板假定得出的,如在结构模型中设定的是弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以计算出正确的位移比。
在得出的位移比值满足要求之后,去掉“对所有楼层强制采用刚性楼板假定”的选择,按弹性楼板假定进行后续配筋计算。
(3)刚度比是控制结构竖向不规则的重要指标。
根据《抗震规范》和《高规》的要求,软件分别提供了地震剪力与地震层间位移比,剪切刚度和剪弯刚度的计算方法。
正确认识这三种刚度比的计算方法和适用范围是刚度比计算的关键。
地震剪力与地震层间位移比可用于判断地下室顶板能否作为上部结构的嵌固端。
剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定。
剪弯刚度主要用于底部大空间为多层的转换结构。
(4)刚重比是控制结构整体稳定性的重要指标。
刚重比是结构刚度与重力荷载之比。
它既是控制结构整体稳定性的重要因素,也是影响重力二阶效应的主要参数。
如该值不满足要求,则可能引起结构失稳倒塌,因而设计人员应给予足够的重视。
(5)剪重比(剪力系数)是抗震设计中非常重要的参数。
剪重比是楼层剪力与其上各层重力荷载代表值之和的比值。
《抗震规范》中5.2.5节对剪重比的最小值进行了规定,主要是因为对于长周期结构,规范所采用的振型分解反应谱法无法正确计算出地震力所产生的作用,出于结构安全考虑,因而规定了最小剪重比。
3、结构构件的优化设计
上述主要是针对结构整体合理性的计算和调整,这一步则主要进行结构单个构件内力和配筋计算,包括梁,柱,剪力墙轴压比计算,构件截面优化设计等。
(1)软件对混凝土梁计算显示超筋信息有四种情况。
1)当梁的弯矩设计值m大于梁的极限承载弯矩mu时,提示超筋。
2)在四级抗震及非抗震时混凝土截面受压区相对高度,二、三级抗震
时 >0.35(计算时取as=0.3as),一级抗震时 >0.25(计算时取as’=0.5as),提示超筋。
3)当大于《抗震规范》要求梁端纵向受拉钢筋的最大配筋率2.5%时,提示超筋。
4)混凝土梁斜截面计算结果不满足最小截面的要求时,则提示超筋。
(2)剪力墙超筋的情况。
1)剪力墙暗柱超筋。
软件中设定的暗柱最大配筋率是4%,而各规范以边缘构件方式给出了剪力墙主筋的配筋面积,没有最大配筋率。
所以当程序给出剪力墙超筋的警告信息时,可以酌情考虑;2)当剪力墙水平筋超筋时则说明该结构抗剪承载力不够,应予以调整;3)当剪力墙连梁超筋时,通常表明其在水平地震力作用下抗剪承载力不够。
规范中允许在地震作用下对剪力墙连梁的刚度进行折减,折减后的剪力墙连梁在都会出现塑性变形,即开裂。
但在进行剪力墙连梁设计时,应考虑其配筋是否满弹性变形时承载力的要求。
(3)柱的轴压比计算。
软件在计算考虑地震作用下柱的轴压比时,采用的是地震作用组合下的的柱轴力设计值;软件在不考虑地
震作用下柱的轴压比时,采取的是非地震作用组合下的柱轴力设计值。
因此对于同一个工程,考虑地震力和不考虑地震力时柱的轴压比计算结果会不一样。
本工程中框支柱最大轴压比为0.68,小于《抗震规范》的限值0.7。
(4)剪力墙的轴压比计算。
为了保证结构在地震力作用下的延性,新的《高规》和《抗震规范》对剪力墙的轴压比均作了限制。
需要指出的是,软件是按单向计算短肢剪力墙的轴压比时,与《高规》中规定按双向计算短肢剪力墙的轴压比有所不同。
本工程底部加强区墙肢最大轴压比为0.48,小于《抗震规范》的限值0.6。
四、结语
综上所述,依据规范和整体计算结果,针对本工程的具体情况,在设计中采取针对性技术措施对薄弱环节予以了加强,故此得出,本工程结构布置合理、技术可行,各项设计控制指标满足规范要求。