2020届衡水中学高三数学试卷

合集下载

2020届河北省衡水中学全国高三期末大联考数学(文)试题(解析版)

2020届河北省衡水中学全国高三期末大联考数学(文)试题(解析版)

2020届河北省衡水中学全国高三期末大联考数学(文)试题一、单选题1.已知集合21|4A x y x ⎧⎫==⎨⎬-⎩⎭,{|23,}B x x x =-≤<∈Z ,则A B 中元素的个数为( ) A .2 B .3C .4D .5【答案】B【解析】化简集合,A B ,根据交集的定义,即可求解. 【详解】因为21|{|2}4A x y x x x ⎧⎫===≠±⎨⎬-⎩⎭, {|23,}{2,1,0,1,2}B x x x =-≤<∈=--Z ,所以{1,0,1}A B ⋂=-,所以A B 中元素的个数为3.故选:B. 【点睛】本题考查集合的基本运算,化简是解题的关键,属于基础题.2.已知复数z 满足1z i i ⋅=-,则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】根据复数的除法运算法则,求出复数z ,即可求解. 【详解】由1z i i ⋅=-,得1i1i iz -==--, 所以复数z 在复平面内对应的点为(1,1)--, 所以对应点位于第三象限. 故选:C. 【点睛】本题考查复数的除法运算,以及复数的几何意义,属于基础题.3.随着人口老龄化的不断加快,我国出现了一个特殊的群体——“空巢老人”.这些老人或经济困难,或心理寂寞,亟需来自社会的关心关爱。

为此,社区志愿者开展了“暖巢行动”,其中A ,B 两个小区“空巢老人”的年龄如图所示,则A 小区“空巢老人”年龄的平均数和B 小区“空巢老人”年龄的中位数分别是( ) A .83.5;83 B .84;84.5C .85;84D .84.5;84.5【答案】B【解析】根据茎叶图,即可求出A 小区“空巢老人”年龄的平均数和B 小区“空巢老人”年龄的中位数. 【详解】解:A 小区“空巢老人”年龄的平均数为7878818584859091848+++++++=,B 小区“空巢老人”年龄的中位数为848584.52+=.故选:B 【点睛】本题考查茎叶图数据的处理,涉及到平均数和中位数,考查运算能力,属于基础题. 4.已知ln 2a =,ln b π=,125ln 24c =,则a ,b ,c 的大小关系为( ) A .b c a << B .c a b <<C .a b c <<D .a c b <<【答案】D【解析】化简c ,利用对数函数的单调性,即可得出结论. 【详解】因为12125255ln ln ln 2442c ⎛⎫=== ⎪⎝⎭,又因为ln y x =在(0,)+∞上单调递增, 且522π<<,所以a c b <<. 故选:D. 【点睛】本题考查对数的简单运算,考查利用函数的单调性比较函数值的大小,属于基础题. 5.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( ) A .518B .13C .718D .49【答案】C【解析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比.设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形, 其面积为112112S =⨯⨯=,巧板④的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .6.4sincos 3615tan4πππ⎛⎫- ⎪⎝⎭=( )A .34B.4C .34-D .14-【答案】A【解析】利用诱导公式,将所求的角转化为特殊锐角,即可求解. 【详解】4sincos sin cos 33636221514tan tan 44ππππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭===⎛⎫- ⎪⎝⎭. 故选:A. 【点睛】本题考查特殊角三角函数求值,利用诱导公式化简是解题的关键,属于基础题. 7.已知函数()y f x =的部分图象如下图所示,则()f x 的解析式可能为( )A .21cos 1xx -+ B .2||1sin1x x ++ C .2sin 1xx + D .2sin 1x xx ⋅+ 【答案】D【解析】根据图像的性质,如对称性,可排除选项C ,再取特殊值,即可求解.由图可知,该函数的图象关于y 轴对称,所以函数()f x 为偶函数, 所以选项C 不符合;又因为()0f π=,所以选项A ,B 不符合. 故选:D. 【点睛】本题考查由函数图像求解析式,观察图形找出特征是解题的关键,属于中档题. 8.已知向量()1,2a =,()2,1b =-,(),c x y =,若()a b c +⊥,则b 在c 上的投影为( )A .B .CD . 【答案】A【解析】首先求出a b +的坐标,根据()a b c +⊥,则()0a b c +⋅=得到x ,y 的关系式,由||cos ,||b cb bc c ⋅〈〉=计算b 在c 上的投影. 【详解】解:由()1,2a =,()2,1b =-,得()1,3a b +=-, 所以()a b c +⊥,则()0a b c +⋅= 得30x y -+=,3x y ∴=所以b 在c 上的投影为22||cos ,2||b c x b b c c x ⋅-+〈〉====±+. 故选:A . 【点睛】本题考查向量的数量积及几何意义,属于基础题. 9.执行如图所示的程序框图,则输出的结果为( ) A .-2 B .-6C .-8D .-12【答案】D【解析】将初始值10S =,1n =代入循环体运算,直至满足条件,退出循环体,即可得出结论. 【详解】当10S =,1n =不满足条件;执行第一次循环:1028S =-=,2n =,不满足条件; 执行第二次循环:28(2)12S =+-=,3n =,不满足条件; 执行第三次循环:312(2)4S =+-=,4n =,不满足条件; 执行第四次循环:44(2)20S =+-=,5n =,满足条件;执行第五次循环:520(2)120S =+-=-≤,6n =,满足条件,退出循环,所以输出S 的值为-12. 故选:D. 【点睛】本题考查循环结构的运算,属于基础题.10.设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点.过点F 作斜率为-3的直线l 与双曲线左、右支均相交.则双曲线离心率的取值范围为( )A .B .C .)+∞D .)+∞【答案】C【解析】根据双曲线的图像特征,当过点F 的直线的斜率在(,)b ba a-之间,则直线与双曲线左、右支均相交,即可求出ba的范围,从而求出离心率的取值范围. 【详解】因为双曲线22221(0,0)x y a b a b -=>>的两条渐近线方程为b y x a=±,当过点F 且斜率为-3的直线l 与渐近线by x a=-平行时. 直线l 只与双曲线右支有一个交点,数形结合可知, 当渐近线by x a =-的斜率满足3b a -<-,即3b a>时, 直线l 与双曲线左、右支均相交,所以22223910b a b a c a e >⇒>⇒>⇒>故选:C. 【点睛】本题考查双曲线的简单几何性质,数形结合是解题的关键,属于中档题. 11.在如图所示的平面四边形ABCD 中,4AB =,30CAB ∠=,AC CB ⊥,120ADC ∠=,则22DA DC +的最小值为( )A .4B .8C .D .【答案】B【解析】在ABC 中由三角函数求出AC ,在ADC 中由余弦定理得2212DA DC DA DC =++⋅,再由基本不等式可得222DA DC DA DC ≥+⋅即可求出22DA DC +的最小值.【详解】解:在ABC 中,因为30CAB ∠=︒,AC CB ⊥,所以cos AC BAC AB ∠=cos 42AC AB BAC ∴=⋅∠=⨯=在ADC 中,因为120ADC =∠︒,所以由余弦定理得2222cos AC DA DC DA DC ADC =+-⋅⋅∠, 即2212DA DC DA DC =++⋅,又由不等式的性质可知222DA DC DA DC ≥+⋅,即得222DA DC DA DC +⋅≤,所以()22223122DA DC DA DC DA DC =++⋅≤+,从而228DA DC ≥+,当且仅当2DA DC ==时等号成立.故选:B . 【点睛】本题考查余弦定理解三角形,基本不等式的应用,属于中档题. 12.已知函数2cos 12cos ()1sin cos f x x x θθθθ+=-+++,0,2πθ⎛⎫∈ ⎪⎝⎭,若存在(0,1)x ∈,使不等式()0f x <成立,则θ的取值范围为( )A .0,12π⎛⎫⎪⎝⎭B .5,122ππ⎛⎫⎪⎝⎭ C .50,,12122πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭D .5,1212ππ⎛⎫⎪⎝⎭【答案】C【解析】将()f x 转化为关于1x的二次函数,配方求出()f x 的最小值,只需min ()0f x <,解关于θ的不等式,即可得出结论.【详解】2cos 12cos ()1sin cos f x x x θθθθ+=-+++,0,2πθ⎛⎫∈ ⎪⎝⎭,可化为222112cos (12cos )()cos 1sin cos 2cos 4cos 112cos 4sin cos 1cos ,2cos 4cos f x x xθθθθθθθθθθθθθ++⎛⎫=--+++ ⎪⎝⎭+-⎛⎫=-+⎪⎝⎭0,2πθ⎛⎫∈ ⎪⎝⎭.当01x <<时,11x >,所以当112cos 2cos x θθ+=时,min 4sin cos 1()4cos f x θθθ-=,由题意可知,min ()0f x <,所以4sin cos 10θθ-<,从而得到12sin 21sin 22θθ<⇒<, 所以026πθ<<或520612ππθπθ<<⇒<<或5122ππθ<<. 故选:C. 【点睛】本题考查函数存在成立问题,转化为求函数最值,考查配方法求二次函数的最值,以及三角不等式的解法,属于较难题. 二、填空题13.已知函数2()ln f x x x =+,则曲线()f x 在点(1, (1))f 处的切线在y 轴上的截距为________. 【答案】2-【解析】求导,求出(1),(1)f f ',即可得出结论. 【详解】由2()ln f x x x =+,得1()2f x x x'=+,所以(1)3f '=,又(1)1f =,所以切点为(1,1), 所以切线方程为13(1)y x -=-,即32y x =-, 令0x =,得2y =-,所以切线在y 轴上的截距为-2. 故答案为:-2 【点睛】本题考查导数的几何意义,属于基础题.14.已知椭圆22:1(0)9x y C a a +=>的右焦点为F ,点M 在C 上,点N 为线段MF 的中点,点O 为坐标原点,若||2||4MF ON ==,则C 的离心率为________.【答案】4【解析】根据椭圆的定义以及三角形的中位线定理,求出a 的值,即可求解. 【详解】设椭圆C 的左焦点为F ',由椭圆定义得|||MF MF '+=即4MF '+=.∵O 为线段FF '的中点,N 为线段MF 的中点,由中位线的性质得2||4MF ON '==,代入()式,解得16a =,故其离心率4e ==.故答案为:4. 【点睛】本题考查椭圆定义的应用,以及椭圆简单的几何性质,属于基础题.15.已知等比数列{}n a 的前n 项和为n S ,424a =,696a =,且90a >,则满足不等式93n S >成立的最小正整数n 为________. 【答案】6【解析】由424a =,696a =,且90a >,得0q >,求出公比q ,进而求出{}n a 通项公式和前n 项和n S ,然后解93n S >不等式,即可得结论 【详解】设数列{}n a 的公比为q ,由424a =,696a =,得2644a q a ==,所以2q 或2q =-, 又因为90a >,所以2q,从而3411242243a a a =⇒⨯=⇒=,所以()()113211n n n a q S q -==⨯--.令()93329312325nnn S n >⇒⨯>⇒>⇒>-, 又因为*n ∈N ,所以min 6n =. 故答案为:6 【点睛】本题考查等比数列通项公式和前n 项和n S 基本量的计算,考查解指数不等式,属于中档题.16.在平面直角坐标系xOy 中,圆221x y +=与x 轴,y 轴的正方向分别交于点A ,B ,点P 为劣弧AB 上一动点,且OQ OA OP =+,当四边形OAQP 的面积最大时,OQ 的值为___________.【解析】设AOP θ∠=,因为OQ OA OP =+,所以四边形OAQP 为平行四边形,所以2sin OAQP AOPS S θ==,当sin 1θ=时取得最大值,即可求出Q 点的坐标,则OQ的值可求. 【详解】 解:如图所示:则1,0A ,()0,1B ,因为点P 在圆弧221(0,0)x y x y +=≥≥上运动,所以可设AOP θ∠=,0,2π⎡⎤θ∈⎢⎥⎣⎦,则()cos ,sin P θθ,因为OQ OA OP =+,所以四边形OAQP 为平行四边形, 所以12211sin sin 2OAQP AOPS Sθθ==⨯⨯⨯⨯=,当sin 1θ=时,OAQP S 最大,此时点P 与点B 重合,点()1,1Q ,()1,1OQ ∴=||2OQ ∴=.【点睛】本题考查三角函数的定义,向量的加法的平行四边形法则,属于基础题.三、解答题17.在数列{}n a 中,有()2*1232n a a a a n n n +++⋯+=+∈N.(1)证明:数列{}n a 为等差数列,并求其通项公式; (2)记11n n n b a a +=⋅,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析,()*12n Na n n +∈=,(2)3(23)nn +【解析】(1)由前n 项和与通项关系,求出{}n a 的通项公式,再利用等差数列的定义,即可证明;(2)求出数列{}n b 的通项公式,用裂项相消法,即可求解. 【详解】(1)因为()2*1232n a a a a n n n +++⋯+=+∈N,所以当2n ≥时,212312((11))n a a a a n n -+++⋯+=--+,上述两式相减并整理,得21(2)n a n n =+≥.又因为1n =时,211213a =+⨯=,适合上式,所以()*21n a n n =+∈N .从而得到121n an -=-,所以12n n a a --=,所以数列{}n a 为等差数列,且其通项公式为()*12n N a n n +∈=.(2)由(1)可知,111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪⋅+⋅+++⎝⎭.所以12311111111123557792123n n T b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11123233(23)n n n ⎛⎫=-= ⎪++⎝⎭. 【点睛】本题考查由数列的前n 项和求通项,考查用定义证明等差数列,以及裂相消法求数列的前n 项和,属于中档题.18.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.它是中国政府坚定支持贸易自由化和经济全球化,主动向世界开放市场的重要举措,有利于促进世界各国加强经贸交流合作,促进全球贸易和世界经济增长,推动开放世界经济发展.某机构为了解人们对“进博会”的关注度是否与性别有关,随机抽取了100名不同性别的人员(男、女各50名)进行问卷调查,并得到如下22⨯列联表:(1)根据列联表,能否有99.9%的把握认为对“进博会”的关注度与性别有关;(2)若从关注度极高的被调查者中按男女分层抽样的方法抽取7人了解他们从事的职业情况,再从7人中任意选取2人谈谈关注“进博会”的原因,求这2人中至少有一名女性的概率.附:22(),()()()()n ad bcK n a b c da b c d a c b d-==+++ ++++.参考数据:【答案】(1)有, (2)21【解析】(1)根据列联表求出2K,比较数据,即可得结论;(2)按比例分配抽取男性5人,女性2人,对抽取的7人,分别进行编号,列出从7人任意选取2人的所有情况,找出满足条件的基本事件的个数,由古典概型概率公式,即可求解.【详解】18.解:(1)22100(35361514)3005050514917.64710.82178 K⨯⨯-⨯==≈⨯⨯>⨯,所以有99.9%的把握认为对“进博会”的关注度与性别有关. (2)关注度极高的被调查者中男性与女性的比例为5:2,所以抽取的7人中有男性5人,女性2人.记男性5人分别为a ,b ,e ,d ,e ;女性2人分别为A ,B , 从7人中任意选取2人的所有情况有:ab ,ac ,ad ,ae ,aA ,aB , bc ,bd ,be ,bA ,bB ,cd ,ce ,cA ,cB ,de ,dA ,dB ,eA ,eB ,AB , 共21种,其中这2人至少有一名女性的情况有11种,所以1121P =, 所以这2人中至少有一名女性的概率为1121. 【点睛】本题考查两变量间的相关性检验,以及求古典概型的概率,考查计算能力,属于中档题. 19.在如图所示的三棱柱111ABC A B C -中,1AA ⊥底面ABC ,12AA AB a ==. (1)若AB BC ⊥,证明:1BC AB ⊥;(2)若底面ABC 为正三角形,求点1B 到平面1A BC 的距离.【答案】(1)证明见解析,(2 【解析】(1)AB BC ⊥ ,1AA ⊥ 底面ABC ,可证BC ⊥平面11A ABB ,即可求证; (2)取11B C 的中点F ,连接1A F ,可证1A F ⊥平面11BCC B ,求出三棱锥11A B BC V -,根据等体积法,1111B A BC A B BC V V --=,求出1A BC ∆的面积,即可求解. 【详解】(1)因为1AA ⊥底面ABC ,所以1BC AA ⊥, 又BC AB ⊥,1ABAA A =,所以BC ⊥平面11A ABB ,又1AB ⊂平面11A ABB ,所以1BC AB ⊥.(2)设点1B 到平面1A BC 的距离为d ,所以1111B A BC A B BC V V --=, 由题可知,所有棱长均为2a ,所以在1A BC 中,2BC a =,11A B AC ==,所以12122A BCSa =⨯=. 取11B C 的中点F ,连接1A F ,由题易知111A F B C ⊥, 从而得到1A F ⊥平面11BCC B ,所以1A F 是点1A 到平面1B BC 的距离,所以1A F =,又1212222B BCSa a a =⨯⨯=, 所以由等体积法1111B A BC A B BC V V --=可知,1111133A DCB DCS d S A F ⨯⨯=⨯⨯,2227d a d ⨯=⇒=,所以点1B 到平面1A BC . 【点睛】本题考查空间垂直关系的转换和证明,以及利用等体积法求点到平面的距离,属于中档题.20.在平面直角坐标系xOy 中,点(),M x y 1y =+.(1)求点M 的轨迹C 的方程;(2)作曲线C 关于x 轴对称的曲线,记为C ',在曲线C 上任取一点()00,P x y ,过点P 作曲线C 的切线l ,若切线l 与曲线C '交于A ,B 两点,过点A ,B 分别作曲线C '的切线12,l l ,证明12,l l 的交点必在曲线C 上. 【答案】(1)214y x =;(2)证明见解析. 【解析】(1)将方程两边平方化简即得解;(2)求出曲线在()00,P x y 处的切线方程,联立直线与抛物线方程,消去y ,列出韦达定理,设2111,4A x x ⎛⎫-⎪⎝⎭,2221,4B x x ⎛⎫- ⎪⎝⎭,分别求出曲线C '上在A ,B 两点处的切线1l ,2l 的方程,求出1l ,2l 的交点,即可得证.【详解】(1|1|y =+, 两边平方并化简,得24x y =, 即214y x =, 所以点M 的轨迹C 的方程为214y x =. (2)由(1)及题意可知曲线C ':214y x =-,又由214y x =知12y x '=, 所以点()00,P x y 处的切线方程为()00012y y x x x -=-, 即20001122y x x x y =-+, 又因为点()00,P x y 在曲线C 上, 所以20014y x =, 所以切线方程为2001124y x x x =-, 联立2002112414y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩消去y 整理得220020x x x x +-=,>0∆,设2111,4A x x ⎛⎫-⎪⎝⎭,2221,4B x x ⎛⎫- ⎪⎝⎭, 所以1202x x x +=-,2120x x x =-,()又由214y x =-,得12y x '=-, 所以曲线C '上点2111,4A x x ⎛⎫- ⎪⎝⎭处的切线1l 的方程为()21111142y x x x x +=--, 即2111124y x x x =-+, 同理可知,曲线C '上点2221,4B x x ⎛⎫-⎪⎝⎭处的切线2l 的方程为2221124y x x x =-+, 联立方程组21122211241124y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,121224x x x x x y +⎧=⎪⎪∴⎨⎪=-⎪⎩ 又由()式得1202012244x x x x x x x y +⎧==-⎪⎪⎨⎪=-=⎪⎩, 所以1l ,2l 的交点为20,4x x ⎛⎫- ⎪⎝⎭,此点在曲线C 上,故1l ,2l 的交点必在曲线C 上. 【点睛】本题考查求动点的轨迹方程,直线与抛物线综合问题,属于中档题. 21.已知函数2()ln 1f x x mx =++,m ∈R . (1)当2m =-时,求函数()f x 的单调区间及极值; (2)讨论函数()f x 的零点个数. 【答案】(1)增区间为10,2⎛⎫ ⎪⎝⎭,减区间为1,2⎛⎫+∞⎪⎝⎭,极大值为1ln 22-,无极小值,(2)当2e m <-时,函数()f x 没有零点;当0m ≥或2em =-时.函数()f x 有1个零点;当02em -<<时,函数()f x 有2个零点. 【解析】(1)求导,求出()0,()0f x f x ''><的解,即可求出单调区间,进而求出极值; (2)求导,求出()f x 单调区间,确定极值,根据极值的正负以及零点存在性定理,对m 分类讨论,即可求解.【详解】由题得,函数()f x 的定义域为(0,)+∞.(1)当2m =-时,2()ln 21f x x x =-+,所以1(12)(12)()4x x f x x xx-+'=-=,当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增; 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0f x '<,函数()f x 单调递减, 所以函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭. 所以当12x =时,()f x 有极大值, 且极大值为21111ln 21ln 22222f ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,无极小值.(2)由2()ln 1f x x mx =++,得2112()2mx f x mx x x+'=+=. 当0m ≥时,()0f x '>恒成立,函数()f x 单调递增,当10m x e--<<时,()()211()110m m f x f em m e----<=--++≤,又(1)10f m =+>,所以函数()f x 有且只有一个零点;当0m <时,令()0f x x '=⇒=,当x ⎛∈ ⎝时,()0f x '>,函数()f x 单调递增;当x ⎫∈+∞⎪⎪⎭时,()0f x '<,函数()f x 单调递减, 所以()f x 的极大值为2111ln 1ln 222f m m ⎛⎫=+⨯+=-+ ⎪⎝⎭, ①当111ln 0222m ⎛⎫-+< ⎪⎝⎭,即得11ln 1ln 2m e ⎛⎫-<-= ⎪⎝⎭时, 解得2e m <-,此时函数()f x 没有零点;②当111ln 0222m ⎛⎫-+= ⎪⎝⎭,即2e m =-时,函数()f x 有1个零点; ③当111ln 0222m ⎛⎫-+> ⎪⎝⎭,即02e m -<<时,()2442110f e me me ---=-++=-+<.当1x >时,令()ln g x =x-x , 则1()10g x x'=-<在(1,)+∞上恒成立, 所以()(1)1g x g <=-,即ln 1x x <-, 所以221()ln 1f x x mx x mx mx x+m ⎛⎫=++<+= ⎪⎝⎭, 故当1x >且1x m>-时,()0f x <.当02e m -<<时,有21e m-<<-, 所以函数()f x 有2个零点.综上所述:当2em <-时,函数()f x 没有零点; 当0m ≥或2em =-时.函数()f x 有1个零点; 当02em -<<时,函数()f x 有2个零点. 【点睛】本题考查导数在研究函数性质的应用,涉及到函数的单调区级、极值、和零点个数判断,以及零点存在性定理的灵活运用,考查分类讨论思想和数形结合思想,属于难题. 22.在平面直角坐标系中,曲线C 的参数方程为35cos 45sin x y θθ=+⎧⎨=-+⎩(θ为参数),以平面直角坐标系的原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)过点(2,0)P ,倾斜角为4π的直线l 与曲线C 相交于M ,N 两点,求11||||PM PN +的值.【答案】(1)6cos 8sin ρθθ=-,(2 【解析】(1)利用22sin cos 1θθ+=,消去参数,将曲线C 的参数方程化为普通方程,再运用 cos x ρθ=,sin y ρθ=,222x y ρ=+将曲线C 的直角坐标方程化为极坐标方程;(2)根据条件求出直线l 具有几何意义的参数方程,代入曲线C 普通方程,利用韦达定理以及直线参数的几何意义,即可求解. 【详解】(1)因为曲线C 的参数方程为35cos 45sin x y θθ=+⎧⎨=-+⎩,(θ为参数), 所以曲线C 的直角坐标方程为222(3)(4)5x y +=-+, 即22680x x y y -++=,将cos x ρθ=,sin y ρθ=,222x y ρ=+,代入上式得6cos 8sin ρθθ=-.(2)直线l的参数方程为2x y ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),将2x y ⎧=+⎪⎪⎨⎪=⎪⎩代入22680x x y y -++=,整理得280t +-=,设点M ,N 所对应的参数分别为1t ,2t ,则12t t +=-,128t t =-,1832500∆=+=>, 因为1t ,2t 异号,所以1212121111||||8t t PM PN t t t t -+=+===.【点睛】本题考查参数方程化普通方程,直角坐标方程化极坐标方程,考查直线参数方程几何意义的应用,属于中档题.23.已知函数()|4||2|f x x ax =+--. (1)当2a =时,解不等式()3f x x ≥; (2)当12x ≥时,不等式2()4f x x ≥-成立,求实数a 的取值范围. 【答案】(1)3,2⎛⎤-∞ ⎥⎝⎦,(2)512⎡⎤+⎢⎥⎣⎦【解析】(1)分类讨论去绝对值,即可求解方程;(2)去绝对值,分离参数,转化为求函数的最值,利用基本不等式和函数的单调性,即可得出结论. 【详解】(1)当2a =时,不等式()3f x x ≥,即为|224||3|x x x -+-≥, 当4x ≤-时,由4223x x x --+-≥,得3x ≤-,所以4x ≤-, 当41x -<<时,由4223x x x ++-≥,得20≥,所以41x -<<,当1x ≥时,由4223x x x +-+≥,得32x ≤,所以312x ≤≤, 故不等式()3f x x ≥的解集为3,2⎛⎤-∞ ⎥⎝⎦.(2)当12x ≥时, 22()4|2|f x x ax x x ≥-⇔-≤+, 由2|2|ax x x -≤+,得2211x a x x x-+-≤≤++,当12x ≥时,由基本不等式得211x x++≥,当且仅当2x x=,即x = 因为函数21y x x =-+-在1,2⎡⎫+∞⎪⎢⎣⎭上单调递减, 所以当12x =时,21y x x=-+-取最大值为52,故实数a 的取值范围是512⎡⎤+⎢⎥⎣⎦.【点睛】本题考查分类讨论方法解绝对值不等式,考查恒成立问题,分离参数,转化为求函数的最值,属于中档题.。

2020届衡水中学高三数学试卷含答案

2020届衡水中学高三数学试卷含答案

则这样不同的等差数列的个数最多有 个。

9. 甲、乙两人玩猜数字游戏 , 先由甲心中任想一个数字找两个人玩这个游戏 , 得出他们”心有灵犀”的概率为22已知方程 x2 y1表示焦点在 x 轴上的椭圆 ,则 m 的取值范围是m 22 muuur uuuur 在 ABC 中,M 是 BC 的中 点, AM=1,点 P 在 AM 上 且满 足 学 PA 2PM , 则12.①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直13. 设 a n 是等差数列,从 a 1 , a 2 ,L ,a 20 中任取 3 个不同的数,使这 3个数仍成等差数列,2020 届衡水中学高三数学试卷、填空题:本大题共 14 小题,每小题 5分,共 70 分。

1. 已知全集 U R,集合A {x| 2 x 3}, B {x|x 1或x 4},那么集合A (C U B)等于 2.若 1 7i i a bi(a,b R, i 是虚数单位 ,满足 i 2 1),则 ab 的值是 3. 若 sin4 ,tan 0 ,则 cos5 4. 设 f x 是定义在 R 上的奇函数,当 x 0时, f x log 3 1 x ,则 f 2 5. ABC 中,若B 30o , AB 2 3 , AC 3 ,则 BC =6. 若直线 l 经过点 P(2,3),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为7.已知 1- cos2 = 1,sin cos1 tan( - )= -3则 tan( 2) 等于 8. 已知 a nn 为奇数 n n 为偶数n1则a 1 a 2 a 3 a4L a99 a100把乙猜的数字记为 b ,且a,b {0,1,2,3, L 9} ,若 a b 1, 则称甲乙“心有灵犀” 。

河北省衡水中学2020届高三第一次教学质量检测理科数学

河北省衡水中学2020届高三第一次教学质量检测理科数学

河北衡水中学2020年高三第一次教学质量检测数学试题(理科)(考试时间:120分钟满分:150分)注意事项1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题无效.第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B =I ,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5 2.z 是z 的共扼复数,若2z z +=,()i 2z z -=(i 为虚数单位),则z 等于( )A.1i +B.1i --C.1i -+D.1i - 3.根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是( ) (参考数据:lg30.48≈)A.3310B.5310C.7310D.93104.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若()2log5.1a g =-,()0.82b g =,()3c g =,则a ,b ,c 的大小关系为( )A.a b c <<B.c b a <<C.b a c <<D.b c a << 5.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( )A.{}10x x -<≤B.{}11x x -≤≤ C.{}11x x -<≤ D.{}12x x -<≤ 6.设直线1l ,2l 分别是函数()ln ,01,ln ,1,x x f x x x -<<⎧=⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则PAB △的面积的取值范围是( )A.()0,1B.()0,2C.()0,+∞D.()1,+∞7.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.34πC.2πD.4π 8.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A.1B.2C.4D.8。

2020届河北省衡水中学高三下学期全国第三次联考数学(理)试卷及解析

2020届河北省衡水中学高三下学期全国第三次联考数学(理)试卷及解析

2020届河北省衡水中学高三下学期全国第三次联考数学(理)试卷★祝考试顺利★ (解析版)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}20M x x x =+>,(){}ln 10N x x =->,则( )A. M N ⊇B. M N ⊆C. ()1,M N ⋂=+∞D. ()2,M N ⋃=+∞【答案】A 【解析】解出集合M 、N ,利用集合的包含关系和交集、并集的定义可判断各选项的正误.【详解】{}()()20,10,M x x x =+>=-∞-⋃+∞,(){}{}()ln 10112,N x x x x =->=->=+∞,所以,M N ⊇,()2,M N =+∞,()(),10,M N =-∞-+∞.故选:A.2. 已知复数2(2)z i =+,则z 的虚部为( ) A. 3 B. 3iC. 4D. 4i【答案】C 【解析】根据复数的代数形式的乘法法则计算即可得解; 【详解】解:2(2)34z i i =+=+,所以z 的虚部为4. 故选:C .3. 以下统计表和分布图取自《清华大学2019年毕业生就业质量报告》.国内1583 55.8%94 3.8%290 19.9%1967 29.0%出国(境)699 24.6%137 5.5%199 13.7%1035 15.3%就业490 17.3%2224 89.2%943 64.8%3657 53.9%签三方就154 5.4%1656 66.4%864 59.4%2674 39.4%业灵活就业336 11.8%568 22.8%79 5.4%983 14.5%未就业64 2.3%39 1.6%23 1.6%126 1.9%合计2836 100.0%2494 100.0%1455 100.0%6785 100.0%清华大学2019年毕业生去向分布情况统计表清华大学2019年毕业生签三方就业单位所在省(区、市)分布图则下列选项错误..的是().A. 清华大学2019年毕业生中,大多数本科生选择继续深造,大多数硕士生选择就业B. 清华大学2019年毕业生中,硕士生的就业率比本科生高C. 清华大学2019年签三方就业的毕业生中,本科生的就业城市比硕士生的就业城市分散D. 清华大学2019年签三方就业毕业生中,留北京人数超过一半【答案】D【解析】选项A在表中找出本科生选择继续深造达80.4%,硕士生选择就业达89.2%,则判断选项A正确;选项B在表中找出硕士生的就业率达89.2%,本科生的就业率达17.3%,则判断选项B正确;。

河北省衡水中学2020届高三下学期全国第三次联考数学(理)试题 Word版含解析

河北省衡水中学2020届高三下学期全国第三次联考数学(理)试题 Word版含解析

河北衡水中学2020届全国高三第三次联合考试(Ⅰ)理科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}20M x x x =+>,(){}ln 10N x x =->,则( )A. M N ⊇B. M N ⊆C. ()1,M N ⋂=+∞D.()2,M N ⋃=+∞【答案】A 【解析】 【分析】解出集合M 、N ,利用集合的包含关系和交集、并集的定义可判断各选项的正误. 【详解】{}()()20,10,M x x x =+>=-∞-⋃+∞,(){}{}()ln 10112,N x x x x =->=->=+∞,所以,M N ⊇,()2,M N =+∞,()(),10,M N =-∞-+∞.故选:A.【点睛】本题考查集合包含关系的判断,同时也考查了集合的交集和并集运算、二次不等式与对数不等式的求解,考查计算能力,属于基础题. 2. 已知复数2(2)z i =+,则z 的虚部为( ) A. 3 B. 3i C. 4D. 4i【答案】C 【解析】 【分析】根据复数的代数形式的乘法法则计算即可得解; 【详解】解:2(2)34z i i =+=+,所以z 的虚部为4. 故选:C .【点睛】本题考查复数代数形式的乘法,复数的相关概念,属于基础题. 3. 以下统计表和分布图取自《清华大学2019年毕业生就业质量报告》.本科生硕士生博士生总体毕业去向人数比例人数比例人数比例人数比例深造2282 80.4%231 9.3%489 33.6%3002 44.2%国内1583 55.8%94 3.8%290 19.9%1967 29.0%出国(境)699 24.6%137 5.5%199 13.7%1035 15.3%就业490 17.3%2224 89.2%943 64.8%3657 53.9%签三方就业154 5.4%1656 66.4%864 59.4%2674 39.4%灵活就业336 11.8%568 22.8%79 5.4%983 14.5%未就业64 2.3%39 1.6%23 1.6%126 1.9%合计2836 100.0%2494 100.0%1455 100.0%6785 100.0%清华大学2019年毕业生去向分布情况统计表清华大学2019年毕业生签三方就业单位所在省(区、市)分布图则下列选项错误..的是().A. 清华大学2019年毕业生中,大多数本科生选择继续深造,大多数硕士生选择就业B. 清华大学2019年毕业生中,硕士生的就业率比本科生高C. 清华大学2019年签三方就业的毕业生中,本科生的就业城市比硕士生的就业城市分散D. 清华大学2019年签三方就业毕业生中,留北京人数超过一半【答案】D【解析】 【分析】选项A 在表中找出本科生选择继续深造达80.4%,硕士生选择就业达89.2%,则判断选项A 正确;选项B 在表中找出硕士生的就业率达89.2%,本科生的就业率达17.3%,则判断选项B 正确;选项C 在表中分析出本科生的就业城市主要分散在北京、广东、上海,硕士生的就业城市主要集中在北京,则判断选项C 正确;选项D 在表中分析出留北京人数仅博士生达到了51.2%,本科生与硕士生都没有达到一半,判断选项D 错误即可.【详解】选项A :清华大学2019年毕业生中,本科生选择继续深造达80.4%,硕士生选择就业达89.2%,故选项A 正确;选项B :清华大学2019年毕业生中,硕士生的就业率达89.2%,本科生的就业率达17.3%,故选项B 正确;选项C :清华大学2019年签三方就业的毕业生中,本科生的就业城市主要分散在北京、广东、上海,硕士生的就业城市主要集中在北京,故选项C 正确;选项D :清华大学2019年签三方就业的毕业生中,留北京人数仅博士生达到了51.2%,本科生与硕士生都没有达到一半,故选项D 错误. 故选:D.【点睛】本题考查统计表与分布图,是基础题.4. 若圆22(2)(1)5x y -+-=关于直线10(0,0)ax by a b +-=>>对称,则21a b+的最小值为( )A. 4B.C. 9D.【答案】C 【解析】 【分析】由已知得,若圆关于直线对称,即直线必然经过圆心,故有圆心(2,1)在直线10ax by 上,则21a b +=,然后,利用基本不等式关于“1”的用法即可求解.【详解】由题意知圆心(2,1)在直线10ax by 上,则21a b +=.又因为0,0a b >>,所以212122(2)59b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,当且仅当22b a a b =时,即13a b ==时取等号,此时,min219a b ⎛⎫+= ⎪⎝⎭故选:C【点睛】本题考查基本不等式关于“1”的用法,属于基础题.5. 要使得满足约束条件42y x y x x y ⎧⎪-⎨⎪+⎩,的变量,x y 表示的平面区域为正方形,则可增加的一个约束条件为( ) A. 4x y +≤ B. 4x y +C. 6x y +D. 6x y +【答案】C 【解析】 【分析】设新增加的约束条件为x y c +,根据正方形两组对边的距离相等,得到方程解得即可; 【详解】解:根据正方形的性质可设新增加的约束条件为x y c +,两组对边的距离相等,故2222d ===,所以6c =或2c =-(舍去). 如图所示故选:C .【点睛】本题考查二元不等式组表示的平面区域,两平行线间的距离公式的应用,属于基础题.6. 若{}n a 是公比为(0)q q ≠的等比数列,记n S 为{}n a 的前n 项和,则下列说法正确的是( )A. 若{}n a 是递增数列,则10,0a q <<B. 若{}n a 是递减数列,则10,01a q ><< C 若0q >,则4652S S S +> D. 若1n nb a =,则{}n b 是等比数列 【答案】D 【解析】 【分析】选项A ,B ,C 中,分别取特殊数列满足条件,但得不出相应的结论,说明选项A ,B ,C 都是错误的,选项D 中,利用等比数列的定义可以证明结论正确. 【详解】A 选项中,12,3a q ==,满足{}n a 单调递增,故A 错误; B 选项中,11,2a q =-=,满足{}n a 单调递减,故B 错误; C 选项中,若111,2a q ==,则656554,a a S S S S <-<-,故C 错误; D 选项中,111(0)n n n n b a q b a q++==≠,所以{}n b 是等比数列.故D 正确. 故选:D.【点睛】本题考查了等比数列的定义,考查了数列的单调性,考查了特值排除法,属于基础题.7. 为了得到函数()sin g x x =的图象,需将函数()sin 6f x x π⎛⎫=- ⎪⎝⎭的图象( ) A. 向左平移6π个单位长度B. 向右平移6π个单位长度 C. 向左平移56π个单位长度 D. 向右平移56π个单位长度【答案】D 【解析】 【分析】先将函数()sin 6f x x π⎛⎫=-⎪⎝⎭用诱导公式变形为5()sin 6f x x π⎛⎫=+⎪⎝⎭,结合三角函数图象的平移变换规律,得到答案. 【详解】5()sin sin sin sin 6666f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=--=-+=+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 由5()sin 6f x x π⎛⎫=+ ⎪⎝⎭的图象得到函数()sin g x x =的图象, 向右56π个单位长度即可. 故选:D.【点睛】本题主要考查三角函数图象的平移变换,要注意三角函数图象的平移变换是在“x ”的基础上进行的,解决此类题还需熟记口诀“左加右减”.8. 设()f x 是定义在R 上的奇函数,且当0x 时,1()sin 23f x x x =-.若2tan5a f π⎛⎫= ⎪⎝⎭,32log cos5b f π⎛⎫= ⎪⎝⎭,2cos 5c f π⎛⎫=⎪⎝⎭大小关系为( ) A. a b c << B. b c a <<C. b a c <<D. c b a <<【答案】B 【解析】 【分析】根据题意当0x 时2()1cos 203f x x '=->,()f x 是定义在R 上的奇函数,则()f x 在定义域上单调递增,2tantan 154ππ>=,20cos 15π<<,32log cos 05π<,由函数的单调性可得出答案.【详解】由题意知由当0x 时,2()1cos 203f x x '=->,所以()f x 在[)0+,∞上单调递增,且()00f =又()f x 是定义在R 上的奇函数,所以()f x 在(]0-∞,上单调递增. 所以()f x 在定义域上单调递增. 又因为28tantan tan 15204πππ=>=,20cos 15π<<,所以32log cos 05π<, 由()f x 在定义域上单调递增,则3222tan cos log cos 555f f f πππ⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所以b c a <<. 故选:B .【点睛】本题考查函数的奇偶性和单调性的综合应用,利用单调性比较大小,考查三角函数值大小的的比较,对数值大小的比较,属于中档题9. 如图是由等边△AIE 和等边△KGC 构成的六角星,图中的B ,D ,F ,H ,J ,L 均为三等分点,两个等边三角形的中心均为O .若OA mOC nOJ =+,则mn=( )A.12B.23C.34D. 1【答案】B 【解析】 【分析】以点O 为坐标原点,OD 为x 轴,OA 为y 轴建立平面直角坐标系,设等边三角形的边长为23,得出点,,A C J 的坐标,由向量的运算可求得,m n 的值,可得答案.【详解】由平行四边形法则,22()23OA OB OJ OC OJ OJ OC OJ =+=++=+,所以2m =,3n =,所以23m n = 以点O 为坐标原点,OD 为x 轴,OA 为y 轴建立如图所示的平面直角坐标系,设等边三角形的边长为3()()222333-=,由B ,D ,F ,H ,J ,L 均为三等分点, 则2323OA =⨯=,233OJ =所以())230,23,1,,A J C⎛⎫⎪ ⎪⎝⎭()0,2OA =,()3,1OC =,23OJ ⎛⎫= ⎪ ⎪⎝⎭)23233,13,33n OA mOC nOJ mn m m ⎛⎫⎫=+=+-=- ⎪⎪ ⎪⎪⎝⎭⎭所以23302nm m ⎧=⎪⎨⎪=⎩,解得32n m =⎧⎨=⎩所以23 mn=故选:B.【点睛】本题考查向量的线性运算,建立直角坐标系是解决本题的关键,也是解决的向量问题的常用方法,属于中档题.10. 区块链是数据存储、传输、加密算法等计算机技术的新型应用模式,图论是区块链技术的一个主要的数学模型,在一张图中有若干点,有的点与点之间有边相连,有的没有边相连,边可以是直线段,也可以是曲线段,我们规定图中无重边(即两个点之间最多只有一条边)且无孤立点(即对于每个点,都至少存在另外一个点与之相连),现有A,B,C,D四个点,若图中恰有3条边,则满足上述条件的图的个数为()A. 4B. 8C. 12D. 16【答案】D【解析】【分析】先求出A,B,C,D四点最可确定6条边,再由题得到满足条件的图的个数.【详解】如图,A,B,C,D四点最可确定AB,AC,AD,BC,BD,CD共6条边.由题意知恰有3条边且无孤立点,所以满足条件的图有36416C-=(个).故选:D.【点睛】本题主要考查组合的应用,意在考查学生对这些知识的理解掌握水平.11. 地球的公转轨道可以看作是以太阳为一个焦点的椭圆,根据开普勒行星运动第二定律,可知太阳和地球的连线在相等的时间内扫过相等的面积,某同学结合物理和地理知识得到以下结论:①地球到太阳的距离取得最小值和最大值时,地球分别位于图中A点和B点;②已知地球公转轨道的长半轴长约为149600000千米,短半轴长约为149580000千米,则该椭圆的离心率约为1.因此该椭圆近似于圆形:③已知我国每逢春分(3月21日前后)和秋分(9月23日前后),地球会分别运行至图中C点和D点,则由此可知我国每年的夏半年(春分至秋分)比冬半年(当年秋分至次年春分)要少几天.以上结论正确的是( )A. ①B. ①②C. ②③D. ①③【答案】A 【解析】 【分析】根据椭圆的几何性质可判断命题①的正误;利用椭圆的离心率公式可判断命题②的正误;根据开普勒行星运动第二定律可判断命题③的正误.综合可得出结论.【详解】由椭圆的几何性质可知,当地球到太阳的距离取得最小值和最大值时,地球分别位于图中A 点和B 点,命题①正确;1495800001149600000b a =≈,则该椭圆的离心率222210c a b b e a a a -⎛⎫===-≈ ⎪⎝⎭,命题②错误; 根据开普勒行星运动第二定律,地球从D 点到C 点运行的速度较快,因此经历的时间较短,因此夏半年比冬半年多几天,命题③错误. 故选:A.【点睛】本题考查与椭圆性质相关的命题真假的判断,涉及椭圆焦半径、离心率的应用,考查推理能力,属于中等题.12. 正方体1111ABCD A B C D -的棱长为2,在A ,B ,C ,D ,1C ,1D 这六个顶点中.选择两个点与1A ,1B 构成正三棱锥P ,在剩下的四个顶点中选择两个点与1A ,1B 构成正三棱锥Q ,M 表示P 与Q 的公共部分,则M 的体积为( )A.13B.24C.23D. 1【答案】A 【解析】 【分析】根据题意,设平面11A BC 与平面11AB D 的交线为EF ,则M 为四面体11A B EF ,取11A B 的中点O ,连EO 接,可得EO ⊥平面11A B F ,然后,分别求出EO 与11A B F S △ 即可求出M 的体积1113A B F V EO S =⋅⋅△ 【详解】如图,由题意知,P 和Q 分别为三棱锥111B A BC -和三棱锥111A AB D -,设平面11A BC 与平面11AB D 的交线为EF ,则M 为四面体11A B EF ,取11A B 的中点O ,连接EO ,可得1EO =, 1112112A B F S =⨯⨯=△, 可得EO ⊥平面11A B F ,则M 的体积为1111111333A B F V EO S =⋅⋅=⨯⨯=△故选:A【点睛】本题考查空间几何体的体积问题,属于简单题.二、填空题:13. 62x x ⎛⎫- ⎪⎝⎭的展开式中2x 的系数为_________.(用数字作答)【答案】60 【解析】 【分析】先求出二项式展开式的通项6216(2)rr rr T C x -+=-,再令622r -=即得解.【详解】由题得()6162166(2)(2)r r rr r r rr T C x x C x ---+=⋅-⋅=-.令622r -=,解得2r,所以2x 的系数为226(2)60C ⋅-=.故答案为:60【点睛】本题主要考查利用二项式定理求指定项的系数,意在考查学生对该知识的理解掌握水平.14. 记n S 为正项等差数列{}n a 的前n 项和,若13471,a a a S =⋅=,则n S =_________. 【答案】23122n n - 【解析】 【分析】设等差数列的公差为d ,根据已知求出3d =,再利用等差数列求和公式求解. 【详解】设等差数列的公差为d , 由题得173474772a a a a S a +⋅==⨯=, 所以37,a =所以1+27,3d d =∴=.所以2(1)313222n n n S n n n -=+⨯=-. 故答案为:23122n n -.【点睛】本题主要考查等差数列的基本量计算,考查等差中项的应用和求和,意在考查学生对这些知识的理解掌握水平.15. 若抛物线()220y px p =>的焦点到双曲线22222y x p -=则p 的值为_________.【答案】2 【解析】 【分析】求出双曲线的焦点坐标以及抛物线的焦点坐标,利用两点间的距离公式可得出关于p 的等式,由此可解得p 的值.【详解】抛物线的焦点为,02p F ⎛⎫ ⎪⎝⎭,双曲线的方程可化为222212y x p p -=,所以223c p =,所以其一个焦点化为()1F ,所以1FF p ===2p =.故答案为:2.【点睛】本题考查利用双曲线和抛物线的焦点坐标求参数,考查计算能力,属于基础题. 16. 已知函数()()21xf x kx k e x =+--,若()0f x <的解集中恰有三个整数,则实数k 的取值范围为______. 【答案】3243,54e e ⎡⎫⎪⎢⎣⎭【解析】 【分析】把()0f x <转化为()12xx k x e ++<,设1()x x g x e +=,()()2h x k x =+,则若()0f x <的解集中恰有三个整数解等价于()g x 的图像在()h x 的图像上方所对应的x 的取值范围中恰好有三个整数解,利用数形结合找到满足题意的不等式,解不等式即可求得实数k 的取值范围. 【详解】解:()0f x <等价于()210xkx k e x +--<,即()12xx k x e ++<, 设1()x x g x e+=,()()2h x k x =+,则上面不等式转化为()()h x g x <, 直线()()2h x k x =+横过定点()2,0-,要使()0f x <的解集中恰有三个整数,只需()g x 的图像在()h x 的图像上方所对应的x 的取值范围中恰好有三个整数解. 因为()()2(1)1x xx x e x e g x e e -+⋅-'==,所以(),0x ∈-∞时,0g x ,()g x 单调递增;()0,x ∈+∞时,0g x ,()g x 单调递减;所以1x =时,()()max 01g x g ==,且()10g -=,x →-∞时,()g x →-∞;x →+∞时,()0g x →, 根据根据上述画出()g x 的图像图下图所示:当0k ≤时,画出()(),g x h x 的图像如图所示:从图中可以看出,[)1,x ∈-+∞时,()g x 的图像横在()h x 的图像上方,所以()()h x g x <所以的x 的取值范围中,整数解有无穷多个,不符合题意; 当0k >时,画出()(),g x h x 的图像如图所示:从图像可得:要使()g x 的图像在()h x 的图像上方所对应的x 的取值范围中恰好有三个整数解,只需满足:()()()()22{33g h g h >≤,所以233445k e ke ⎧>⎪⎪⎨⎪≤⎪⎩,解得:324354k e e ≤<. 综上,324354k e e ≤<. 故答案为:3243,54e e ⎡⎫⎪⎢⎣⎭【点睛】本题主要考查不等式的解的问题,考查数形结合,利用导数求函数单调性和最值,属于难题.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. 在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos c B b C =,BC 边上的高12AD =,4sin 5BAC ∠=. (1)求BC的长:(2)过点A 作AE AB ⊥,垂足为A ,且CAE ∠为锐角,AE =sin ACE ∠. 【答案】(1)12BC =(2)sin 5ACE ∠= 【解析】 【分析】(1)根据正弦定理、两角和的正弦公式化简已知的式子,得到B C =,根据等腰三角形的性质,得2BAC BAD ∠=∠,利用二倍角公式求出BAD ∠的正弦、余弦,进而求出BAD ∠的正切值,即可出BC 的长(2)利用43cos cos sin ,sin 255EAC BAC BAC EAC π⎛⎫∠=-∠=∠=∠= ⎪⎝⎭,求出AC AB ===【详解】解:(1)由cos cos c B b C =及正弦定理得sinCcos sin cos B B C = 即sin()0B C -=. 因为,22B C ππ⎛⎫-∈-⎪⎝⎭,所以.B C =因为ABC 为锐角三角形,且4sin 5BAC ∠=, 所以3cos 5BAC ∠=. 又因为根据等腰三角形的性质, 可得,2BAC BAD ∠=∠, 所以232cos 15BAD ∠-=则25cos 5BAD ∠=所以51sin ,tan 2BAD BAD ∠=∠= 所以6BD =,所以12BC = (2)由题意得43cos cos sin ,sin 255EAC BAC BAC EAC π⎛⎫∠=-∠=∠=∠=⎪⎝⎭2265AC AB AD BD ==+=在ACE △,因为222cos 2AE AC CE CAE AE AC+-∠=⋅所以9CE =. 由sin sin CE AECAE ACE=∠∠得5sin 5ACE ∠=【点睛】本题考查正弦定理、余弦定理、两角和的正弦公式以及二倍角公式,属于中档题. 18. 如图,在三棱锥A BCD -中,AB ⊥平面BCD ,E 为棱AC 上的一点,且BE ⊥平面ACD .(1)证明:BC CD ⊥;(2)设1BC CD ==.BC 与平面ACD 所成的角为45︒.求二面角B AD C --的大小. 【答案】(1)见解析(2)60︒. 【解析】 【分析】(1)根据线面垂直性质,以及线面垂直的判定定理,先得到CD ⊥平面.ABE ,进而可得BC CD ⊥;(2)先由题意,得到45BCE BCA ︒∠=∠=,求得1BC AB ==,以C 为坐标原点,CD 方向为x 轴正方向,CB 方向为y 轴正方向,建立空间直角坐标系C xyz -,求出两平面ACD 和ABD 的法向量,根据向量夹角公式,即可求出结果.【详解】(1)证明:因为BE ⊥平面ACD ,CD ⊂平面ACD , 所以BE CD ⊥.因为AB ⊥平面BCD ,CD ⊂平面BCD , 所以AB CD ⊥. 因为ABBE B =,所以CD ⊥平面.ABE因为BC ⊂平面ABE ,所以BC CD ⊥.(2)解:因为BE ⊥平面ACD ,BCE ∠即为BC 与平面ACD 所成的角, 所以45BCE BCA ︒∠=∠=,所以1BC AB ==,以C 为坐标原点,CD 方向为x 轴正方向,CB 方向为y 轴正方向,建立空间直角坐标系C xyz -则(0,0,0),(1,0,0),(0,1,0),(0,1,1)C D B A(1,0,0),(0,1,1),(1,1,0),(0,0,1)CD CA BD BA ===-=设平面ACD的一个法向量为()111,,n x y z=,平面ABD的一个法向量为()222,,m x y z=则CD nCA n⎧⋅=⎨⋅=⎩,BD mBA m⎧⋅=⎨⋅=⎩即111xy z=⎧⎨+=⎩,222x yz-=⎧⎨=⎩,令121,1y x==可得(0,1,1),(1,1,0)n m=-=所以1cos,2n mn mn m⋅<>==由图知,二面角B AD C--的平面角为锐角,所以二面角B AD C--的大小为60︒.【点睛】本题主要考查证明线线垂直,以及求二面角的大小,熟记线面垂直的判定定理及性质,灵活运用空间向量的方法求二面角即可,属于常考题型.19. 2020年1月10日,中国工程院院士黄旭华和中国科学院院士曾庆存荣获2019年度国家最高科学技术奖.曾庆存院士是国际数值天气预报奠基人之一,他的算法是世界数值天气预报核心技术的基础,在气象预报中,过往的统计数据至关重要,如图是根据甲地过去50年的气象记录所绘制的每年高温天数(若某天气温达到35 ℃及以上,则称之为高温天)的频率分布直方图.若某年的高温天达到15天及以上,则称该年为高温年,假设每年是否为高温年相互独立,以这50年中每年高温天数的频率作为今后每年是否为高温年的概率.(1)求今后4年中,甲地至少有3年为高温年的概率.(2)某同学在位于甲地的大学里勤工俭学,成为了校内奶茶店(消费区在户外)的店长,为了减少高温年带来的损失,该同学现在有两种方案选择:方案一:不购买遮阳伞,一旦某年为高温年,则预计当年的收入会减少6000元;方案二:购买一些遮阳伞,费用为5000元,可使用4年,一旦某年为高温年,则预计当年的收入会增加1000元.以4年为期,试分析该同学是否应该购买遮阳伞?【答案】(1)0.0272(2)应该购买遮阳伞 【解析】 【分析】(1)先求出某年为高温年的概率为0.2,再根据~(4,0.2)X B ,求出今后4年中,甲地至少有3年为高温年的概率;(2)求出两种方案损失的收入的期望,再决定是否应该购买遮阳伞. 【详解】解:(1)由题意知,某年为高温年的概率为(0.030.01)50.2+⨯=, 设今后4年中高温年出现X 年,则~(4,0.2)X B 故44()0.20.8,0,1,2,3,4kkkP X k C k -===3314(3)0.20.80.0256P X C ===, 4404(4)0.20.80.0016P X C ==⋅=,(3)(3)(4)0.02560.00160.0272P X P X P X ==+==+=.(2)若选择方案一,不购买遮阳伞,设今后4年共损失1Y 元, 则()1460000.24800E Y =⨯⨯=若选择方案二,购买遮阳伞,设今后4年共损失2Y 元, 则()25000410000.24200E Y =-⨯⨯=(元) 则()()12E Y E Y >,故该同学应该购买遮阳伞.【点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查二项分布的期望的计算,意在考查学生对这些知识的理解掌握水平.20. 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,且12F F =过椭圆的右焦点2F 作长轴的垂线与椭圆,在第一象限交于点P ,且满足127PF PF =.(1)求椭圆的标准方程;(2)若矩形ABCD 的四条边均与椭圆相切,求该矩形面积的取值范围.【答案】(1)2214x y +=(2)[]8,10【解析】 【分析】 (1)易知c =设2PF x =,17PF x =,根据勾股定理计算得到2a =,得到椭圆方程.(2)考虑矩形边与坐标轴平行和不平行两种情况,联立方程组根据0∆=得到,m n 和k 的关系,计算边长得到面积表达式,根据均值不等式计算得到答案. 【详解】(1)由12F F =c =,设2PF x =,因为127PF PF =,所以17PF x =,在Rt △12PF F 中,2221212PF PF F F =+,即224912x x =+,所以12x =, 所以284a x ==,解得2222,1a b a c ==-=,所以椭圆的标准方程为2214x y +=.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =.当矩形的边与坐标轴不平行时,根据对称性,设其中一边所在直线方程为y kx m =+, 则对边所在直线方程为y kx m =-, 另一边所在的直线方程为1y xn k =-+,则对边所在直线方程为1y x n k=--, 联立2244x y y kx m⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,由题意知()()222264161140k m m k∆=--+=,整理得2241km +=,矩形的一边长为1d =,同理2241n k+=,矩形的另一边长为2d =, 122|4|1mnk S d d k =⋅==+44==44==因为0k ≠,所以20k >,所以2212k k+≥(当且仅当21k =时等号成立), 所以22990,142k k ⎛⎤∈ ⎥⎝⎦++52,2⎛⎤⎥⎝⎦,所以(8,10]S ∈. 综上所述,该矩形面积的取值范围为[]8,10.【点睛】本题考查了求椭圆方程,椭圆外接矩形的面积范围,意在考查学生的计算能力和综合应用能力.21. 已知函数()2,()ln x f x e x g x x x =+-=+,若1x 是函数()f x 的零点,2x 是函数()g x 的零点.(1)比较1x 与2x 的大小; (2)证明:()()210f x g x +<.【答案】(1)12x x <,见解析(2)见解析 【解析】 【分析】方法一:利用()20=+-=xf x e x ,利用2=-x e x 对不等式进行放缩,可得()111111ln 2ln 12ln 10x x e x x x x -+-++=-+≤,进而利用()g x 单调递增,且()10g x <和()20g x =,即可比较1x 与2x 的大小方法二:设()11111ln ln 2xH x x x x e =+=-+,令函数()ln 2,0tH t t e t =-+>,从而判断出函数()g x 的单调性,即可利用函数的单调性即可比较1x 与2x 的大小 (2) 令函数()()()h x f x g x =-,则()()()()1122,h x g x h x f x =-=,要证()()210f x g x +<,即证()()21f x g x <-,只要证:()()21h x h x <,最后通过证明函数()h x 在区间[]12,x x 上的单调性进行证明即可. 【详解】(1)解:()11120xf x e x =+-=()11111ln ln 2x g x x x x e =+=-+方法一:()111111ln 2ln 12ln 10xx e x x x x -+-++=-+≤因为11x ≠,所以11ln 10x x -+<,所以()10g x <. 因为()20g x =,且()g x 单调递增,所以12x x < 方法二:设()11111ln ln 2xH x x x x e =+=-+,令函数()ln 2,0tH t t e t =-+>则1()tH t e t'=-,则()00010t H t e t '=-= 则函数()H t 在区间()00,t 上单调递增,()H t 在区间()0,t +∞上单调递减,所以()0max 00001()ln 220tH t H t t e t t ==-+=--+< 所以()10g x '<因为()20g x =,且()g x 单调递增,所以12x x < (2)证明:令函数()()()h x f x g x =-, 则()()()()1122,h x g x h x f x =-=.要证()()210f x g x +<,即证()()21f x g x <- 只要证:()()21h x h x <,只要证:函数()h x 在区间[]12,x x 上单调递减. 由题意得()()()ln 2xh x f x g x e x =-=--()22211(),x x h x e h x e x x ''=-=-因为()222ln 0g x x x =+= 所以2221ln lnx x x =-= 所以()2222211,0x x eh x e x x '==-=因为()h x '单调递增,所以在区间[]12,x x 上,()0h x '所以()h x 在区间[]12,x x 上单调递减. 所以原命题得证.【点睛】本题考查利用构造函数比较大小,主要通过求导判断函数的单调性进行判断大小,属于难题.22. 在直角坐标系xOy 中,曲线C 的参数方程为222x t y t t=-⎧⎨=-⎩(t 为参数),曲线C 上异于原点的两点M ,N 所对应的参数分别为12,t t .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线D 的极坐标方程为2sin a ρθ=.(1)当121,3t t ==时,直线MN 平分曲线D ,求a 的值;(2)当1a =时,若122t t +=MN 被曲线D,求直线MN 的方程.【答案】(1)1a =(2)y =或2y =+【解析】 【分析】(1)求出直线MN 的方程和曲线D 的直角坐标方程,然后利用直线MN 过点()0,a 求出答案; (2)由122t t +=MN k =MN的方程为y m =+,然后根据直线MN 被曲线D. 【详解】(1)因为121,3t t ==,所以(1,1),(1,3)M N --. 所以直线MN 的方程为21y x =+. 曲线D 的方程可化为222()x y a a +-=因为直线MN 平分曲线D ,所以直线MN 过点()0,a , 所以1a =.(2)由题意可知()()()()()()22112212121212121222222MNt t t t t t t t y y k x x t t t t ----+--====-----曲线D 的方程为22(1)1y x +-= 设直线MN的方程为y m =+,圆心D 到直线MN 的距离为.d因为22212d ⎛+= ⎝⎭,所以221122m ⎛-⎛⎫+= ⎪ ⎝⎭⎝⎭ 所以0m =或2m =,所以直线MN的方程为y =或2y =+【点睛】设圆的半径为r ,圆心到直线的距离为d ,弦长为AB ,则有2222AB r d ⎛⎫=+ ⎪⎝⎭.23. 已知函数()|1|2|3|,()|1|f x x x g x a x =++-=-. (1)求()8f x 的解集;(2)当[1,3]x ∈-时,()()f x g x 恒成立,求实数a 的取值范围.【答案】(1)1313xx ⎧⎫-⎨⎬⎩⎭∣(2)(,2]-∞ 【解析】 【分析】(1)利用分类讨论法解绝对值不等式得解; (2)对x 分三种情况1x =、[1,1)x 、(1,3]x ∈讨论,分别求出每一种情况下的实数a 的取值范围,最后综合即得解. 【详解】解:(1)由题意得35,1()|1|2|3|7,1335,3x x f x x x x x x x -+<-⎧⎪=++-=-+-≤≤⎨⎪->⎩当1x <-时,()8f x 得1x ≥-,所以此时无解;当13x -时,由()8f x ,即78x -+≤,解得13x -; 当3x >时,由()8f x ,即358x -≤,解得1333x< 综上,解集1313x x ⎧⎫-⎨⎬⎩⎭∣.(2)①当1x =时,()()f x g x 显然恒成立. ②当[1,1)x时,()7,()(1)f x x g x a x =-=-因为()()f x g x 恒成立, 所以7(1)x a x --,即76111x ax x-=+--恒成立. 令6()1,[1,1)1F x x x=+∈--则min ()a F x 显然()F x 在区间[1,1)-上为增函数, 所以min ()(1)4F x F =-=,所以4a .③当(1,3]x ∈时,()7,()(1)f x x g x a x =-=-. 因为()()f x g x 恒成立, 所以7(1)x a x --,即76111x a x x -=-+--恒成立. 令6()1,(1,3]1G x x x =-+∈-,则min ()a G x 显然()G x 在区间(1,3]上为减函数, 所以min ()(3)2G x G ==, 所以2a .综上所述,实数a 的取值范围为(,2]-∞.【点睛】本题主要考查绝对值不等式的解法,考查绝对值不等式的恒成立问题,考查函数的单调性求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

河北省衡水中学2020届高三数学上学期七调考试试卷 文(含解析)

河北省衡水中学2020届高三数学上学期七调考试试卷 文(含解析)

2020学年度第一学期七调考试高三年级数学试卷(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.2.已知复数z满足,则A. B. 1 C. D. 5【答案】C【解析】试题分析:由题意,.考点:复数的运算.【此处有视频,请去附件查看】3.已知,,,(为自然对数的底数),则()A. B. C. D.【答案】B【解析】【分析】分别计算出和的大小关系,然后比较出结果【详解】,,,则故选【点睛】本题考查了比较指数、对数值的大小关系,在解答过程中可以比较和的大小关系,然后求出结果。

4.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2020年9月到2020年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值【答案】D【解析】选项A错,并无周期变化,选项B错,并不是不断减弱,中间有增强。

C选项错,10月的波动大小11月分,所以方差要大。

D选项对,由图可知,12月起到1月份有下降的趋势,所以会比1月份。

选D.5.在等差数列中,,则()A. 4B. 5C. 6D. 7【答案】C【解析】【分析】利用a1+a9 =a2+a8,将与作和可直接得.【详解】在等差数列{a n}中,由与作和得:=()+-()∴a1+a9 =a2+a8,∴==6.∴a5=6.故选:C.【点睛】本题考查等差数列的性质,是基础的计算题.6.设是边长为2的正三角形,是的中点,是的中点,则的值为()A. 3B.C. 4D.【答案】A【解析】【分析】用表示,在利用向量数量积的运算,求得的值.【详解】,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量数量积的计算,还考查了等边三角形的几何性质,属于基础题.7.已知抛物线的焦点为,点为上一动点,,,且的最小值为,则等于()A. B. 5 C. D. 4【答案】C【解析】分析:先设,再根据的最小值为求出p的值,再求|BF|的长得解.详解:设,则因为,所以或(舍去).所以故答案为:C点睛:(1)本题主要考查抛物线的基础知识.(2)解答本题的关键是转化的最小值为,主要是利用函数的思想解答.处理最值常用函数的方法,先求出函数|PA|的表达式再求函数在的最小值.8.已知,则的值为A. B. C. D.【答案】B【解析】故选B9..一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( )A. B. C. D.【答案】B【解析】分析:由三视图可知还几何体是以ABCD为底面的四棱锥,由此可求其外接球的半径,进而得到它的外接球的表面积.详解:由三视图可知还几何体是以为底面的四棱锥,过作,垂足为,易证面,设其外接球半径为,底面ABCD是正方形外接圆,.设圆心与球心的距离为,则由此可得,故其外接球的表面积故选B.点睛:本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.10.已知直三棱柱的底面为等边三角形,且底面积为,体积为,点,分别为线段,上的动点,若直线平面,点为线段的中点,则点的轨迹长度为()A. B. C. D.【答案】D【解析】【分析】由图像可知点M的轨迹为线段,两个端点分别为和的中点,即为等边三角形的高线,由底面积求出等边三角形边长,进而求出三角形的高线,即M的轨迹.【详解】由题意可作如下图像:因为直线PQ与平面无交点所以与此平面平行,所以,当点P、点Q分别在点、C处时,此时中点M为中点,当点P、点Q分别在点、处时,此时中点M为中点,若D、E、F分别为三条棱的中点,则点M的轨迹为等边三角形的中线,设底面边长为x,由底面面积可得:,解得,所以轨迹长度为.故选D.【点睛】本题考查立体几何中,动点的轨迹问题,由题意找出图形中两个临界点,由题意两点之间的线段即为所求,注意计算的准确性.11.在斜中,设角,,的对边分别为,,,已知,若是角的角平分线,且,则()A. B. C. D.【答案】B【解析】【分析】由已知,可得结合余弦定理可得又是角的角平分线,且,结合三角形角平分线定理可得,再结合余弦定理可得的值,则可求.【详解】由已知,根据正弦定理可得又由余弦定理可得故即结合三角形角平分线定理可得,再结合余弦定理可得,,由,可得故故选B.【点睛】本题考查正弦定理,余弦定理及三角形角平分线定理,属中档题.12.(原创,中等)已知函数,若且满足,则的取值范围是( )A. B. C. D.【答案】A【解析】【分析】由,得,结合分段函数的范围可得,又,构造函数,求函数导数,利用单调性求函数值域即可.【详解】由,得.因为,所以,得.又令.令 .当时,,在上递减故选A.【点睛】函数的零点或方程的根的问题,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值域取值范围问题;研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现。

2020届河北省衡水中学高三卫冕联考数学(理)试题(解析版)

2020届河北省衡水中学高三卫冕联考数学(理)试题(解析版)

2020届河北省衡水中学高三卫冕联考数学(理)试题一、单选题1.已知复数z 满足()25z i i -=,则在复平面内复数z 对应的点(),Z x y 所在的曲线方程为( )A .224x y +=B .24y x =C .20x y +=D .22148x y += 2.已知集合{}22|22A x x x x x=-=-,{|B x y ==,则A B =( ) A .{}|12x x ≤≤B .{}|01x x ≤≤C .{}|0x x ≤D .∅ 3.已知352567log21,log 6log 7log 8a b c -==-=⨯⨯,则,,a b c 的大小关系为( ) A .c b a << B .a c b <<C .a b c <<D .b a c << 4.如图所示是2018年11月份至2019年10月份的居民消费价格指数(()%CPI )与工业品出厂价格指数(()%PPI )的曲线图,从图中得出下面四种说法:①()%CPI 指数比相应时期的()%PPI 指数值要大;②2019年10月份()%CPI 与()%PPI 之差最大;③2018年11月至2019年10月()%CPI 的方差大于()%PPI 的方差﹔④2018年11月份到2019年10月份的()%PPI 的中位数大于0.则说法正确的个数为( )A .1B .2C .3D .45.我国经典数学名著《九章算术》中有这样的一道题:今有出钱五百七十六,买竹七十八,欲其大小率之,向各几何?其意是:今有人出钱576,买竹子78根,拟分大、小两种竹子为单位进行计算,每根大竹子比小竹子贵1钱,问买大、小竹子各多少根?每根竹子单价各是多少钱?则在这个问题中大竹子每根的单价可能为( ) A .6钱 B .7钱 C .8钱 D .9钱 6.如图所示的ABC 中,02,1,60,2,//AB AC BAC BD DC DE AC ==∠==,则AD DE ⋅=( ) A .23 B .23- C .56 D .56- 7.与函数()()2sin 2x x f x x +=的部分图象最符合的是( ) A . B .C .D .8.执行如图所示的程序框图,则输出S 的结果为( )A .20182019 B .20192020 C .20202021 D .20212022 9.2020年4月20日重庆市高三年级迎来了疫情后的开学工作,某校当天为做好疫情防护工作,安排甲、乙、丙、丁四名老师在校门口的三个点为到校学生进行检测及其它相关的服务工作,要求每个点至少安排一位老师,且每位老师恰好选择其中一个点,记不同的安排方法数为n ,则满足不等式2(1)2n m m C -≤的最小正整数m 的值为( )A .36B .42C .48D .54 10.过双曲线()222210,0x y a b a b-=>>的右焦点F 作倾斜角为60︒的直线交双曲线右支于A ,B 两点,若7AF FB =,则双曲线的离心率为( )A .32 BC .2D .5211.已知函数()sin (0)f x x ωω=>在区间2[,]33ππ-上单调递增,且()1f x =在区间[0,2]π上有且仅有一解,则ω的取值范围是( )A .3(0,]4 B .33(,)42 C .15[,)44 D .13[,]4412.若函数()sin x x f x e e x x -=-+-,则满足2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫-+∞⎪⎢⎣⎭ B .1ln 2,4⎛⎫-+∞ ⎪⎝⎭ C .7,4⎡⎫+∞⎪⎢⎣⎭ D .3,2⎛⎫+∞ ⎪⎝⎭二、填空题 13.已知实数x ,y 满足不等式组2030230x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩,则2z x y =-的最大值是______.14.已知等差数列{}n a 中,3722a a +=,49a =,数列{}n b 满足12n a n b -=,则123n b b b b ⋅⋅⋅⋅=______. 15.已知点()1,2P 在抛物线E :()220y px p =>上,过点()1,0M 的直线l 交抛物线E 于A ,B 两点,若3AM MB =,则直线l 的倾斜角的正弦值为______. 16.已知三棱锥P ABC -中,二面角P AB C 的大小为120︒,ABC 是边长为4的正三角形,PAB △是以P 为直角顶点的直角三角形,则三棱锥P ABC -外接球的表面积为______. 三、解答题17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c .(1)若2A π≠,且csin 24cos sin A A C =,求a 的值; (2)若sin A ,sin B ,sin C 成等差数列,求B 的最大值.18.如图所示的斜三棱柱111ABC A B C -中,点1A 在底面ABC 的投影O 为AC 边的中点,3AB =,4AC =,5BC =,14AA =. (1)证明:平面1ABC ⊥平面11ACC A ;(2)求平面11A B C 与平面111A B C 所成的锐二面角的大小. 19.在我国抗疫期间,素有“南抖音,北快手”之说的小视频除了给人们带来生活中的快乐外,更在于传递了一种正能量,为抗疫起到了积极的作用,但一个优秀的作品除了需要有很好的素材外,更要有制作上的技术要求,某同学学习利用“快影”软件将已拍摄的素材进行制作,每次制作分三个环节来进行,其中每个环节制作合格的概率分别为34,45,23,只有当每个环节制作都合格才认为一次成功制作,该小视频视为合格作品. (1)求该同学进行3次制作,恰有一次合格作品的概率; (2)若该同学制作10次,其中合格作品数为X ,求X 的数学期望与方差; (3)该同学掌握技术后制作的小视频被某广告公司看中,聘其为公司做广告宣传,决定试用一段时间,每天制作小视频(注:每天可提供素材制作个数至多40个),其中前7天制作合格作品数y 与时间t 如下表:(第t 天用数字t 表示)其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第14天能制作多少个合格作品(四舍五入取整)? (参考公式()()()1221121n ii i n n i n i i i i i i x y nx y b n x x x xy x x y ====-=---=-∑∑∑∑,a y bx =-,参考数据:71163i i i t y ==∑.)20.如图所示,椭圆()222210x y a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B ,右焦点为F ,13A F =,离心率为12.(1)求椭圆的方程;(2)过点()0,1E 作不与y 轴重合的直线l 与椭圆交于点M 、N ,直线1MB 与直线2NB 交于点T ,试讨论点T 是否在某条定直线上,若存在,求出该直线方程,若不存在,请说明理由.21.已知函数()()()ln 1x a f x x e e x a a R =-+-+∈.(1)当0a =时,证明不等式()20f x +<;(2)若不等式()0f x ≤恒成立,求实数a 的取值范围.22.在直角坐标系xOy 中,曲线C 的参数方程为cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l cos 14πθ⎛⎫+= ⎪⎝⎭.(1)写出曲线C 的极坐标方程及直线l 的直角坐标方程;(2)设直线l 与曲线C 的交点分别为A ,B ,点P (异于A ,B 两点)在曲线C 上运动,求PAB △面积的最大值.23.已知不等式()130x m x m --+≤>对x ∈R 恒成立.(1)求实数m 的取值范围;(2)记m 的最大值为k ,若0a >,0b >,a b k +=2≤.参考答案1.C【分析】根据复数的乘除运算求出12z i -+,得到对应点Z 的坐标,代入方程即可求解.【详解】由()25z i i -=,得()()()52512222i i i z i i i i +===-+--+, 所以对应点()1,2Z -,其满足方程20x y +=.故选:C.【点睛】本题考查了复数得四则运算、复数的坐标表示,考查了基本运算能力,属于基础题. 2.B【分析】由绝对值的意义,可知220x x -≤,求得{}|02A x x =≤≤,根据偶次根式有意义的条件,可求得{}|1B x x =≤,根据集合交集的定义求得结果.【详解】 由2222x x x x -=-可得220x x -≤,解得02x ≤≤,所以{}|02A x x =≤≤,由{|B x y ==可以求得{}|1B x x =≤,所以{}|01A B x x =≤≤,故选:B.【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于基础题目.3.D【分析】结合对数函数的性质判断2log 567log 6,log 7,log 8的取值范围,结合指数函数的性质可求出3521--的取值范围,即可选出正确答案.【详解】解:因为12<<,所以20log 1a <=<; 30521210b -=-<-=, 因为876>>,所以567log 61,log 71,log 81>>>,即567log 6log 7log 81c =⨯⨯>, 所以c a b >>,故选: D.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,属于基础题.4.B【分析】根据题中所给的图,观察曲线的形状,以及对应的走向,分析可得结果.【详解】因为消费价格指数(()%CPI )曲线在工业品出厂价格指数(()%PPI )曲线的上方, 所以()%CPI 指数比相应时期的()%PPI 指数值要大,所以①正确;由图可知,2019年10月份()%CPI 最大,()%PPI 值最小,所以其差最大,所以②正确; 2018年11月至2019年10月()%CPI 较平稳,()%PPI 的波动性更大,所以2018年11月至2019年10月()%CPI 的方差小于()%PPI 的方差,所以③错误; 2018年11月份到2019年10月份的()%PPI 的值有5个正的,4个负数,三个0, 所以中位数为0,所以④错误;所以正确的命题为两个,故选:B.【点睛】该题考查的是有关统计的问题,涉及到的知识点有曲线图的应用,属于简单题目.5.C【分析】根据题意设买大竹子x ,每根单价为m ,可得()()576781mx x m =+--,由078x ≤≤,解不等式组即可求解.【详解】依题意可设买大竹子x ,每根单价为m ,购买小竹子78x -,每根单价为1m -,所以()()576781mx x m =+--,即78654m x +=,即()610913x m =-,因为078x ≤≤,所以()10910913013610913789613m m m m ⎧≤⎪-≥⎧⎪⇒⎨⎨-≤⎩⎪≤⎪⎩961091313m ⇒≤≤, 根据选项8m =,30x =,所以买大竹子30根,每根8元.故选:C【点睛】本题考查了不等式,考查了数据处理能力以及分析能力,属于基础题.6.B【分析】设,AB a AC b ==,根据向量的线性运算法则,求得1233a AD b =+,2233DE CA b ==-,再结合向量的数量积的运算公式,即可求解.【详解】由题意,设,AB a AC b ==,因为2,//BD DC DE AC =, 可得2212()3333AD AB BD AB BC AB AC AB a b =+=+=+-=+, 2233DE CA b ==-, 又由02,1,60AB AC BAC ==∠= 所以221222424()()cos603339999AD DE a b b a b b a b b ⋅=+⋅-=-⋅-=-⋅- 21422119293=-⨯⋅⨯⨯-⨯=-. 故选:B.【点睛】本题主要考查了向量的线性运算,以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的数量积的运算公式,准确运算是解答的关键,注重考查推理与运算能力. 7.B【分析】分析出函数()y f x =的定义域、奇偶性、在()0,∞+上的函数值符号,由此可得出合适的选项.【详解】函数()()2sin 2x x f x x+=的定义域为{}0x x ≠,排除A 选项; ()()()()()22sin 2sin 2x x x x f x f x x x --+-==-=--,函数()y f x =为奇函数,排除C 选项; 令()()sin 2g x x x =+,当01x <≤时,022x <≤,()sin 20x >,则()()sin 20g x x x =+>,当1x >时,()()()sin 21sin 20g x x x x =+>+≥,由上可知,当0x >时,()()20g x f x x=>,排除D 选项. 故选:B.【点睛】本题考查利用函数解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法求解,考查分析问题和解决问题的能力,属于中等题.8.C【分析】 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量111122*********S =++⋯+⨯⨯⨯的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量111122*********S =++⋯+⨯⨯⨯的值, 可得:1111111112020(1)()()11223202020212232020202120212021S =++⋯+=-+-+⋯+-=-=⨯⨯⨯. 故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于中档题.9.A【分析】根据分步原理即可知不同的安排方法数2343n C A =,再由2(1)2n m m C -≤解不等式即可求出m 的范围,进而得到最小正整数m ;【详解】由题意知:其中有一个点有两名老师;∴安排步骤:1、任选两位老师分配到一个点,另两位老师分别到另两个点,即分成三组,2、将三组任意安排到三个点;∴安排方法:234336n C A ==,而2(1)2n m m C -≤知: 236630(1)2m m C -≤=且0m >,解得:36m ≥; 故选:A【点睛】本题考查了分步计数原理以及求一元二次不等式的解集,由分步原理求出不同的安排方法数,结合已知不等式求参数范围,进而求值;10.A【分析】设直线方程为:3x x c =+,将直线方程与双曲线方程联立消x ,根据7AF FB =,可得127y y =-,利用韦达定理可得22236473c b a-=-,整理即可求解.【详解】过右焦点F 的直线的倾斜角60︒,不妨设直线方程为:3x y c =+,联立方程222222x y c b x a y a b ⎧=+⎪⎨⎪-=⎩,得22224103b a y cy b ⎛⎫-+= ⎪⎝⎭, 设()11,A x y ,()22,B x y ,(),0F c ,因为7AF FB =,所以127y y =-,所以2222422223613713c y b a b y b a ⎧-⎪⎪-=⎪-⎪⎨⎪⎪-=⎪-⎪⎩,所以422222242222436133713b c y b a b y b a ⎧=⎪⎛⎫⎪- ⎪⎪⎝⎭⎨-⎪=⎪-⎪⎩, 所以22236473c b a -=-, 所以2222797a b c -=,因为222+=a b c ,所以()22222797a c a c --=,所以223616a c =, 所以223616c a =,所以32c a =. 故选:A【点睛】本题考查了双曲线的简单几何性质,考查了运算求解能力,属于中档题. 11.D【分析】根据正弦型函数的单调增区间求得()sin (0)f x x ωω=>的单调增区间,由222,,3322k k ππππππωωωω⎡⎤⎡⎤-⊆-++⎢⎥⎢⎥⎣⎦⎣⎦,解得304ω<≤,根据已知可得124T π⨯≤,且524T π⨯>,计算可得结果. 【详解】因为()sin (0)f x x ωω=>,令22,22k x k k Z πππωπ-+≤≤+∈,即222k x πππωωω-+≤≤+2,k k Z πω∈, 所以函数()f x 的单调递增区间为22,,22k k k Z ππππωωωω⎡⎤-++∈⎢⎥⎣⎦, 又因为函数()f x 在2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增, 所以222,,3322k k ππππππωωωω⎡⎤⎡⎤-⊆-++⎢⎥⎢⎥⎣⎦⎣⎦,得223ππω-≤-,且32ππω≤,又因为0>ω,所以304ω<≤, 又()1f x =在区间[0,2]π上有唯一的实数解,所以1224ππω⨯≤,且5224ππω⨯>,可得15,44ω⎡⎫∈⎪⎢⎣⎭. 综上,13,44ω⎡⎤∈⎢⎥⎣⎦.故选:D. 【点睛】本题考查正弦型函数的图象和性质,考查计算能力和逻辑推理能力,属于中档题. 12.A 【分析】 判断()sin xxf x e ex x -=-+-是R 上的奇函数,利用导函数可判断()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立等价于22ln(1)2x a x -+≥-,分离a 得22ln(1)2x a x ≥-++,令2()2ln(1)2x g x x =-++,则max ()a g x ≥,经过分析知()g x 是R 上的偶函数,只需求()g x 在()0,∞+上的最大值,进而求得a 的取值范围.【详解】 因为()()sin xx f x ee x xf x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x x f x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x f f ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++,令2()2ln(1)2x g x x =-++,则max ()a g x ≥,因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2xx -++是R 上的偶函数,所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++, 则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<; 所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-, 故选:A 【点睛】本题主要考查了函数的奇偶性和单调性,考查导数研究函数单调性、最值以及恒成立问题,属于较难题. 13.3 【分析】画出不等式组所表示的平面区域,结合图形,确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出不等式组2030230x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩所表示的平面区域,如图所示,目标函数2z x y =-,可化为直线1()22zy x =+-, 当直线1()22zy x =+-过点A 时,此时在y 轴上的截距最小,此时目标函数最大值, 又由30230x x y -=⎧⎨+-=⎩,解得(3,0)A ,所以目标函数的最大值为3203z =-⨯=. 故答案为:3.【点睛】本题主要考查了简单的线性规划求最值问题,其中解答中正确画出不等式组所表示的平面区域,结合图形确定出目标函数的最优解是解答的关键,着重考查数形结合思想的应用,属于基础题. 14.22nn+【分析】根据等差数列的通项公式求出n a ,从而求出12n a n b -=,再利用等差数列的前n 项和公式即可求解. 【详解】 由题意111262239a d a d a d +++=⎧⎨+=⎩,解得132a d =⎧⎨=⎩,所以()1121n a a n d n =+-=+,所以1222n a n n b -==, 则()22224622123222222n n nnnn b b b b ++⋅⋅⋅⋅=⋅⋅⋅⋅==.故答案为:22n n+.15【分析】求出2p =,设过点()1,0M 的直线方程为1x my =+,将直线与抛物线联立,利用韦达定理可得124y y m +=,124y y =-,根据向量可得123y y -=,从而求出直线的倾斜角,即求. 【详解】因为点在抛物线E :()220y px p =>上,所以421p =⨯,得2p =,所以24y x =,设过点()1,0M 的直线方程为:1x my =+,所以214x my y x=+⎧⎨=⎩ ,所以2440y my --=, 设()11,A x y ,()22,B x y , 所以124y y m +=,124y y =-,又因为3AM MB =,所以123y y -=,所以m =,因为直线的斜率tan k θ== 由()0,θπ∈,所以3πθ=或23π,所以sin θ=故答案为:2【点睛】本题考查了直线与抛物线的位置关系,考查了基本运算求解能力,属于中档题. 16.2089π【分析】找到三棱锥P ABC -外接球球心的位置,求得外接球的半径,进而求得三棱锥P ABC -外接球的表面积. 【详解】依题意,三角形ABC 是等边三角形,设其外心为1O ,线段AB 的中点设为2O ,则2CO AB ⊥,且1O 在线段2CO 上、1122CO O O =. 三角形PAB 是以P 为直角顶点的直角三角形,所以其外心为2O .过2O 在三角形PAB 内作2O D AB ⊥.所以2CO D ∠是二面角PAB C 的平面角,所以2120CO D ∠=︒.设外接球球心为O ,则1OO ⊥平面ABC ,2OO ⊥平面PAB ,所以12OO CO ⊥、22OO O D ⊥,所以230OO C ∠=︒. 在三角形2OCO中,1222333CO CO ==⨯=,12211333O O CO ==⨯=,12112122tan 3OO OO C OO O O O ∠==⇒===,所以外接球的半径R OC ====所以外接球的表面积为2522084499R πππ=⨯=. 故答案为:2089π【点睛】本小题主要考查几何体外接球的有关计算,属于中档题. 17.(1)2;(2)3π【分析】(1)利用二倍角公式及正弦定理计算可得;(2)根据等差中项的性质及正弦定理可得2b a c =+,再利用余弦定理及基本不等式得到1cos ,12B ⎡⎫∈⎪⎢⎣⎭,从而求出B 的最大值;【详解】解:(1)因为csin 24cos sin A A C = 所以2sin cos 4cos sin c A A A C = 因为2A π≠,所以cos 0A ≠,所以sin 2sin c A C =所以2sin 2sin C cc A a ==,所以2a =(2)因为sin A ,sin B ,sin C 成等差数列,所以2sin sin sin B A C =+,由正弦定理可得2b a c =+,由余弦定理可得2222222cos 22a c a c a c b B ac ac+⎛⎫+- ⎪+-⎝⎭==223331442284a c acc a ac a c +-⎛⎫==+- ⎪⎝⎭ 因为0c a >,0a c >,所以31311cos 84842c a B a c ⎛⎫=+-≥⨯= ⎪⎝⎭, 当且仅当c aa c=,即a c =时取等号, 因为cos 1B <,所以1cos ,12B ⎡⎫∈⎪⎢⎣⎭因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦所以B 的最大值为3π 【点睛】本题考查正弦定理、余弦定理的应用,以及基本不等式的应用,属于中档题. 18.(1)证明见解析;(2)3π. 【分析】(1)证明出AB ⊥平面11ACC A ,利用面面垂直的判定定理可证得平面1ABC ⊥平面11ACC A ;(2)取BC 的中点D ,连接OD ,证明出OD ⊥平面11ACC A ,1A O AC ⊥,然后以点O 为坐标原点,OD 、OC 、1OA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面11A B C 与平面111A B C 所成的锐二面角的大小. 【详解】(1)由于点1A 在底面ABC 的投影O 为AC 边的中点,则1A O ⊥平面ABC ,AB ⊂平面ABC ,1AB A O ∴⊥,在ABC 中,3AB =,4AC =,5BC =,则222AB AC BC +=,AB AC ∴⊥,1AO AC O =,AB ∴⊥平面11ACC A ,AB ⊂平面1ABC ,∴平面1ABC ⊥平面11ACC A ;(2)取BC 的中点D ,连接OD ,O 、D 分别为AC 、BC 的中点,//OD AB ∴,由(1)可知,AB ⊥平面11ACC A ,则OD ⊥平面11ACC A .1A O ⊥平面ABC ,AC ⊂平面11ACC A ,1A O AC ∴⊥,以点O 为坐标原点,OD 、OC 、1OA 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,则()0,2,0A -、()3,2,0B -、(1A 、()0,2,0C ,设平面11A B C 的一个法向量为(),,m x y z =,()113,0,0A B AB ==,(10,2,AC =-, 由11100m A B m AC ⎧⋅=⎪⎨⋅=⎪⎩,得3020x y =⎧⎪⎨-=⎪⎩,令1z =,则0x =,y =()0,3,1m =,易知平面111A B C 的一个法向量为()0,0,1n =,则1cos ,2m n m n m n⋅<>==⋅. 因此,平面11A B C 与平面111A B C 所成的锐二面角的大小为3π. 【点睛】本题考查面面垂直的判定,同时也考查了利用空间向量法求解二面角的大小,考查计算能力,属于中等题.19.(1)54125;(2)()4E X =,()125D X =;(3)ˆ0.82 1.72yt =+,13个. 【分析】(1)根据题意可直接求出制作一次视频成功的概率,进而可以求出该同学进行三次制作,恰有一次合格作品的概率; (2)首先判断出2105XB ⎛⎫⎪⎝⎭,,从而可以利用二项分布的期望与方差公式直接求出随机变量X 的数学期望与方差;(3)根据题干给出的公式直接计算ˆb、ˆa ,即可求出对应的回归方程,令14t =,即可故算出第14天能制作13个合格作品. 【详解】(1)由题意知:制作一次视频成功的概率为34224535P =⨯⨯=, 所以该同学进行3次制作,恰有一次合格作品的概率2132354=55125C ⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭.(2)根据题意可得:2105X B ⎛⎫ ⎪⎝⎭,, 所以()21045E X np ==⨯=,()()2312110555D X np p =-=⨯⨯=, (3)根据表格数据可计算出:123456747t ++++++==,343476857y ++++++==, 所以 1221163745230.82114071628ni ii nii t y nt yb tnx==-⨯⨯=-=-=≈-⨯∑∑,所以50.8214 1.72a y bt =-=-⨯=,所以y 关于t 的线性回归方程为ˆ0.82 1.72yt =+, 令14t =,得ˆ0.8214 1.7213.213y=⨯+=≈, 即估计第14天能制作13个合格作品. 【点睛】本题主要考查了事件与概率、随机变量与分布列,及统计案例.20.(1)22143x y +=;(2)存在,且定直线方程为3y =. 【分析】(1)由题意可得出关于a 、c 的方程组,求得a 、c 的值,可求得b 的值,由此可求得椭圆的标准方程;(2)设直线l 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,将直线l 的方程与椭圆的方程联立,列出韦达定理,求出直线1MB 、2NB 的方程,求出交点T 的纵坐标,进而可得出结论. 【详解】(1)由题意可得1123c e a A F a c ⎧==⎪⎨⎪=+=⎩,解得2a =,1c =,b ∴== 因此,椭圆的标准方程为22143x y +=;(2)由题意可知直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,联立2213412y kx x y =+⎧⎨+=⎩,消去x 并整理得()2243880k x kx ++-=, ()()22264324396210k k k ∆=++=+>,由韦达定理得122843k x x k +=-+,122843x x k =-+.易知点(1B、(20,B , 直线1MB的斜率为(11111kx k x +-==,直线1MB的方程为1y k x =直线2NB的斜率为(22221kx k x ++==,直线2NB的方程为2y k x =由1y k x =,2y k x =(112212211kx kx x x k k x ++===,其中12122843kkx x x x k =-=++,121221222122x x x x x x x ⎡⎤+++++====,解得3y =.因此,点T 在定直线3y =上. 【点睛】本题考查椭圆方程的求解,同时也考查了定直线的问题,考查韦达定理设而不求法的应用,考查计算能力,属于中等题. 21.(1)证明见详解;(2)(],1-∞ 【分析】(1)将0a =代入,求出()1x xe f x x-'=,记()1x g x xe =-,利用导数判断函数的单调性,求出函数的最大值,()()0max 2f x f x =<即可. (2)将不等式转化为()ln ln a xx ea x e x +++≤+在()0,∞+恒成立,构造函数()xx e x ϕ=+,根据单调性可得ln a x x +≤,只需ln a x x ≤-恒成立,记()ln h x x x =-,利用导数求出()min h x 即可.【详解】(1)当0a =时,()ln xf x x e =-,函数的定义域为()0,∞+所以()11xx xe f x e x x-'=-=,记()1xg x xe =-,所以()()1xg x x e '=-+,当()0,x ∈+∞时,()0g x '<,()g x 单调递减, 又因为()010g =>,()110g e =-<, 所以存在()00,1x ∈,使得()000010x g x x e=⇒-=,所以当()00,x x ∈时,()0g x >,即()0f x '>, 当()0,x x ∈+∞时,()0g x <,即()0f x '<, 所以()()000max ln xf x f x x e ==-,又因为000000110ln x x x e e x x x -=⇒=⇒=-, 所以()000000011ln 2x f x x ex x x x ⎛⎫=-=--=-+<- ⎪⎝⎭, 即()020f x +<,所以()20f x +<,即证.(2)不等式()0f x ≤恒成立等价于()ln 10xax e e x a -+-+≤在()0,∞+恒成立,即ln a x xe a x e x ++≤+在()0,∞+恒成立, 也就是()ln ln a xx ea x e x +++≤+在()0,∞+恒成立,构造函数()xx e x ϕ=+,()10xx e ϕ'=+>, 所以()x ϕ在(),-∞+∞单调递增, 所以()()ln ln a x x a x x ϕϕ+≤⇒+≤, 即ln a x x ≤-, 记()ln h x x x =-, 所以()111x h x x x-'=-=, 当()0,1x ∈时,()0h x '<,()h x 单调递减, 当()1,x ∈+∞时,()0h x '>,()h x 单调递增,所以()()11h x h ≥=,所以1a ≤,故实数a 的取值范围(],1-∞. 【点睛】本题考查了利用导数证明不等式、利用导数研究不等式恒成立,考查了转化与划归的思想,属于难题.22.(1)曲线C 的极坐标方程为1ρ=,直线l 的直角坐标方程为10x y --=;(212.【分析】(1)先将曲线C 的参数方程化为普通方程,然后转化为极坐标方程;利用极坐标方程和直角坐标方程转化公式,求得直线l 的直角坐标方程.(2)先求得AB ,然后根据圆的几何性质求得P 到直线AB 的距离的最大值,由此求得三角形PAB 面积的最大值. 【详解】(1)曲线C 的参数方程为cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),两式平方并相加得221x y +=,即211ρρ=⇒=.直线l cos 14πθ⎛⎫+= ⎪⎝⎭122θθ⎛⎫-= ⎪ ⎪⎝⎭, 即cos sin 1ρθρθ-=,即10x y --=.(2)圆221x y +=的圆心为()0,0,半径为1r =,圆心到直线10x y --=的距离为d r =<,直线和圆相交.所以22AB ===根据圆的几何性质可知P 到直线AB 的距离的最大值为212d r ++=+=.所以三角形PAB面积的最大值为12212242⎛++== ⎝⎭. 【点睛】本小题主要考查参数方程、极坐标方程,考查直线和圆的位置关系,属于中档题. 23.(1)(0,2],(2)证明见解析 【分析】(1)设1,1()121,11,m x f x x m x x m x m m x m +<-⎧⎪=--+=-+--≤≤⎨⎪-->⎩,从而可得13m +≤,进而求出m 的取值范围;(2)由(1)可知2a b +=,然后利用基本不等式可证明结论 【详解】(1)解:设1,1()121,11,m x f x x m x x m x m m x m +<-⎧⎪=--+=-+--≤≤⎨⎪-->⎩,所以1()1m f x m --≤≤+,所以只需13m +≤,解得42m -≤≤, 因为0m >,所以02m <≤, 所以实数m 的取值范围为(0,2](2)证明:由(1)可知m 的最大值为2,即2k =, 所以2a b +=,1≤==,2≤,当且仅当1a b ==时取等号 【点睛】此题考查绝对值不等式,考查利用基本不等式证明不等式,考查计算能力,属于中档题。

河北省衡水中学2020届高三年级八调考试数学(文)试题及答案

河北省衡水中学2020届高三年级八调考试数学(文)试题及答案

河北省衡水中学2020届高三年级八调考试数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答卷Ⅰ前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.答卷Ⅰ时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.设全集为R ,集合{}2|20A x x x =-<,集合{|||1}B x x =<,则A B =I () A .(1,1)-B .(1,2)-C .(0,1)D .(0,2) 2.已知复数2000(1)z ii =⋅+,则z 的模||z =()A .1B.43.在2019年的国庆假期中,重庆再次展现“网红城市”的魅力,吸引了3000多万人次的客流.北京游客小李慕名而来,第一天打算游览“洪崖洞”,“解放碑”,“朝天门”.如果随机安排三个景点的游览顺序,则最后游览“朝天门”的概率为()A .16B .56C .13D .234.已知非零向量,a b r r 满足:(1,1)a =r ,||1b =r ,()a b b -⊥r r r ,则向量,a b r r的夹角大小为()A .6πB .4πC .3πD .2π 5.已知正方体1111ABCD A B C D -的棱长为1,其内切球与外接球的表面积分别为12,S S ,则12S S =() A .1 B .12C .13D .146.已知tan 2θ=-,则sin sin 2πθθ⎛⎫+ ⎪⎝⎭的值为() A .25B .25-C .35D .457.如图所示的一个算法的程序框图,则输出d 的最大值为()A .2B .2C .12+D .122+8.已知()f x 是定义在[0,)+∞的函数,满足(3)()f x f x +=-,当[0,3)x ∈时,()2xf x =,则()2log 192f =()A .12B .13C .2D .39.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的体积为()A .11223πB .44113πC .4411πD .1122π 10.已知函数(2),1,()||1,11,f x x f x x x ->⎧=⎨--<⎩„关于x 的方程()log (1)a f x x =+恰有5个解,则a 的取值范围为() A .1175a <„B .1175a <<C .1164a <<D .1164a <„11.已知抛物线24x y =的焦点为F ,过直线2y x =-上任一点引抛物线的两条切线,切点为,A B ,则点F 到直线AB 的距离()A .无最小值B .无最大值C .有最小值,最小值为1D 5 12.已知函数22()(21)(31)(2)(2)xx f x a a e a x e x =---+++有4个不同的零点,则实数a 的取值范围为()A .1,2e ⎛⎫ ⎪⎝⎭B .11,22e +⎛⎫⎪⎝⎭C .1,1(1,)2e ⎛⎫⋃ ⎪⎝⎭D .11,11,22e +⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则2x y -的最小值是______.14.对于三次函数32()(0)f x ax bx cx d a =+++≠,定义:设()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()f x 的拐点.某同学经过探索发现任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心设函数32115()33212g x x x x =-+-,则122020202120212021g g g ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L ______;202011(1)2021i i i g -'=⎛⎫-= ⎪⎝⎭∑_______.(第一空2分,第二空3分)15.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点为12,F F ,以12F F 为直径的圆与双曲线C 的渐近线在第一象限交于点P ,线段2PF 与双曲线的交点M 为2PF 的中点,则双曲线C 的离心率为______. 16.已知数列{}n a 满足()*1(1)2n n na n a n N +--=∈,{}n a 的前n 项和为n S ,对任意的*n N ∈,当5n ≠时,都有5n S S <,则5S 的取值范围为_____.三、解答题(共6个小题,共70分.解答题应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 是一个等差数列,且22a =,145a a +=,数列{}n b 是各项均为正数的等比数列,且满足:112b =,24164b b ⋅=.(1)求数列{}n a 与{}n b 的通项公式; (2)求证:11222n n b a b a a b ++⋯+<. 18.(本小题满分12分)如图,已知在四棱锥P ABCD -中,底面ABCD 为正方形,PD PA =,E 点为AD 的中点,PE CD ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若正方形的边长为4,求D 点到平面PEC 的距离. 19.(本小题满分12分)2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据y (单位:十亿元),绘制如下表1:表1年份 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 编号x 1 2 3 4 5 6 7 8 9 10 销售额y0.98.722.4416594132.5172.5218268根据以上数据绘制散点图,如图所示.(1)把销售额超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率;(2)根据散点图判断,y a bx =+与2y cx d =+哪一个适宜作为销售额y 关于x 的回归方程类型?(给出判断即可,不必说明理由);(3)根据(2)的判断结果及下表中的数据,建立y 关于x 的回归方程,并预测2020年天猫双十一的销售额.(注:数据保留小数点后一位)参考数据:2i i t x =,参考公式:对于一组数据(),i i u v ,()22,u v,…,(),n n u v ,其回归直线µµvu αβ=+$的斜率和截距的最小二乘估计公式分别为µ1221ni ii n i i u vnuvu nuβ==-=-∑∑,µµv u αβ=-. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12,F F ,焦距为:1l y x =-与椭圆C 相交于,A B 两点,31,44P ⎛⎫- ⎪⎝⎭为弦AB 的中点.(1)求椭圆的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于不同的两点,M N ,(0,)Q m ,若3OM ON OQ λ+=u u u u r u u u r u u u r(O 为坐标原点),求m 的取值范围.21.(本题满分12分)已知函数()xf x e ax =-.(1)若函数()f x 在1,22x ⎛⎫∈ ⎪⎝⎭上有2个零点,求实数a 的取值范围.(注319e >) (2)设2()()g x f x ax =-,若函数()g x 恰有两个不同的极值点12,x x ,证明:12ln(2)2x x a +<. 请考生在第22、23题中任选择一题作答,如果多做,则按所做的第一部分,做答时请写清题号. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】 在直角坐标系xOy 中,曲线122cos ,:2sin ,x C y θθ=+⎧⎨=⎩(θ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线22:4sin 3C ρρθ=-,曲线1C 与曲线2C 相交于,M N 两点. (1)求曲线2C 的直角坐标方程与直线MN 的一般方程;(2)点3,04P ⎛⎫-⎪⎝⎭,求||||PM PN +. 23.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|1||22|f x x x a =-++. (1)若1a =,求不等式()4f x …的解集;(2)证明:对任意x ∈R ,2()|2|||f x a a +-….文科数学八调参考答案1.(0,2)A =,(1,1)B =-,所以(0,1)A B =I ,故选C . 2.已知1(1)1z i i =⋅+=+,所以||2z =,故选B .3.2163P ==,故选C . 4.由(()a b b -⊥r r r ,有20ab b -=r r r ,则2||||cos a b b θ=r r r ,有2cos ||2b a b θ==r r r ‖,故选B .5.内切球的半径112r =,外接球的半径232r =,所以表面积之比为2112213S r S r ⎛⎫== ⎪⎝⎭,故选C .6.222cos sin tan 22sin sin cos sin 2cos sin 1tan 145πθθθθθθθθθθ-⎛⎫+=⋅====- ⎪+++⎝⎭,故选B . 7.C 8.(3)()(6)()f x f x f x f x +=-⇒+=,6T =,()()22log 192log 643f f =⨯()26log 3f =+()2log 32log 323f ===,故选D .9.B 由三视图可知该几何体是如图所示的三棱锥A BCD -,F 为BD 的中点,外接球球心O 在过CD 的中点E 且垂直于平面BCD 的直线l 上,又点O 到,,A B D 的距离相等,所以O 又在过左边正方体一对棱的中点,M N 所在直线上,在OEN V 中,由NF MF NE OE =,即223OE=,得3OE =,所以三棱锥A BCD -外接球的球半径22223(2)11R OE BE =+=+=,44113V π=.10.B1l .设()11,A x y ,()22,B x y ,则以A 为切点的切线方程为()1112x y y x x -=-,即112xy x y =-①;同理,以B 为切点的切线方程为222x y x y =-②,()00,P x y 代入①,②得100120022,2,x y x y x y x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以直线AB 的方程为002x y x y =-,即002x y x y =-,又002y x =-,即0122x y x ⎛⎫=-+ ⎪⎝⎭,AB 过定点(2,2)P ,当PF AB ⊥时,(0,1)F ∴到l=AB 过点F 时,距离的最小值为0,故选D .12.由()0f x =,得e (2)(21)e (2)0x xa x a x ⎡⎤⎡⎤-+--+=⎣⎦⎣⎦,即2e xx a +=,221e xx a +-=,2()e x x g x +=,(1)()ex x g x '-+=,()01g x x '>⇒<-,()01g x x '>⇒>-,()g x 在(,1)-∞-上单调递增,在(1,)-+∞上单调递减.(2)0g -=,max ()(1)g x g e =-=,当2x >-,()0g x >.x →-∞,()g x →-∞,x →+∞,()0g x +→.要使方程有4个不同的零点,则0e,11e 021e,2221a a a a a<<⎧+⎪<-<⇒<<⎨⎪-≠⎩,1a ≠,故选D .13.3- 14.2020 032115()33212g x x x x =-+-Q ,2()3g x x x '∴=-+,()21g x x ''=-,令()0g x ''=,得12x =,又112g ⎛⎫= ⎪⎝⎭,所以,三次函数()y g x =图象的对称中心坐标为1,12⎛⎫⎪⎝⎭,即()(1)2g x g x +-=,所以,122020101022020202120212021g g g ⎛⎫⎛⎫⎛⎫+++=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L , 2221212212(1)(1)2021202120212021n n n n n n g g g g -'-'''--⎛⎫⎛⎫⎛⎫⎛⎫-+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭Q222212122202243320212021202120212021n n n n n ⎡⎤---⎛⎫⎛⎫=-+--+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因此,202010101222111212(1)(1)(1)202120212021i n n i n i n n g g g -'-'-'==-⎡⎤⎛⎫⎛⎫⎛⎫-=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑∑10102211010(11010)202210104202242020212021n n=⨯+⨯-⨯-===∑. 15.222,,,,x y c x a b y b y x a ⎧+==⎧⎪⇒⎨⎨==⎩⎪⎩(,)P a b ∴,2(,0)F c ,,22a c b M +⎛⎫∴ ⎪⎝⎭,代入双曲线方程得222240240c ac a e e +-=⇒+-=,1e =-±1e >,所以1e =.16.由1(1)2n n na n a +--=,令1n =,得12a =.由1(1)2n n na n a +--=①,得12(1)2n n n a na +++-=②,①-②得212n n n a a a +++=,{}n a 为等差数列.又120a =>,5S 最大,则只0d <,50a >,60a <,即240,1225025d d d +>⎧⇒-<<-⎨+<⎩,又51010(5,6)S d =+∈. 17.(本小题满分12分)(1)解:{}n a Q 为等差数列,设公差为d ,1112,35,a d a a d +=⎧∴⎨++=⎩11,1,a d =⎧∴⎨=⎩ 1(1)n a a n d n ∴=+-=.3分{}n b Q 为等比数列,0n b >,设公比为q ,则0q >,2243164b b b ∴⋅==,23118b b q ==, 12q ∴=,1111222n nn b -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭. 6分 (2)证明:令112233n n n T a b a b a b a b =++++L ,23111111123(1)22222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭L ,2311111112(1)22222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L , 9分23111112211111111222222212nn n n n T n n ++⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭∴=++++-⨯=-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-L ,1112222n nn T n -⎛⎫⎛⎫∴=--⨯< ⎪⎪⎝⎭⎝⎭. 12分18.(本小题满分12分)(1)证明:由PD PA =,E 点为AD 的中点,可知PE AD ⊥,再已知PE CD ⊥,且,AD CD 相交于D , 则PE ⊥平面ABCD .又PE ⊂平面ADP ,所以平面PAD ⊥平面ABCD . 6分 (2)解:由(1)知PE ⊥平面ABCD , 则平面PEC ⊥平面ABCD ,相交于EC .作DH EC ⊥,可知DH 为D 点到平面PEC 的距离,且5DH ==. 19.(本小题满分12分)解:(1)畅销年个数:4,其中的狂欢年个数:2,记畅销年中不是狂欢年为,a b ;狂欢年为,A B ,则总共有(,)a b ,(,)a A ,(,)b A ,(,)a B ,(,)b B ,(,)A B 则5()6P A =. 4分 (2)由题意2y cx d =+更适宜. 6分(3)1011022110677701038.5102285005702.725380148301055021110i ii i t yt ybt t==--⨯⨯====≈--∑∑$, 8分$102 2.738.5 2.0ay bt =-=-⨯≈-$, 10分 $22.7 2.0y x ∴=-,当11x =时,$324.7y =(十亿元), ∴预测2020年双十一的销售额为324.7十亿元. 12分20.(本小题满分12分) 解:(1)c =,设()11,A x y ,()22,B x y ,1232x x +=,1212y y +=-, 2222221122222222,,b x a y a b b x a y a b ⎧+=⎨+=⎩()()()()22121212120b x x x x a y y y y ∴+-++-=, 2分()()22121222121231AB b x x y y b k x x a y y a+-∴==-==-+,223a b ∴=. 4分222a b c -=Q ,223,1,a b ⎧=∴⎨=⎩∴椭圆的标准方程为2213x y +=. 5分(2),,M Q N Q 三点共线,133OQ OM ON λ=+u u u r u u u u r u u u r,1133λ∴+=,2λ=.设()11,M x y ,()22,N x y ,则1212033x x +=,122x x ∴=-. 7分()22222,13633033y kx m k x kmx m x y =+⎧⇒+++-=⎨+=⎩,220310k m ∆>⇒-+>①,122613kmx x k +=-+,21223313m x x k -=+.代入122x x =-,22613km x k ∴=+,222233213m x k --=+,()222222363321313k mm k k -∴-⨯=++,即()2229131m k m -⋅=-.9分 2910m -≠Q ,219m ≠,22213091m k m -∴=-…②, 代入①式得22211091m m m --+>-, 即()22211091m m m -+->-,()()2221910m m m ∴--<,11分2119m ∴<<满足②式,113m ∴<<或113m -<<-. 12分 21.(1)1,22x ⎡⎤∈⎢⎥⎣⎦时,由()0f x =得x e a x =,令2(1)()()x x e e x h x h x x x '-=⇒= 112x ∴≤<时,()0h x '<,12x <≤时,()0h x '>, ()h x ∴在1,12⎡⎤⎢⎥⎣⎦上是减函数,在(1,2)上是增函数. 又122h e ⎛⎫= ⎪⎝⎭,2(2)2e h =,(1)h e =()344161640444e e e e e e ---==>, 1(2)2h h ⎛⎫∴> ⎪⎝⎭,()h x ∴的大致图像:利用()y h x =与y a =的图像知()a e e ∈. 4分(2)由已知2()x g x e ax ax =--,()2x g x e ax a '∴=--,因为12,x x 是函数()g x 的两个不同极值点(不妨设12x x <),易知0a >(若0a ≤,则函数()f x 没有或只有一个极值点,与已知矛盾),且()10g x '=,()20g x '=.所以1120x e ax a --=,2220xe ax a --=. 两式相减得31122x x e e a x x -=-, 7分 于是要证明12ln(2)2x x a +<,即证明1212212x x x x e e e x x +-<-,两边同除以2x e , 即证12122121x x x x e e x x ---<-,即证()12122121x x x x x x e e --->-,即证()121221210x x x x x x e e ----+>, 令12x x t -=,0t <.即证不等式210tt te e -+>,当0t <时恒成立.设2()1t t t te e ϕ=-+,则222221()11222t t t t t t t t t t te t e e e e e e ϕ'⎤⎡⎫⎛⎫=+⋅⋅-=+-=--+⎥⎪ ⎪⎢⎝⎭⎣⎭⎦. 设2()12t t h t e =--,则22111()1222t t h t e e '⎛⎫=-=- ⎪⎝⎭, 当0t <时,()0h t '<,()h t 单调递减,所以()(0)0h t h >=,即2102tt e ⎛⎫-+> ⎪⎝⎭,所以()0t ϕ'<, 所以()t ϕ在0t <时是减函数.故()t ϕ在0t =处取得最小值(0)0ϕ=.所以()0t ϕ>得证.所以12ln(2)2x x a +<. 12分22.(本小题满分10分)【选修4-4:坐标系与参数方程】解:(1)221:(2)4C x y -+=,2240x x y -+=. 2分222:43C x y y +=-, 4分:4430MN l x y ∴-+-=,4430x y ∴-+=. 5分(2)3:4MN l y x =+,3,04P ⎛⎫∴- ⎪⎝⎭在MN l 上,直线MN的参数方程为3,42x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入221:(2)4C x y -+=,7分整理得257016t -+=,12t t ∴+=,125716t t =,10t ∴>,20t >, 9分12||||4PM PN t t +=+=. 10分23.(本小题满分10分)【选修4-5:不等式选讲】(1)解:当1a =时,()|1||22|f x x x =-++;①当1x -„时,()1224f x x x =---…,得53x -„;②当11x -<<时,()12234f x x x x =-++=+…,得1x …,x ∴∈∅;③当1x ≥时,()122314f x x x x =-++=+…,得1x …, 5,[1,)3x ⎛⎤∴∈-∞-⋃+∞ ⎥⎝⎦. 5分 (2)证明:2()2(|1|||||)2(|1|||)2(|1|||)f x x x a x a x x a x a a x a =-++++---++=+++… 2|1||22||2|||a a a a +=++-厖. 10分。

河北省衡水中学2020届高三数学上学期七调考试试卷 理(含解析)

河北省衡水中学2020届高三数学上学期七调考试试卷 理(含解析)

2020学年度高三年级上七调考试数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设为虚数单位,复数满足,则共轭复数的虚部为()A. B. C. D.【答案】C【解析】【分析】根据条件求出复数,然后再求出共轭复数,从而可得其虚部.【详解】∵,∴,∴,∴复数的虚部为.故选C.【点睛】本题考查复数的乘除法的运算及共轭复数的概念,其中正确求出复数是解题的关键,对于复数的运算,解题时一定要按照相关的运算法则求解,特别是在乘除运算中一定不要忘了.2.已知集合,若,则为()A. B. C. D.【答案】A【解析】,选A.3.已知,,,则a,b,c满足A. a<b<cB. b<a<cC. c<a<bD. c<b<a【答案】B【解析】【分析】根据对数的运算性质,化简得,,进而得,又由,即可得到答案.【详解】由题意,可得,,又由为单调递增函数,且,所以,所以,又由,所以,故选B.【点睛】本题主要考查了对数函数的图象与性质的应用,其中解答中合理应用对数函数的单调性进行比较是解答的关键,着重考查了推理与运算能力,属于基础题.4.如图,在中,点在线段上,且,若,则()A. B. C. D.【答案】B【解析】分析:从A点开始沿着三角形的边转到D,则把要求的向量表示成两个向量的和,把写成的实数倍,从而得到,从而确定出,最后求得结果.详解:,所以,从而求得,故选B.点睛:该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,求得结果.5.已知定义在上的奇函数满足,若,,则实数的取值范围为()A. B. C. D.【答案】D【解析】试题分析:因为是奇函数且满足,所以函数的周期为,,又,所以,可得的取值范围.考点:1、函数的奇偶性;2、函数的对称性;3、函数的周期性;4、分式不等式.6.已知点是双曲线的右焦点,点是该双曲线的左顶点,过且垂直于轴的直线与双曲线交于两点,若是钝角,则该双曲线的离心率的取值范围是 ( ) A. B. C. D.【答案】C【解析】试题分析:由题意,得为双曲线的通径,其长度为,因为,所以;则,即,即,即,解得.考点:双曲线的几何性质.7.如图,要测量底部不能到达的某铁塔的高度,在塔的同一侧选择,两观测点,且在,两点测得塔顶的仰角分别为,.在水平面上测得,,两地相距,则铁塔的高度是()A. B. C. D.【答案】D【解析】分析:由题意结合几何关系和余弦定理得到关于塔高的方程,解方程即可求得塔高.详解:设,则,,在中,由余弦定理知,解得米,(舍去).故铁塔的高度为600米.本题选择D选项.点睛:本题主要考查了余弦定理的应用.考查了学生空间观察能力和运用三角函数解决实际问题的能力.8.如果执行下面的程序框图,那么输出的( )A. 2550B. -2550C. 2548D. -2552【答案】C【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=-2+0+2+…+98+100,并输出S值.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=-2+0+2+…+98+100,∵S=-2+0+2+…+98+100=2548,故选C考点:流程图点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.如图,半径为的圆内有四个半径相等的小圆,其圆心分别为,这四个小圆都与圆内切,且相邻两小圆外切,则在圆内任取一点,该点恰好取自阴影部分的概率为A. B. C. D.【答案】D【解析】如图,易知四点在以为圆心,为半径的圆上,连接.设这四个小圆的半径为,则,.因为圆O内的这四个小圆都与圆内切,且相邻两小圆外切,所以,所以,即,解得,故所求事件的概率为.故选D.10.一个几何体的三视图如图所示,则该几何体的表面积为()正(主)视图侧(左)视图俯视图A. B. C. D.【答案】A【解析】【分析】该几何体为正方体ABCD﹣A′B′C′D′切去几何体AEF﹣A′B′D′得到的.【详解】由三视图可知该几何体为棱长为2正方体ABCD﹣A′B′C′D′切去几何体AEF﹣A′B′D′得到的.其中E,F分别是AB,AD的中点,如图,∴S2×22×2+2×2(2)20.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,作出直观图是关键.11.若函数的图象向左平移个单位后得到的图象对应的函数是奇函数,则直线的斜率为( )A. B. C. D.【答案】D【解析】【分析】利用辅助角公式将f(x)化为 sin(x+∅),(tanφ),将此图象平移后得到的图象对应的函数解析式为g(x) sin(x∅),再由g(x)是奇函数可得kπ,k∈z,再根据tan∅=tan(kπ),求得的值,即可求得直线ax﹣by+c=0的斜率的值.【详解】∵函数f(x)=a sin x+b cos x sin(x+∅),(tanφ),把函数f(x)的图象向左平移个单位后得到的图象对应的函数是g(x) sin(x∅),再由g(x)是奇函数可得kπ,k∈z.∴tan∅=tan(kπ),即.故直线ax﹣by+c=0的斜率为,故选:D.【点睛】题主要考查辅助角公式,函数y=A sin(ωx+φ)的图象变换规律,函数的奇偶性,直线的斜率,属于中档题.12.设椭圆:的左,右顶点为,.是椭圆上不同于,的一点,设直线,的斜率分别为,,则当取得最小值时,椭圆的离心率为()A. B. C. D.【答案】D【解析】【分析】设出的坐标,得到(用,表示,求出,令,则.利用导数求得使取最小值的,可得,则椭圆离心率可求.【详解】解:,,设,,则,则,,,,令,则.,当时,函数取得最小值(2)..,故选:.【点睛】本题考查了椭圆的标准方程及其性质、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知的展开式中,含项的系数为,则实数的值为__________.【答案】【解析】【分析】根据展开式的通项公式,写出的展开式中含x2项的系数,列方程求出a的值.【详解】展开式的通项公式为T r+1•(﹣2x)r,∴(2+ax)(1﹣2x)5的展开式中,含x2项的系数为,解得a=1.故答案为:1.【点睛】本题考查了二项式展开式通项公式的应用问题,是基础题.14.某所学校计划招聘男教师名,女教师名,和须满足约束条件,则该校招聘的教师人数最多是__________名.【答案】【解析】【分析】由题意由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件,又不等式组画出可行域,又要求该校招聘的教师人数最多令z=x+y,则题意求解在可行域内使得z取得最大.【详解】由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件,画出可行域为:对于需要求该校招聘的教师人数最多,令z=x+y⇔y=﹣x+z则题意转化为,在可行域内任意去x,y且为整数使得目标函数代表的斜率为定值﹣1,截距最大时的直线为过⇒(5,5)时使得目标函数取得最大值为:z=10.故答案为:10.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.15.已知则 ________.【答案】【解析】【分析】对已知条件,两边平方再相加即可得到答案.【详解】∵,∴(cosα+cosβ)2=,(sinα+sinβ)2=.两式相加,得2+2cos(α﹣β)=1.∴cos(α﹣β)=.故答案为:【点睛】本题主要考查两角和与差的余弦公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.16.正方体的棱长为,点,,分别是、、的中点,以为底面作正三棱柱,若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱柱的高为__________.【答案】【解析】【分析】分别取过C点的三条面对角线的中点,则此三点为棱柱的另一个底面的三个顶点,利用中位线定理证明.于是三棱柱的高为正方体体对角线的一半.【详解】连结A1C,AC,B1C,D1C,分别取AC,B1C,D1C的中点E,F,G,连结EF,EG,FG.由中位线定理可得PE A1C,QF A1C,RG A1C.又A1C⊥平面PQR,∴三棱柱PQR﹣EFG是正三棱柱.∴三棱柱的高h=PE A1C.故答案为:.【点睛】本题考查了正棱柱的结构特征,作出三棱柱的底面是计算棱柱高的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列中,,前项和.(1)求数列的通向公式;(2)若从数列中依次取出第,,,,,项,按原来的顺序排列成一个新的数列,试求新数列的前项和.【答案】(1)(2),【解析】(1)由题意得,解得,所以.(2),则==18.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一级品;当时,产品为二级品,当时,产品为三级品,现用两种新配方(分别称为配方和配方)做实验,各生产了件这种产品,并测量了每件产品的质量指标值,得到下面的试验结果:(以下均视频率为概率)配方的频数分配表:指标值分组频数配方的频数分配表:指标值分组频数(1)若从配方产品中有放回地随机抽取件,记“抽出的配方产品中至少件二级品”为事件,求事件发生的概率;(2)若两种新产品的利润率与质量指标满足如下关系:,其中,从长期来看,投资哪种配方的产品平均利润率较大?【答案】(1);(2)从长期来看,投资A配方产品的平均利润率较大。

河北省衡水中学2020届高三年级上学期期末考试(理数)

河北省衡水中学2020届高三年级上学期期末考试(理数)

河北省衡水中学2020届高三年级上学期期末考试数 学(理科)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分。

共4页,总分150分,考试时间 120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符 合题目要求的) 1.若复数i z ⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-=53sin 54cos θθ为纯虚数,则θtan 的值为 ( ) A.43-B .43C .43-或43D .54 2.下列函数中,在其定义域内是偶函数,且在区间()0,∞-上单调递增的是 ( ) A .2)(x x f =B .xx f 2)(=C .||1log )(2x x f = D .x x f sin )(= 3.若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos 的值为 ( ) A .31-B .97-C .31 D .97 4.如图是民航部门统计的2019年春运期间12个 城市售出的往返机票的平均价格以及相比上年 同期变化幅度的数据统计图,据图分析下面叙 述不正确的是 ( )A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的春运期间往返机票的平均价格 同上年相比有所下降C .平均价格从高到低居于前三位的城市为北京、 深圳、广州D .平均价格的涨幅从高到低居于前三位的城市 为天津、西安、厦门5.如图,在平行四边形ABCD 中,3π=∠BAD ,=AB 2,.1=AD 若N M ,分别是边CD BC ,上的点,且满足λ==DCNCBC BM ,其中[]1,0∈λ,则AN AM ⋅ 的取值范围是 ( ) A .[]3,0B .[]4,1C .[]5,2D .[]7,16.函数||cos3)(3xxxxxf+-=在区间[]ππ,-内的图象大致为( )7.已知斐波那契数列的前七项为1,1,2,3,5,8,13.大多数植物的花,其花瓣数按层从内往都恰是斐波那契数.现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )A.5层B.6层C.7层D.8层8.设函数)0(5sin)(>⎪⎭⎫⎝⎛+=ωπωxxf,已知)(xf在区间[]π2,0上有且仅有5个零点,下述四个结论:①)(xf在区间()π2,0上有且仅有3个极大值点;②)(x f在区间()π2,0上有且仅有2个极小值点;③)(xf在区间⎪⎭⎫⎝⎛10,0π上单调递增;④ω的取值范围是⎪⎭⎫⎢⎣⎡1029,512.其中所有正确结论的编号是( )A.①④B.②③C.①②③D.①③④9.过平面区域⎪⎩⎪⎨⎧≤++≥+≥+-2,02,02yxyyx内一点P作圆1:22=+yxO的两条切线,切点分别为BA,,记α=∠APB,则当α最小时αcos的值为( )A.1095B.2019C.109D.2110.设21,FF是双曲线)0,0(12222>>=-babyax的左、右焦点,P是双曲线右支上一点,满足)(22=⋅+PFOFOP(O为坐标原点),且||4||321PFPF=,则双曲线的离心率为( )A.21B.2C.3D.511.已知函数⎪⎩⎪⎨⎧>+≤+-=.1,2,1,3)(2xxxxxxxf设Ra∈,若关于x的不等式axxf+≥2)(在R上恒成立,则a的取值范围是( )A.⎥⎦⎤⎢⎣⎡-2,1647B.⎥⎦⎤⎢⎣⎡-1639,1647C.[]2,32-D.⎥⎦⎤⎢⎣⎡-1639,3212.已知三棱锥ABCP-满足⊥PA底面ABC,在ABC∆中,6=AB,8=AC,ACAB⊥,D 是线段AC上一点,且DCAD3=,球O为三棱锥ABCP-的外接球,过点D作球O的截面.若所得截面圆的面积的最小值与最大值之和为π40,则球O的表面积为( )A.π72B.π86C.π112D.π128第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.已知某一段公路限速60千米/小时,现抽取200辆通过这一段公路的汽车的时速,其频率分布直方图如图所示, 则这200辆汽车中在该路段没有超速的有 辆. 14.纸张的规格是指纸张制成后,经过修整切边,裁成一定 的尺寸,现在我国采用国际标准,规定以A0,Al ,A2, Bl ,B2,…等标记来表示纸张的幅面规格.复印纸幅面规格只采用A 系列和B 系列,其中)8,(≤∈n N n An 系 列的幅面规格为:①A0,Al ,A2,…,A8所有规格的纸张的幅宽(以x 表示)和长度(以y 表示)的比例关系 都为=y x :;2:1②将A0纸张沿长度方向对开成两等份,便成为Al 规格,Al 纸张沿长度方向对开成两等份,便 成为A2规格,…,如此对开至A8规格.现有A0,Al ,A2,…,A8纸各一张,若A4纸的宽 度为2dm ,则A0纸的面积为 dm 2;这9张纸的面积之和等于 dm 2.15.正三棱柱111C B A ABC -中,各棱长均为2,M 为1AA 的中点,N 为BC 的中点,则在棱柱的 表面上从点M 到点N 的最短距离是 .16.对于函数⎪⎩⎪⎨⎧+∞∈-∈=),2(),2(21],2,0[,sin )(x x f x x x f π有下列4个结论:①任取),,0[,21+∞∈x x 都有2)()(21≤-x f x f ;②函数)(x f y =在区间]5,4[上单调递增;③函数-=)(x f y )1ln(-x 有3个零点;④若关于x 的方程)0()(<=m m x f 有且只有两个不同的实根,1x ,2x 则.321=+x x 则所有正确结论的序号是 .三、解答题(共70分。

河北省衡水中学2020届高三数学(理)试卷及答案

河北省衡水中学2020届高三数学(理)试卷及答案
D.
0,
12、定义在
上的单调函数 f x , x 0,
, f f x log2 x 3 ,则方程
fx f x 2
的解所在区间是(

1 0, A. 2
1 ,1
B. 2
1,2
C.
2,3
D.
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分.)
1
tan
13 、 若
tan


10 3,
2
,
sin 2
其中正确命题的个数是

a7 .
16、已知函数 f x 为偶函数且 f x
fx f x 4 ,又
x2 3 x 5,0 x 1 2
2x 2 x,1 x 2

gx
函数
x
1
2
a
Fx
,若
f x g x 恰好有 4 个零点,则 a的取值范围


三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. )
()
1 A. 2
y
4、已知函数
B. 1
C. 2
D. 3
sin x
m 的最大值为 4 ,最小值为 0 .两个对称轴间最短距离为
x
2 ,直线
6 是其图象的一条对称轴,则符合条件的解析式为(

y 4sin 2x
A.
6
y 2sin 2x
2
B.
6
y
C.
2sin x 3
y 2sin 2x
2
D.
3
5、在
C 中,三个内角 , ,C 所对的边为 a , b , c ,若 S C 2 3 , a b 6 ,

衡水中学2020届全国第三次联考(理科数学)

衡水中学2020届全国第三次联考(理科数学)

A.清华大学 2019 年毕业生中,大多数本科生选择继续深造,大多数硕士生选择就业
B. 清华大学 2019 年毕业生中,硕士生的就业率比本科生高
C.清华大学 2019 年签三方就业的毕业生中,本科生的就业城市比硕士生的就业城市分散
D.清华大学 2019 年签三方就业的毕业生中,留北京人数超过一半
4. 若圆(x-2) 2+(y— 1) 2= 5 关于直线 ax+by-1= O(a>O,b>O) 对称,则 — a2 .十一 b1 的最小 值为
A. 3
B. 3i
C. 4
D. 4i
3. 以下统计表和分布图取自《清华大学 2019 年毕业生就业质量报告》.
本科生
硕士生
博士生
总体
毕业去向
人数比例 人数 比例人数 比例 人数 比例
深造
国内
2 282 80.4% 231 9.3% 489 33.6% 3 002 44.2%
1 583 55.8% 94 3.8% 290 19.9% I 967 29.0%
出国(境) 699 24.6% 137 5.5% 199 13.7% I 035 15.3%
就业
490 17.3% 2 224 89.2% 943 64.8% 3 657 53.9%
签三方就业154 5.4% 1 656 66.4% 864 59.4% 2 674 39.4%
灵活就业 336 I1.8% 568 22.8% 79 5.4% 983 14.5%
绝密*启用前
河北衡水中学2020届全国高三第三次联合考试(I)
理科数学
本试卷 4 页。总分 150 分。考试时间 120 分钟。 注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上相应的位置。 2.全部答案在答题卡上完成,答在本试卷上无效。 3.回答选择题时,选出每小题答案后, 用2B铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案用 0.5 mm黑色笔 迹签字笔写在答题卡上。 4.考试结束后,将本试卷和答题卡一并交回。2Βιβλιοθήκη 4 0.%

河北省衡水中学2020届高三年级下学期三调考试(理数)

河北省衡水中学2020届高三年级下学期三调考试(理数)

河北省衡水中学2020届高三年级下学期三调考试数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共4页,总分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知全集R U =,集合}06|{2≥--=x x x A ,}1|{≥=x x B ,则=B A C U I )(( )A .}31|{<≤x xB .}32|{<≤x xC .}3|{>x xD .2.已知等差数列}{n a 的前n 项和为S n ,364S S =,852=-a a ,则=2a( )A .4B .-4C .12D .-123.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥--≤-+,0,01,042y y x y x 则目标函数y x z +=的最大值为 ( )A .lB .2C.37 D .44.已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生 近视形成的原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的初中生近视的人数分别为 ( )A .600,72B .600,80C .1200,90D .1200,3005.已知双曲线以椭圆14822=+y x 的焦点为顶点,以椭圆的顶点为焦点,则双曲线的渐近线方程是( )A .x y ±=B .x y 2±=C .x y 2±=D .4±=y6.用数字0,l ,2,3,4组成没有重复数字的四位数,其中比3000大的奇数的个数是( )A .6B .12C .18D .247.函数xx xy sin cos +=的部分图象大致为( )8.运行如图所示的程序框图,若输出结果为713,则判断框中应该填的条件是 ( ) A .?5>kB .?6>kC .?7>kD .?8>k9.如图,BC ,DE 是半径为1的圆O 的两条直径,2=,则=⋅FE FD ( )A .98-B .43-C .94-D .41-10.设c b a ,,均为正数,且c b a cba 2log 21,21log 21,21log 2=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=,则 ( )A .C b a <<B .a b c <<C .b a c <<D .C a b <<11.如图,已知半圆的直径20||=AB ,l 为半圆外的一条直线,且与BA 的延长线交于点T ,4||=AT ,半圆上相异两点M ,N 与直线l 的距离||MP ,||NQ 满足条件1||||||||==NA NQ MA MP ,则||||AN AM +的值为 ( ) A .22B .20C .18D .1612.已知函数x x x f ln )(=,ex ax x g 3221)(3--=,若函数)(x f 的图象与函数)(x g 的 图象在交点处存在公切线,则函数)(x g 在点())1(,1g 处的切线在y 轴上的截距为( )A .e32-B .e32C .ee 323+-D .ee 322+ 第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.若),(1)1(R y x yi ixi ∈+=+,则=+||yi x ____________. 14.已知直线l 1是曲线x y ln =在1=x 处的切线,直线l 2是曲线xe y =的一条切线,且21//l l ,则直线l 2的方程是______________.15.如图,在四棱锥ABCD P -中,四边形ABCD 为矩形,平面⊥PAD 平面ABCD .若ο90=∠BPC ,2=PB ,2=PC ,则四棱锥ABCD P -的体积的最大值为__________.16.已知离心率为21的椭圆)0(12222>>=+b a b y a x 恰好过抛物线x y 162=的焦点F ,A 为椭圆的上顶点,P 为直线AF 上的一个动点,点A 关于直线OF 的对称点为Q ,则||PQ 的最小值为____________.三、解答题(共70分。

2020届河北衡水中学高三理科数学试卷及答案

2020届河北衡水中学高三理科数学试卷及答案

.2020 届河北衡水中学高三年级期中考试理科数学试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分满分150 分.考试时间120 分钟.第Ⅰ卷(选择题 共 60 分)一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合 S={1,2},T={x|x 2<4x ﹣3},则 S∩T=()A .{1}B .{2}C .1D .22.已知复数 z 1,z 2 满足|z 1|=|z 2|=1,|z 1﹣z 2|= ,则|z 1+z 2|等于( )A .2B .C .1D .33.设正数 x ,y 满足 x+y=1,若不等式对任意的 x ,y 成立,则正实数 a 的取值范围是()A .a≥4B .a >1C .a≥1D .a >44.如图,在正方体 ABCD ﹣A 1B 1C 1D 1 中,O 是底面 ABCD 的中心,E 为 CC 1 的中点,那么异面直线 OE 与 AD 1 所成角的余弦值等于( )A .B .C .D .5.给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()A .i >10B .i <10C .i >20D .i <206.如图,在 R t△ABC 中,AC=1,BC=x ,D 是斜边 AB 的中点,将△BCD 沿直线 CD 翻折,若在翻折过程中存在某个位置,使得 CB⊥AD,则 x 的取值范围是( )A .(0,C .(] B .(,2 ] D .(2,4],2]7.数列{a n }中,对任意 n∈N *,a 1+a 2+…+a n =2n ﹣1,则 a 12+a 22+…+a n 2 等于()A .(2n ﹣1)2B .C .4n ﹣1D .8.已知一个几何体的三视图及有关数据如图所示,则该几何体的体积为( )A .2B .C .D .9.设函数 f (x )=Asin (ωx+φ)(A ,ω,φ 是常数,A >0,ω>0),且函数 f (x )的部分图象如图所示,则有()A .f (﹣C .f ()<f ()<f ( )<f ()<f (﹣ )) B .f (﹣D .f ( )<f ()<f (﹣ )<f ()<f ( ))10.若圆 C :x 2+y 2+2x ﹣4y+3=0 关于直线 2ax+by+6=0 对称,则由点(a ,b )向圆 C 所作切线长的最小值是()A .2B .3C .4D .611.若函数 f (x )=x 3﹣3x 在(a ,6﹣a 2)上有最大值,则实数 a 的取值范围是()A .(﹣,﹣1) B .(﹣ ,﹣1] C .(﹣ ,﹣2)D .(﹣ ,﹣2]12.已知 f′(x )为函数 f (x )的导函数,且 f (x )=x 2﹣f (0)x+f′(1)e x ﹣1,若g (x )=f (x )﹣ x 2+x ,则方程 g (﹣x )﹣x=0 有且仅有一个根时,a 的取值范围是( )A .(﹣∞,0)∪{1}B .(﹣∞,1]C .(0,1]D .[1,+∞)第Ⅱ卷 非选择题 (共 90 分)二、填空题(本大题共4小题,每小题5分,共20分.)13.设变量x,y满足约束条件,则z=x﹣3y的最小值.14.设数列{an}的n项和为Sn,且a1=a2=1,{nSn+(n+2)an}为等差数列,则{an}的通项公式an=.15.已知函数f(x)的定义域为[﹣2,+∞),部分对应值如下表.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图所示.若两正数a,b满足f(2a+b)<1,则取值范围是.的Xf(x)﹣21﹣14116.已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)△ABC中,已知的对边依次为a,b,c.(1)求∠C的大小;(2)若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.,记角A,B,C18. (本小题满分 12 分)已知数列{a n }的前 n 项和为 S n ,且 S n =n (n+1)(n∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足:,求数列{b n }的通项公式;(Ⅲ)令(n∈N *),求数列{c n }的前 n 项和 T n .19. (本小题满分 12 分) 已知圆 C :x 2+y 2+2x ﹣4y+3=0.(1)若圆 C 的切线在 x 轴和 y 轴上的截距相等,求此切线的方程;(2)从圆 C 外一点 P (x 1,y 1)向该圆引一条切线,切点为 M ,O 为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点 P 的坐标.20. (本小题满分 12 分)如图,ABCD 是边长为 3 的正方形,DE⊥平面 ABCD ,AF∥DE,DE=3AF ,BE 与平面 ABCD 所成角为 60°.(Ⅰ)求证:AC⊥平面 BDE ;(Ⅱ)求二面角 F ﹣BE ﹣D 的余弦值;(Ⅲ)设点 M 是线段 BD 上一个动点,试确定点 M 的位置,使得 AM∥平面 BEF ,并证明你的结论.21.(本小题满分12分)已知函数f(x)=alnx+x2(a为实常数).(1)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的x值;(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,圆C的方程是x2+y2﹣4x=0,圆心为C,在以坐标原点为极点,以x轴的:ρ=﹣4sinθ与圆C相交于A,B两点.非负半轴为极轴建立的极坐标系中,曲线C1(1)求直线AB的极坐标方程;:(t是参数)交直线AB于点D,交y轴于点(2)若过点C(2,0)的直线C2E,求|CD|:|CE|的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=m﹣|x﹣3|,不等式f(x)>2的解集为(2,4).(1)求实数m的值;(2)若关于x的不等式|x﹣a|≥f(x)恒成立,求实数a的取值范围.理科数学参考答案一.选择题1-5B C C DA6-10A D B D C11-12D A.二.填空题13.﹣814..16..三.解答题17.解:(1)依题意:又0<A+B<π,∴,∴(2)由三角形是锐角三角形可得,,即,,...............4分即由正弦定理得∴,,,=====∵,∴=,,∴,即..............12分18..解:(Ⅰ)当n=1时,a1=S1=2,当n≥2时,an =Sn﹣Sn﹣1=n(n+1)﹣(n﹣1)n=2n,知a1=2满足该式,∴数列{an}的通项公式为an=2n.(2分)(Ⅱ)∵(n≥1)①∴②(4分)②﹣①得:,b n+1=2(3n+1+1),故bn=2(3n+1)(n∈N*).(6分)(Ⅲ)=n(3n+1)=n•3n+n,∴Tn =c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)令Hn=1×3+2×32+3×33+…+n×3n,①则3Hn=1×32+2×33+3×34+…+n×3n+1②①﹣②得:﹣2Hn=3+32+33+…+3n﹣n×3n+1=∴,…(10分)∴数列{cn}的前n项和…(12分)19.解:(1)∵切线在两坐标轴上的截距相等,∴当截距不为零时,设切线方程为x+y=a,又∵圆C:(x+1)2+(y﹣2)2=2,∴圆心C(﹣1,2)到切线的距离等于圆的半径即,解得:a=﹣1或a=3,,当截距为零时,设y=kx,同理可得或,则所求切线的方程为x+y+1=0或x+y﹣3=0或或.---------6分(2)∵切线PM与半径CM垂直,∴|PM|2=|PC|2﹣|CM|2.∴(x1+1)2+(y1﹣2)2﹣2=x12+y12.∴2x1﹣4y1+3=0.∴动点P的轨迹是直线2x﹣4y+3=0.∴|PM|的最小值就是|PO|的最小值.而|PO|的最小值为原点O到直线2x﹣4y+3=0的距离,∴由,可得故所求点P的坐标为.--12分20.证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.….......................................(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知则A(3,0,0),,.,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)21.解:(1)当a=﹣2时,f(x)=x2﹣2lnx,当x∈(1,+∞),,所以函数f(x)在(1,+∞)上是增函数;........2分(2),当x∈[1,e],2x2+a∈[a+2,a+2e2].若a≥﹣2,f'(x)在[1,e]上非负(仅当a=﹣2,x=1时,f'(x)=0),故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1.若﹣2e2<a<﹣2,当时,f'(x)=0;当当故[f(x)]min =时,f'(x)<0,此时f(x)是减函数;时,f'(x)>0,此时f(x)是增函数.=.若a≤﹣2e2,f'(x)在[1,e]上非正(仅当a=﹣2e2,x=e时,f'(x)=0),故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.综上可知,当a≥﹣2时,f(x)的最小值为1,相应的x值为1;当﹣2e2<a<﹣2时,f(x)的最小值为,相应的x值为;当a≤﹣2e2时,f(x)的最小值为a+e2,相应的x值为e......................7分(3)不等式f(x)≤(a+2)x,可化为a(x﹣lnx)≥x2﹣2x.∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x﹣lnx>0,因而(x∈[1,e])令(x∈[1,e]),又 ,当 x∈[1,e]时,x ﹣1≥0,lnx≤1,x+2﹣2lnx >0,从而 g'(x )≥0(仅当 x=1 时取等号),所以 g (x )在[1,e]上为增函数,故 g (x )的最小值为 g (1)=﹣1,所以 a 的取值范围是[﹣1,+∞).......12 分22.解:(1)在以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,极坐标与直角坐标有如下关系 x=ρcosθ,y=ρsinθ,曲线 C 1:ρ=﹣ sinθ,∴ρ2=﹣4 ρsinθ,∴x 2+y 2=﹣4 y ,∴曲线 C 1:x 2+y 2+ y=0,∴直线 AB 的普通方程为:(x 2+y 2﹣4x )﹣(x 2+y 2+4y )=0,∴y=﹣x ,∴ρsinθ=﹣ρcosθ,∴tanθ=﹣ ,∴直线 AB 极坐标方程为:θ = - 1( ρ ∈ R ) ............. 5 分6(2)根据(1)知,直线 AB 的直角坐标方程为 y=﹣x ,根据题意可以令 D (x 1,y 1),则,又点 D 在直线 AB 上,所以 t 1=﹣(2+ t 1),解得 t 1=﹣,根据参数方程的定义,得|CD|=|t 1|= ,同理,令交点 E (x 2,y 2),则有,又点 E 在直线 x=0 上,令 2+t 2=0,∴t 2=﹣ ,∴|CE|=|t 2|= ,∴|CD|:|CE|=1:2............................ 10 分23.解:(1)∵f(x )=m ﹣|x ﹣3|,∴不等式 f (x )>2,即 m ﹣|x ﹣3|>2,∴5﹣m <x <m+1,而不等式 f (x )>2 的解集为(2,4),∴5﹣m=2 且 m+1=4,解得:m=3;....... 5 分(2)关于 x 的不等式|x ﹣a|≥f(x )恒成立⇔关于 x 的不等式|x ﹣a|≥3﹣|x ﹣3|恒成立⇔|x ﹣a|+|x ﹣3|≥3 恒成立⇔|a ﹣3|≥3 恒成立,由 a ﹣3≥3 或 a ﹣3≤﹣3,解得:a≥6 或 a≤0.............. 10 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届衡水中学高三数学试卷数 学本试卷为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分160分.考试时间120分钟。

第Ⅰ卷(填空题共70分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在相应位置. 1.已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N =__ ▲ .2.复数ii4321+-在复平面上对应的点位于第 __ ▲ 象限. 3.根据表格中的数据,可以判定方程20x e x --=的一个零点所在的区间为))(1,(N k k k ∈+,则k 的值为__ ▲ .4. 若x , y 满足条件4104320,10200x y x y x y x y +≤⎧⎪+≤⎪+⎨≥⎪⎪≥⎩则的最大值等于 ▲ . 5.设31sin (), tan(),522πααππβ=<<-=则tan ()βα-的值等于__ ▲ .6.设)(x f 是定义在R 上的奇函数,且当0x >时,32)(-=xx f ,则=-)2(f __▲___. 7.在△ABC 中,BC=1,3π=∠B ,当△ABC 的面积等于3时,=C tan __ ▲ .8.若曲线4()f x x x =-在点P 处的切线平行于直线3x -y =0,则点P 的坐标为 ▲ . 9.设)(x f y =是一次函数,1)0(=f ,且)13(),4(),1(f f f 成等比数列,则++)4()2(f f …=+)2(n f _ ▲ .x-1 0 1 2 3 x e0.37 1 2.72 7.39 20.09 2x +1234510.函数1)1(log +-=x y a (01)a a >≠且,的图象恒过定点A ,若点A 在一次函数n mx y +=的图象上,其中,0m n >,则12m n+的最小值为__ ▲ . 11.设O 是△ABC 内部一点,且AOC AOB OB OC OA ∆∆-=+与则,2的面积之比为__▲ . 12.若函数)(x f 是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足)()()(y f x f xy f +=,则不等式)4(2)()6(f x f x f <++的解集为__ ▲ .13.第29届奥运会在北京举行.设数列n a =)2(log 1++n n *)(N n ∈,定义使k a a a a ⋅⋅⋅⋅⋅321为整数的实数k 为奥运吉祥数,则在区间[1,2008]内的所有奥运吉祥数之和为____▲____. 14.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即 {}x m =. 在此基础上给出下列关于函数|}{|)(x x x f -=的四个命题: ①函数)(x f y =的定义域是R ,值域是[0,21]; ②函数)(x f y =的图像关于直线2kx =(k ∈Z)对称; ③函数)(x f y =是周期函数,最小正周期是1; ④ 函数()y f x =在⎥⎦⎤⎢⎣⎡-21,21上是增函数; 则其中真命题是__ ▲ .第Ⅱ卷(解答题 共90分)二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知向量()x x x a cos sin ,2sin 1-+=→,()x x b cos sin ,1+=→,函数()f x a b =⋅.(1)求()f x 的最大值及相应的x 的值; (2)若58)(=θf ,求πcos 224θ⎛⎫- ⎪⎝⎭的值.16.(本题满分14分) 已知m ∈R ,设P :不等式2|53|3m m --≥;Q :函数6)34()(23++++=x m mx x x f 在(-∞,+∞)上有极值.求使P 正确且Q 正确的m 的取值范围.17.(本题满分14分)已知函数1()log (0,1)1amx f x a a x -=>≠-的图象关于原点对称.(1) 求m 的值;(2)判断函数)(x f 在区间()+∞,1上的单调性并加以证明; (3)当)(,),(,1x f a t x a 时∈>的值域是),1(+∞,求a 与t 的值.18.(本小题满分16分)设数列{}n b 的前n 项和为n S ,且22n n b S =-;数列{}n a 为等差数列,且145=a ,207=a . (1)求数列{}n b 的通项公式;(2)若,1,2,3,n n n c a b n =⋅=,n T 为数列{}n c 的前n 项和. 求证:72n T <.19.(本题满分16分) 徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/时)的平方成正比,比例系数为0.01;固定部分为a 元(a >0).(1)把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?20.(本题满分16分)已知2()ln ,()3f x x x g x x ax ==-+-.(1) 求函数()f x 在[,2](0)t t t +>上的最小值;(2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围; (3) 证明: 对一切(0,)x ∈+∞,都有12ln x x e ex>-成立.参考答案 一、填空题:1. {}1-2. 三3. 14. 255. 112-6. -17. 3-8. (1,0)9. )32(+n n 10. 8 11. 1 12. (0,2) 13. 2026 14. ①②③ 二、解答题:15. 解:(1)因为(1sin 2,sin cos )a x x x =+-,(1,sin cos )b x x =+,所以22()1sin2sin cos1sin2cos2f x x x x x x=++-=+-…………………………4分π214x⎛⎫-+⎪⎝⎭……………………………………………………..6分因此,当ππ22π42x k-=+,即3ππ8x k=+(k∈Z)时,()f x1;…8分(2)由()1sin2cos2fθθθ=+-及8()5fθ=得3sin2cos25θθ-=,两边平方得91sin425θ-=,即16sin425θ=.……………………………………………12分因此,ππ16cos22cos4sin44225θθθ⎛⎫⎛⎫-=-==⎪ ⎪⎝⎭⎝⎭.……………………………14分16.解:由已知不等式得2533m m--≤-①或2533m m--≥②不等式①的解为不等式②的解为1m≤-或6m≥…………………………………………………4分因为,对1m≤-或05m≤≤或6m≥时,P是正确的………………………..6分对函数6)34()(23++++=xmmxxxf求导3423)('2+++=mmxxxf…8分令0)('=xf,即034232=+++mmxx当且仅当∆>0时,函数f(x)在(-∞,+∞)上有极值由0161242>--=∆mm得1m<-或4m>,因为,当1m<-或4m>时,Q是正确的………………………………………………12分综上,使P正确且Q正确时,实数m的取值范围为(-∞,-1)⋃),6[]5,4(+∞⋃……….14分17.解:(1)因为函数1()log(0,1)1amxf x a ax-=>≠-的图象关于原点对称,所以0)()(=+-xfxf即())1)(1(1)1(log11log11log=---+-=--+--+xxmxmxxmxxmxaaa,()1)1)(1(1)1(=---+-xxmxmx,得1,12==mm或1-=m……………………………………….2分当1=m 时,0111<-=--x mx舍去; 当1-=m 时,1111-+=--x x x mx ,令011>-+x x,解得1-<x 或1>x .所以符合条件的m 值为-1 …………………………………………………………………4分 (2)由(1)得11log )(-+=x x x f a,任取211x x <<, 11log 11log )()(112212-+--+=-x x x x x f x f a a()()()()1111log 1212+--+=x x x x a ……………………6分211x x << ∴()()()()0)(21111211212<-=+---+x x x x x x ,∴()()()()1111101212<+--+<x x x x ………………………………………………………………….8分∴当10<<a 时,()()()()01111log 1212>+--+x x x x a即0)()(12>-x f x f ,此时)(x f 为增函数;当1>a 时,()()()()01111log 1212<+--+x x x x a即0)()(12<-x f x f ,此时)(x f 为减函数…10分(3)由(2)知,当1>a 时)(x f 在),1(+∞上为减函数;同理在)1,(--∞上也为减函数 当)1,(),(--∞⊆a t 时,0)()()(<<<t f x f a f 与已知矛盾,舍去;………………12分 当),1(),(+∞⊆a t 时,因为函数)(x f 的值域为),1(+∞∴1)(=a f 且011=-+t t ,解得1-=t ,21+=a ……………………………………14分 18.解:(1)由22n n b S =-,令1n =,则1122b S =-,又11S b =,所以123b =.21222()b b b =-+,则229b =. …………………………………………………………………………………….2分 当2≥n 时,由22n n b S =-,可得n n n n n b S S b b 2)(211-=--=---. 即113n n b b -=..6分 所以{}n b 是以123b =为首项,31为公比的等比数列,于是n n b 312⋅=. ……8分(2)数列{}n a 为等差数列,公差751() 3 2d a a ==-,可得13-=n a n . ….10分从而n n n n n b a c 31)13(2⋅-=⋅=. ……………………………………………..12分 ∴2311112[258(31)]3333n n T n =⋅+⋅+⋅++-⋅=1771722332n n n --⋅-<……….16分 19.解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为v500,全程运输成本为v va v v v a y 550050001.05002+=⋅+⋅= ……………………………………….4分故所求函数及其定义域为]100,0(,5500∈+=v v vay ………………………….6分(2)依题意知a ,v 都为正数,故有a v va1005500≥+当且仅当,5500v va=.即a v 10=时上式中等号成立………………………...8分(1)若10010≤a ,即1000≤<a 时则当a v 10=时,全程运输成本y 最小.10分 (2)若10010>a ,即100>a 时,则当]100,0(∈v 时,有55002+-='vay 0)100(522<-=v a v . 上单调递减在函数]100,0(∈∴v y 。

相关文档
最新文档