离散型随机变量的分布列教学设计教学内容

合集下载

离散型随机变量的分布列教学设计

离散型随机变量的分布列教学设计
课 程
教 法
理 科 教 学 探 秘 K 氍 . I A OX t 堰“ A , N MI
离散型 随机 变量 的分布列教 学设 计
◆ 甘肃省 崇信 县 第二 中学 谢 永林
【 中图分类号 】 G 【 文献标识码 】 B 【 文章编号 】 1 0 0 6 — 1 2 1 6( 2 0 1 5) 0 8 B 一 0 0 7 5 — 0 1
一 P ( 重点 ,难点 ) ( 3)列成表格 2 . 给 出上面练 习题 的正确解答
( 1 )P ( 1 < X< 3 )=P ( X = 2)=
①理解离散 型随机变 量的分布 列概念与性质 ;
②会求简单 的离散 型随机 变量 的分 布列 ;
于 4个杯子 中恰有 1 个放 2个球 P : : 9 于 4个杯子 中恰有 1 个放 3个球 P : c l :丽 1 列成表格
X 1 2
①求 P( 1< X < 3)
②求 P( x ≥ 4)
( 四 )展 示与点拔
’ 一

1. 教师个别提 问 , 明确求离散型随机变量分布列的步骤 :
( 二 )自学 效 果检 查
另 x= l 为 “ 摸 出红球 ” ,x: 0为 “ 摸出 白球” ,求 x的分 为


一 8
1 . 师生共 同完成上面 5个问题 2 . 某一射击手射击所得环数 x的分布列如下
X 6 7 8 9 1 0
布列 。
3— 8 3— 8
例题
例 :口袋 中装有 5只 同样 大 小 的球 ,编号 为 l , 2 , 3 , 4 , 5 , 现从 口袋 中任取 3只球 ,用 x表示取 出的 3只球中的最大号

离散型随机变量的分布列优秀教学设计

离散型随机变量的分布列优秀教学设计

离散型随机变量的分布列一.教学目标:1.理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列. 2.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 3.了解二项分布的概念,能举出一些服从二项分布的随机变量的例子. 二.教学重点:离散型变量的分布列及其求法. 教学难点:理解随机变量分布列的性质. 三.教学用具:投影仪 四.教学过程: 1.复习提问(1)可问:随机变量、离散型随机变量、连续型随机变量的概念. (2)点评上节课学生做的课外作业. 2.提出教科书中关于抛掷一枚骰子的例子 可问:你能举出类似这样的例子吗?精选1~2个学生举的例子,加以分析和研究.3.提出随机变量ξ的分布列的概念,总结任一离散型随机变量的分布列具有的两个简单性质在分析和研究上述例子的基础上,概括出:一般地,设离散型随机变量ξ可能取的值为,,,,,21 i x x xξ取每一个值),2,1( =i x i 的概率为i i P x P ==)(ξ,则称表ξ 1x 2x (i)x…P1P2P…iP…为随机变量ξ的概率分布,简称ξ的分布列.引导学生回顾概率的基本性质,归纳总结出任一离散型随机变量的分布列的两个简单性质:(1) ,2,1,0=≥i P i ; (2).121=++ P P4.讲解例1、例2例1 一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球的一半,现从该盒中随机取出一个球.若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中随机取出一球所得分数ξ的分布列.解:设黄球的个数为n ,依题意知道绿球个数为2n ,红球个数为4n ,盒中球的总数为7n .∴.717)0(,7272)1(,7474)1(=====-====n n P n n P n n P ξξξ ∴从该盒中随机取出一球所得分数ξ的分布列为ξ 1 -1 0P7472 71例2 一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是),3,2,1(21=n n .记ξ为原物体在分裂终止后所生成的子块数目.求)10(≤ξP .解:依题意,原物体在分裂终止后所生成的子块数目ξ的分布列为ξ 2 4 8 16 …n 2 …P214181 161 … n 21…∴)8()4()2()10(=+====≤ξξξξP P P P .87814121=++=通过例2及教科书中的例子,归纳总结出: 一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.5.提出离散型随机变量服从二项分布的概念引导学生回顾n 次独立重复试验中事件A 恰好发生k 次的概率公式.然后提出离散型随机变量ξ服从二项分布的概念.可问:你能举出离散型随机变量服从二项分布的例子吗? 根据学生举的例子,教师引导他们对此加以简单分析. 6.讲解例3、例4例3 某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量%)5,2(~B ξ.所以,.0025.0%)5()2(,095.0%)95%)(5()1(,9025.0%)95()0(22212202=========C P C P C P ξξξ因此,次品数ξ的概率分布是ξ 0 1 2P0.9025 0.095 0.0025例4 重复抛掷一枚骰子5次,得到点数为6的次数记为ξ,求)3(>ξP . 解:依题意,随机变量)61,5(~B ξ.∴.77761)61()5(,77762565)61()4(555445====⋅==C P C P ξξ ∴.388813)5()4()3(==+==>ξξξP P P7.课堂练习教科书中的“练习”. 8.归纳总结(1)对离散型随机变量ξ的分布列及其性质和二项分布的概念作一次小结. (2)对本课的4道例题的解题思路进行总结. 五.布置作业:教科书习题第3、5、6题。

离散型随机变量的分布列教学设计(何娟)

离散型随机变量的分布列教学设计(何娟)

《离散型随机变量的分布列》教学设计山东省实验中学何娟一、教学内容分析概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者是相互渗透、相互联系的。

离散型随机变量的分布列是普通高中课程标准实验教科书数学(选修2-3)人民教育出版社B版第二章《概率》的第二节,它是一个必然事件分解成有限个互斥事件的概率的另一种表现形式,整体地反映了离散型随机变量所有可能的取值及其相应值的概率, 全面描述了随机变量的统计规律,并为定义随机变量两种最重要的特征数即数学期望和方差奠定了基础。

因此,“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是必修3概率知识的延伸,也是统计学的理论基础,能起到承上启下的作用。

同时,它是培养学生学会用数学思维来解决问题的好的素材,能够提升学生数学抽象、数学建模和数据分析的核心素养。

二、教学目标分析本节课依据教材分析和课标要求, 可确定如下的三维教学目标:【知识与技能】理解离散型随机变量的分布列及二点分布模型, 掌握分布列的性质, 会求简单的离散型随机变量的分布列。

【过程与方法】在对具体问题的分析中, 经历数学建模过程, 理解离散型随机变量的分布列及其性质的导出,启发引导学生思考、讨论、表述,展现思维过程;让学生体会由具体到抽象的思想方法,感知从特殊到一般的认知过程。

【情感态度与价值观】在具体情境中, 认识分布列对于刻画随机现象的重要性, 体会数学来源于生活, 又应用于生活的事实; 设计抽奖活动,外化数学学习的兴趣,体会学习的成功与喜悦,培养严谨的科学态度。

根据以上目标的确定,教学上力求体现:两个意识(创新意识、应用意识)和四种能力(探究能力、建模能力、交流能力、实践能力)。

三、学生学情分析根据本人以往的教学经验和学生思维的最近发展区理论,从以下两方面对学生学习本节课内容的情况加以分析,便于找到学生的认知规律,帮助学生跨越学习障碍。

1、认知基础:学生在必修3概率初步中已学习过随机事件和简单的概率模型,会用古典概型、几何概型求解随机事件的概率;在选修2-3第一章计数原理中学习了利用排列组合知识求某些随机事件的概率,具备一定的知识基础。

离散型随机变量及其分布列教案

离散型随机变量及其分布列教案

离散型随机变量及其分布列教案一、教学目标1.了解离散型随机变量的基本概念和特点;2.掌握离散型随机变量的概率分布列的计算方法;3.熟练掌握二项分布、泊松分布等离散型随机变量的概率分布列及其应用。

二、教学重点1.离散型随机变量的基本概念和特点;2.离散型随机变量的概率分布列的计算方法;3.二项分布、泊松分布等离散型随机变量的概率分布列及其应用。

三、教学内容及步骤1. 离散型随机变量的定义和特点(10分钟)1)定义:若取值只能是有限个或可数个,且每个取值发生的概率都已知,则称该随机变量为离散型随机变量。

2)特点:① 取值只能是有限个或可数个;② 每个取值发生的概率都已知。

2. 离散型随机变量的分布列(15分钟)1)定义:对于一个离散型随机变量X,它所有可能取到的值x1,x2,……,xn,每个值发生的概率分别为p1,p2,……,pn,则称这些概率值所组成的表格为X的概率分布列或简称分布列。

2)计算方法:对于离散型随机变量X,其概率分布列可以通过观察问题得到,也可以通过统计样本得到。

对于某一取值xi,其概率pi可以通过以下公式计算:pi=P(X=xi)3. 二项分布(20分钟)1)定义:当试验只有两种可能结果时(成功或失败),在n次独立重复试验中,成功的次数X服从二项分布。

2)公式:X~B(n,p),其中n表示试验次数,p表示每次试验成功的概率。

3)概率分布列:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中C(n,k)表示从n个元素中取k个元素的组合数。

4)应用:二项分布常用于伯努利实验、抽样调查、质量控制等方面的问题。

4. 泊松分布(20分钟)1)定义:当一个事件在一段时间内发生的次数服从泊松分布时,称该事件服从泊松过程。

2)公式:X~P(λ),其中λ表示单位时间内该事件平均发生的次数。

3)概率分布列:P(X=k)=e^(-λ)*λ^k/k!4)应用:泊松分布常用于描述单位时间内某一事件发生的次数,如电话交换机接到呼叫的次数、邮局收到信件的数量等。

离散型随机变量的分布列教学设计

离散型随机变量的分布列教学设计

2.1离散型随机变量的分布列一、【教材的地位和作用】概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者虽有明显的不同,但它们都是相互渗透、相互联系的。

“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是概率的延伸,也是学习统计学的理论基础,能起到承上启下的作用,是本章的关键知识之一。

随机变量是将随机现象的结果数量化,把对随机事件及概率的研究转化为对随机变量及概率的研究;离散型随机变量的分布列反映了随机变量的概率分布,将实验的各个孤立事件联系起来,从整体上研究随机现象。

并为定义离散型随机变量的数学期望和方差奠定基础,揭示了离散型随机变量的统计规律。

二、【教学目标】知识技能目标:了解离散型随机变量的分布列,会求某些简单的离散型随机变量的分布列;过程方法目标:发展学生的抽象、概括能力;情感态度目标:通过引导学生对解决问题的过程的参与,使学生进一步感受数学表示的简洁,从而激发学生学习数学的热情.三、【重点、难点】教学重点:会求离散型随机变量的分布列, 会应用离散型随机变量的分布列的性质.教学难点:求离散型随机变量的分布列.四、【学情分析】知识结构方面,学生已学习了排列、组合、二项式定理、概率和随机变量,已具备了本节课所需的预备知识。

能力方面,经过两年学习,学生具有了一定的发现、分析、解决问题的能力,抽象、概括能力,逻辑思维能力.五、【教学策略及方法】主动建构式的教学方式——在教师的正确引导下,由学生已学过的有关知识,如离散型随机变量ξ的取值及所取的值对应的概率,让学生积极主动地建构出离散型随机变量的分布列.六、【教具准备】多媒体课件.七、【教学过程】1、新课导入(1)随机变量:我们将随机试验中的每一个可能的结果都对应于一个数,这种对应称为一个随机变量.随机变量常用字母X 、Y 、ξ、η等表示.(2)两类随机变量若随机变量的取值能够一一列举出来,这样的随机变量叫做离散型随机变量. 若随机变量的取值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 今天先来学习离散型随机变量的分布列.2、探究问题抛掷一枚骰子,所得的点数X 有哪些值?X 取每个值的概率是多少?3、新课讲授(1)离散型随机变量的分布列的定义设离散型随机变量X 可能取的值为12,,a a ,随机变量X 取i a 的概率为(1,2,,)i P i n = ,记作:()()1,2,3,i iP X a p i === (1)或把上式列成表2-2:表2-2或(1)式称为离散型随机变量X 的分布列.(2)根据随机变量的意义与概率的性质,你能发现分布列有什么性质? ①0,12,,i p i >= ②121p p ++=4、典例探究例1 一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,用X 表示取出球的最大号码,求X 的分布列.思考:(1)取出球的最大号码小于5的概率是多少?(2)结合X 的分布列你能给同学提一个问题吗?例2 随机变量X 的分布列为(1)求常数a ;(2)求(14)P X <<5、随堂练习(1)下列A 、B 、C 四个表,其中能成为随机变量X 的分布列的是( )(2)设随机变量X 的分布列为(),2i P X i a ==1,2,3.i = 则(2)P X ==__________.(3) 一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,用X 表示取出球的最小号码,求X 的分布列.6、课堂总结(1)分布列的定义.(2)分布列的性质:①0,12,,i p i >= ②121p p ++= (3)求分布列的步骤:①确定随机变量X 的所有可能的值;②求出各取值对应的概率;③画出表格.八、【板书设计】。

高中数学离散型随机变量的分布列教案新人教A版选修

高中数学离散型随机变量的分布列教案新人教A版选修

一、教案简介本教案为人教A版高中数学选修课程《离散型随机变量的分布列》的教学设计,主要针对高中学生,旨在帮助学生理解离散型随机变量的概念,掌握分布列的性质及其计算方法,培养学生的数学思维能力和实际应用能力。

二、教学目标1. 理解离散型随机变量的定义及其性质。

2. 掌握离散型随机变量的分布列的概念及其计算方法。

3. 能够运用分布列解决实际问题,提高数学建模能力。

三、教学内容1. 离散型随机变量的定义及其性质。

2. 分布列的概念及其计算方法。

3. 常用离散型随机变量的分布列(如伯努利分布、二项分布、几何分布等)。

4. 离散型随机变量分布列的应用。

四、教学过程1. 引入新课:通过实例介绍离散型随机变量的概念,引导学生思考其分布规律。

2. 讲解离散型随机变量的定义及其性质,让学生理解并掌握基本概念。

3. 讲解分布列的概念及其计算方法,让学生能够自行求解离散型随机变量的分布列。

4. 通过例题讲解常用离散型随机变量的分布列及其应用,让学生能够解决实际问题。

5. 课堂练习:让学生运用所学知识解决实际问题,巩固课堂所学。

五、教学评价1. 课堂问答:检查学生对离散型随机变量及其分布列的基本概念的理解。

2. 课堂练习:评估学生运用分布列解决实际问题的能力。

3. 课后作业:巩固学生对离散型随机变量分布列的知识,提高学生的数学应用能力。

六、教学策略1. 实例引入:通过生活中的实际例子,激发学生的学习兴趣,引导学生思考离散型随机变量的分布规律。

2. 互动教学:在讲解过程中,鼓励学生积极参与,提问解答,增强课堂的互动性。

3. 分层教学:针对学生的不同层次,给予适当的引导和辅导,使所有学生都能跟上教学进度。

4. 实践操作:通过大量的例题和练习,让学生在实践中掌握离散型随机变量的分布列的计算方法及其应用。

七、教学资源1. PPT课件:制作精美的PPT课件,直观展示离散型随机变量的分布列的性质和计算方法。

2. 教学案例:收集与离散型随机变量分布列相关的实际案例,用于引导学生思考和巩固所学知识。

离散型随机变量其分布列教案

离散型随机变量其分布列教案

离散型随机变量其分布列教案一、教学目标1.知识与技能:掌握离散型随机变量的概念;了解离散型随机变量的分布列的概念与相关性质;能够根据问题给出离散型随机变量的分布列。

2.过程与方法:通过讲解、示例分析和实际问题解答等方式培养学生的分析问题和解决问题的能力;通过课堂练习、小组合作等方式培养学生的合作精神和团队意识。

3.情感、态度和价值观:培养学生对离散型随机变量的兴趣;培养学生的逻辑思维和分析问题的能力;培养学生的合作意识和团队合作能力。

二、教学重点与难点1.教学重点2.教学难点三、教学过程1.导入新知识引入离散型随机变量的概念,与连续型随机变量进行对比,引出离散型随机变量的分布列的概念,并讲解分布列的性质。

2.学习新知识2.1引入概念解释离散型随机变量的概念,并给出几个常见的离散型随机变量的例子,如二项分布、泊松分布等。

2.2分布列的概念详细讲解分布列的概念,即离散型随机变量的取值及其对应的概率,并通过示例进行说明。

2.3分布列的性质讲解分布列的性质,包括非负性、和为1等。

3.巩固与拓展通过例题进行分布列的计算练习,同时讲解分布列的期望值和方差的计算方法。

4.拓展应用结合实际问题,如掷硬币、扔骰子等,引导学生找出问题中的离散型随机变量,并计算其分布列。

四、教学设置1.教具准备黑板、彩笔、教案、习题册等。

2.师生活动教师以讲解为主,学生以听讲、思考、举手发言为主。

3.学生活动主要是听讲、思考、讨论、合作等。

五、教学反思离散型随机变量的分布列是基础内容,是理解和应用概率论中的重要概念。

通过本节课的学习,学生对离散型随机变量的概念和分布列的性质有了初步的了解,并能够通过例题进行分布列的计算。

教学过程中需要注意让学生进行思考和灵活运用,培养学生的分析问题和解决问题的能力,同时注重实际问题的应用,提高学生的理论与实践结合的能力。

离散型随机变量及其分布列教案

离散型随机变量及其分布列教案

离散型随机变量及其分布列教案离散型随机变量及其分布列教案一、引言1.1 概念介绍离散型随机变量是统计学中的一个重要概念,它描述了在一次实验中可能取到的离散数值,如扔一枚硬币可以取到正面和反面两个离散数值。

本文将介绍离散型随机变量的基本概念及其分布列。

1.2 学习目标通过本教案的学习,你将能够:- 理解离散型随机变量的基本概念;- 了解离散型随机变量的分布列及其性质;- 掌握计算离散型随机变量概率的方法。

二、离散型随机变量的定义2.1 随机变量的概念在概率论中,随机变量是指定义在某个概率空间上的实值函数,它的取值是由实验结果决定的。

随机变量可以分为离散型和连续型两种类型,本文主要关注离散型随机变量。

2.2 离散型随机变量的定义离散型随机变量是指其取值是有限个或可数个的随机变量。

扔一枚硬币的实验可以定义一个离散型随机变量X,它的取值为1(正面)和-1(反面)。

三、离散型随机变量的分布列3.1 定义离散型随机变量的分布列,也称为概率质量函数(Probability Mass Function,简称PMF),描述了随机变量取各个值的概率。

3.2 示意图我们可以通过绘制柱状图来直观地表示离散型随机变量的分布列。

横轴表示随机变量的取值,纵轴表示对应取值的概率。

3.3 性质离散型随机变量的分布列具有以下性质:- 非负性:概率质量函数的取值非负;- 总和为1:所有可能取值的概率之和等于1。

四、计算概率4.1 概念介绍在实际问题中,我们常常需要计算离散型随机变量的概率。

概率计算可以基于分布列进行。

4.2 计算方法计算离散型随机变量概率的基本方法是通过分布列查找对应取值的概率。

具体而言,对于随机变量X和某个取值x,我们可以通过查找分布列找到对应的概率P(X=x)。

五、总结与回顾5.1 概括概念通过本教案的学习,我们了解了离散型随机变量的基本概念及其分布列。

离散型随机变量的分布列描述了随机变量取各个值的概率。

5.2 理解计算方法我们学会了通过分布列计算离散型随机变量的概率的方法。

离散型随机变量分布列教学案

离散型随机变量分布列教学案

离散型随机变量分布列教学案一、知识目标1.能够定义离散型随机变量;2.了解离散型随机变量分布的概念;3.能够构造离散型随机变量分布列,了解分布列的意义及其特点;4.能够求离散型随机变量分布的期望和方差。

二、教学重点四、教学方法讲授、举例、讨论。

五、教学过程1.引入现实生活中经常碰到的事件有可能是某种情况的多次发生,每次事件的结果都是不确定的,这样的现象叫做随机事件。

而随机变量则是随机事件的结果所标示的数值。

本节课将着重介绍离散型随机变量的概念、分布列的构造及相关计算方法。

2.概念解释(1)离散型随机变量:若随机变量取值只能是由有限个或无限个可数的数值所构成的集合中的一个,则该随机变量称为离散型随机变量。

3.分布列的构造及意义离散型随机变量的分布列是对离散型随机变量分布的一种简洁的表达方式,它由随机变量的可能取值和对应的概率构成。

(1)列出随机变量可能取的所有值;(2)确定每个值出现的概率;(3)将每个值及其对应的概率填入表格。

例如,某种硬币正面朝上的概率为0.4,反面朝上的概率为0.6,则构造硬币正面朝上的次数的分布列如下:正面朝上的次数 x 概率 P(x)0 0.64.分布列的特点(1)每个值的概率都非负,即P(x)≥0。

5.分布的期望和方差(1)期望离散型随机变量的期望定义为E[X]=∑xP(x),其中x为随机变量的取值,P(x)为x取某一特定值的概率。

(2)方差离散型随机变量的方差定义为Var[X]=E[X^2]-(E[X])^2,其中E[X^2]表示随机变量的二次方的期望。

6.范例讲解某小组4名同学和参加模拟考试,假设每位同学的通过率为0.8,未通过率为0.2。

求小组中通过数的概率分布。

解:构造通过数的分布列如下:其中,P(0)=0.2^4=0.0016,P(1)=C(4,1)×0.8×0.2^3=0.0256,P(2)=C(4,2)×0.8^2×0.2^2=0.1536,P(3)=C(4,3)×0.8^3×0.2=0.4096,P(4)=0.8^4=0.4096。

离散型随机变量及其分布列教案

离散型随机变量及其分布列教案

离散型随机变量及其分布列教案离散型随机变量是指在其中一区间内取值有限或可列无限个的随机变量。

离散型随机变量通常用来描述一些试验的结果,例如抛硬币的结果,掷骰子的结果等。

在教学过程中,可以通过引入离散型随机变量教授概率论的基本概念和计算方法。

以下是一个关于离散型随机变量及其分布列的教案:教学目标:1.了解离散型随机变量的定义和特点;2.掌握计算离散型随机变量的分布列;3.学会使用分布列计算期望值和方差。

教学内容:1.离散型随机变量的定义和特点:-定义:离散型随机变量是指在其中一区间内取值有限或可列无限个的随机变量。

-特点:离散型随机变量的取值是可以数清的,不能取到区间之外的值。

2.离散型随机变量的分布列:-分布列是用来描述离散型随机变量各个取值的概率的表格或公式。

-分布列的特点:各个取值的概率之和为13.离散型随机变量的期望值和方差:-期望值是离散型随机变量各个取值与其相应概率的乘积之和。

表示为E(X)。

E(X) = x1*p1 + x2*p2 + ... + xn*pn- 方差是离散型随机变量各个取值与其相应概率的乘积减去期望值的平方之和。

表示为Var(X)。

Var(X) = (x1-E(X))^2*p1 + (x2-E(X))^2*p2 + ... + (xn-E(X))^2*pn教学步骤:Step 1:引入离散型随机变量的概念通过实际例子引入离散型随机变量的概念,例如掷骰子的结果就是一个离散型随机变量。

Step 2:介绍离散型随机变量的定义和特点详细介绍离散型随机变量的定义和特点,并与连续型随机变量进行对比。

Step 3:讲解离散型随机变量的分布列解释离散型随机变量分布列的含义,给出分布列的例子,并教授计算分布列的方法。

Step 4:演示如何计算离散型随机变量的期望值和方差从分布列的角度出发,演示如何计算离散型随机变量的期望值和方差。

Step 5:练习和巩固提供一些练习题,让学生通过计算离散型随机变量的分布列、期望值和方差来巩固所学知识。

离散型随机变量分布列教学案

离散型随机变量分布列教学案

高二数学(理科)离散型随机变量及分布列教学案一、课标研读课程标准:在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性。

课标研读:分布列描述了离散型随机变量取值的概率规律,教学中,应引导学生利用所学知识解决一些实际问题。

二、教材分析:1.在教材中的地位、作用:本部分内容主要包括随机变量的概念及其分布列,是离散性随机变量的均值和方差的基础,从近几年的高考观察,这部分内容有加强命题的趋势。

一般以实际情景为主,建立合适的分布列,通过均值和方差解释实际问题。

2、学习目标:(1)知识与技能:理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题;(2)过程与方法:初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题;(3)情感态度与价值观:进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。

3、重点、难点教学重点:会求某些简单的离散型随机变量的分布列;难点:求解随机变量的概率分布三、学情分析:学生将在必修3学习概率的基础上,利用计数原理与排列组合知识求古典概型的概率,这是本节的难点,主要是分清概率类型,计算 取得每一个值时的概率:取球、抽取产品等问题还要注意是放回抽样还是不放回抽样。

四、教学策略采用师生互动的方式,通过让学生动脑思考、动口议论、小组合作,充分发挥学生的积极性和主动性,教师合理引导学生归纳总结。

教学环节:创设情境——概念形成——概念深化——知识应用——总结反思—达标检测五、教学计划课时划分:3课时:第一课时离散型随机变量;第二课时为离散型随机变量分布列;第三课时为超几何分布。

六、教学设计第二课时高二数学理科离散型随机变量分布列导学案一、温故知新(大约2分钟)1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。

离散型随机变量的分布列优秀教学设计

离散型随机变量的分布列优秀教学设计

离散型随机变量的分布列【教学目标】1.理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列; 2.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题。

3.了解二项分布的概念,能举出一些服从二项分布的随机变量的例子 。

【教学重难点】教学重点:离散型随机变量的分布列的概念 教学难点:求简单的离散型随机变量的分布列【授课类型】新授课【课时安排】2课时【教学准备】多媒体、实物投影仪【教学过程】一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若是随机变量,b a b a ,,+=ξη是常数,则也是随机变量并且不改变其属性(离散型、连续型) 二、讲解新课:1. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x i ,…,ξηξ取每一个值xi (i=1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1。

由此你可以得出离散型随机变量的分布列都具有下面两个性质:(1)Pi ≥0,i =1,2,…; (2)P 1+P 2+…=1对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量。

离散型随机变量的分布列优秀教学设计

离散型随机变量的分布列优秀教学设计

第一部分教学设计说明概率与统计作为新课标的研究重点之一,高考的热点之一。

它体现了数学来源于生活,用于生活的本质。

在新课程中,概率与统计的内容着眼于发展学生的数学能力,这类题的命题特点就在于着重培养学生的数据收集、整理和分析能力。

另一个特点是选取具有时代性和现实性的问题情境作为试题的题材,充分体现了新课程中设置概率与统计内容的教育价值,使概率与统计知识贴近生活,并且能解决实际问题。

而离散型随机变量的分布列又是这类题的必考题型,它涉及的题目内容角度广、考点范围宽,充分体现了概率统计知识的应用性和综合性。

一、目标定位:无论是教学设计还是课堂教学,教学目标的确定是取得良好教学效果的前提。

教学要根据学生的思维发展水平和当前的教学任务,使学生通过课堂教学在基础知识、基本技能、数学能力以及情感精神等方面应获得的发展。

教学目标的建立应准确而具体,使目标成为教、学结果的依据。

本节课教学目标主要基于以下几个方面:1.依据教学大纲和教材内容的特点,以及高考大纲的要求确定第一个教学目标。

2.教材内容通过对具体问题的分析和归纳得出离散型随机变量的分布列的有关概念,有利于提高学生抽象概括能力;用变量来刻画随机实验的结果以及随机事件,借助于数学工具对随机现象进行研究,有利于提高学生数学地提出、分析、解决问题的能力;引导学生尝试运用所学知识解决一些实际问题,有利于提高学生应用数学的意识,由此确定第二个教学目标。

3.本节课内容通过实例设立问题情境,生动有趣地呈现内容,有利于提高学生的学习兴趣;学生运用所学知识解决一些实际问题,能初步认识数学的应用价值、科学价值。

确定第三个教学目标。

并通过学生与学生之间进行的讨论或争鸣,师生之间的交流和教师恰当的点评,使学生的知识体系和方法系统得以进一步完善,教学目标的达成度高。

二、教材内容分析:从近几年的高考试题来看,高考要求掌握离散型随机变量的期望与方差的意义,掌握期望与方差的性质,会求简单的离散型随机变量的分布列、期望和方差,求简单的离散型随机变量的分布列,以及由此分布列求随机变量的数学期望与方差,特别是二项分布,这部分内容综合性强,涉及排列、组合、二项式定理和概率方面的知识,在考查相关知识的同时,着重考查应用意识和信息加工与数据处理能力,可以预见这个知识点将是近几年高考的一个新热点,成为新增内容的重点考查对象。

人教版高中数学《离散型随机变量的分布列》教学设计(全国一等奖)

人教版高中数学《离散型随机变量的分布列》教学设计(全国一等奖)

《离散型随机变量的分布列》教学设计一、教材分析《离散型随机变量的分布列》是人教A版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第二课时,主要内容是学习分布列的定义、性质、应用和两点分布模型。

离散型随机变量的分布列是高中阶段的重点内容,它作为概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,是本章的关键知识之一,也是后续第三节离散型随机变量的均值和方差的基础。

从近几年的高考观察,这部分内容有加强命题的趋势。

一般以实际情境为主,需要学生具备一定的建模能力,建立合适的分布列,通过均值和方差解释实际问题。

二、学情分析在必修三的教材中,学生已经学习了有关统计概率的基本知识,在本书的第一章中也全面学习了排列组合的有关内容,有了知识上的准备; 并且通过古典概率的学习,基本掌握了离散型随机变量取某些值时对应的概率, 有了方法上的准备, 但并未系统化。

处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳,但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待于提高。

三、教学策略分析学生是教学的主体,本节课要给学生提供各种参与机会。

本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。

注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,通过设计抽奖方案,让学生感受“从特殊到一般,再从一般到特殊”的抽象思维过程,应用类比、归纳、转化的思想方法,得到分布列的三种表示方法及分布列的性质,培养学生分析问题、解决问题的能力。

四、目标分析1.理解核心概念——离散型随机变量分布列及两点分布模型,掌握分布列的性质,会求离散型随机变量的分布列,并能解决实际问题;2. 在对抽奖问题的分析中经历数学建模过程,通过与函数的类比使学生理解离散型随机变量的分布列的函数属性,通过对抽奖方案的分析得出特殊的离散型随机变量的分布列,再从特殊的离散型随机变量的分布列归纳出一般的离散型随机变量的分布列,再通过对例题的抽奖方案的分析得出两点分布模型,让学生感知从特殊到一般再从一般到特殊的认知过程;3. 通过情境导入使学生在具体情境中认识分布列对于刻画随机现象的重要性,体会数学来源于生活,又应用于生活的本质。

高中数学离散型随机变量的分布列教案新人教A版选修

高中数学离散型随机变量的分布列教案新人教A版选修

高中数学离散型随机变量的分布列教案新人教A版选修一、教学目标:1. 理解离散型随机变量的概念,掌握其分布列的定义和性质。

2. 学会如何计算离散型随机变量的分布列,并能应用于实际问题。

3. 培养学生的逻辑思维能力和数学解决问题的能力。

二、教学内容:1. 离散型随机变量的定义和性质。

2. 分布列的概念和性质。

3. 离散型随机变量分布列的计算方法。

4. 离散型随机变量分布列的应用。

三、教学重点与难点:1. 教学重点:离散型随机变量的分布列的定义和性质,计算方法及应用。

2. 教学难点:离散型随机变量分布列的计算方法和应用。

四、教学方法:1. 采用讲授法,系统地讲解离散型随机变量的分布列的概念、性质和计算方法。

2. 利用例题解析,让学生掌握离散型随机变量分布列的计算过程。

3. 开展小组讨论,让学生探讨离散型随机变量分布列在实际问题中的应用。

4. 利用课后习题,巩固所学知识。

五、教学过程:1. 引入新课:通过介绍离散型随机变量的概念,引导学生了解离散型随机变量的分布列。

2. 讲解离散型随机变量的分布列的定义和性质,让学生掌握其基本概念。

3. 讲解离散型随机变量分布列的计算方法,并通过例题解析,让学生熟悉计算过程。

4. 开展小组讨论,让学生探讨离散型随机变量分布列在实际问题中的应用。

6. 布置课后习题,巩固所学知识。

六、教学目标:1. 学会如何求解离散型随机变量的数学期望。

2. 理解离散型随机变量方差的概念,并掌握其计算方法。

3. 通过对离散型随机变量的数学期望和方差的分析,培养学生对随机现象的量化描述能力。

七、教学内容:1. 离散型随机变量的数学期望的定义和计算方法。

2. 离散型随机变量方差的概念和计算方法。

3. 离散型随机变量标准差的计算方法。

4. 离散型随机变量期望和方差在实际问题中的应用。

八、教学重点与难点:1. 教学重点:离散型随机变量的数学期望和方差的计算方法,以及它们在实际问题中的应用。

2. 教学难点:离散型随机变量方差的计算方法和实际应用。

离散型随机变量的分布列教学设计新部编版

离散型随机变量的分布列教学设计新部编版

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校教学设计:《离散型随机变量的分布列》一、教学内容分析概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者是相互渗透、相互联系的。

离散型随机变量的分布列是普通高中课程标准实验教科书数学(选修2-3)人民教育出版社B版第二章《概率》的第二节,它是一个必然事件分解成有限个互斥事件的概率的另一种表现形式,整体地反映了离散型随机变量所有可能的取值及其相应值的概率, 全面描述了随机变量的统计规律,并为定义随机变量两种最重要的特征数即数学期望和方差奠定了基础。

因此,“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是必修3概率知识的延伸,也是统计学的理论基础,能起到承上启下的作用。

同时,它是培养学生学会用数学思维来解决问题的好的素材,能够提升学生数学抽象、数学建模和数据分析的核心素养。

二、教学目标分析本节课依据教材分析和课标要求, 可确定如下的三维教学目标:【知识与技能】理解离散型随机变量的分布列及二点分布模型, 掌握分布列的性质, 会求简单的离散型随机变量的分布列。

【过程与方法】在对具体问题的分析中, 经历数学建模过程, 理解离散型随机变量的分布列及其性质的导出,启发引导学生思考、讨论、表述,展现思维过程;让学生体会由具体到抽象的思想方法,感知从特殊到一般的认知过程。

【情感态度与价值观】在具体情境中, 认识分布列对于刻画随机现象的重要性, 体会数学来源于生活, 又应用于生活的事实; 设计抽奖活动,外化数学学习的兴趣,体会学习的成功与喜悦,培养严谨的科学态度。

根据以上目标的确定,教学上力求体现:两个意识(创新意识、应用意识)和四种能力(探究能力、建模能力、交流能力、实践能力)。

三、学生学情分析根据本人以往的教学经验和学生思维的最近发展区理论,从以下两方面对学生学习本节课内容的情况加以分析,便于找到学生的认知规律,帮助学生跨越学习障碍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1离散型随机变量及其分布列教学设计离散型随机变量的分布列(第2课时)(人教A版高中课标教材数学选修2-3)2016年10月一、教学内容分析本节课是普通高中新课程标准实验教科书《数学》(选修2-3)中第二章《随机变量及其分布》第一节“离散型随机变量及其分布列”的第二课时.引入随机变量的目的是研究随机现象发生的统计规律,及所有随机事件发生的概率.离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.对随机变量的概率分布的研究,实现了随机现象数学化的转化.学生在第一课时已经学习了“离散型随机变量”,对离散型随机变量的概念有了一定的认识.了解到建立从随机试验结果到随机变量的映射的目的是将实际问题数量化,便于用数学工具更好地研究问题,进一步体会数学建模的思想. 教师的重要作用就在于培养学生“数学地”观察事物,对现象或问题“数学地”思考,进而合理地量化和转化,把问题“数学化”,用数学的思想方法加以解决.本节课要研究随机变量所表示的随机事件的概率分布情况,即建立“离散型随机变量的分布列”这一数学模型. 离散型随机变量和其对应的概率之间是一种函数关系,因此可以类比函数来研究. 教师引导学生用数学的思维分析问题,用数学的思想方法解决问题. 通过类比函数的表示方法,首先对三个具体实例进行表示,获得对“离散型随机变量的分布列”模型的初步认识,再从这些具体实例中抽象概括出离散型随机变量的分布列的一般定义并进一步探索性质. 在概念得出的过程中,可以培养学生的抽象概括能力. 在此基础上学习两点分布等特殊的分布列,理解分布列对于刻画随机现象的重要性,能够应用分布列解决实际问题.在实际问题的解决中,可以培养学生的数学建模能力.因此,本节课的教学重点:理解离散型随机变量的分布列的概念,理解分布列对于刻画随机现象的重要性,理解两点分布的模型及其应用.二、教学目标设置1.通过具体实例,理解离散型随机变量分布列的概念,理解分布列对于刻画随机现象的重要性;类比函数的几种表示法学习离散型随机变量的表示方法;探索离散型随机变量的性质.2.通过学生的自主探究,进一步体会数学抽象、数学建模的思想,培养学生抽象概括能力.3.通过类比、推广、特殊化等一系列思维活动,体会统计思想,学会用统计思想分析和处理随机现象的基本方法. 在解决实际问题的过程中,同学们加深对有关数学概念本质的理解,认识数学知识与实际的联系,并学会用数学解决一些实际问题.4.通过创设情境调动学生参与课堂的热情,激发学生学习数学的情感.经历数学建模的过程并从中获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心.三、学生学情分析(一)学生程度我所授课的对象是天津市实验中学的学生.学生的水平相对较高,基础知识掌握得较好,学生的理解能力比较强.虽然已经经历了概率的学习,但是对随机变量的学习还处于初期阶段,一些数学方法和数学思想的掌握还有待进一步加强.(二)知识层面1.学生已经学习过概率的知识并掌握了计数原理;2.掌握了离散型随机变量的定义.(三)能力层面1.具有一定的数学抽象的能力;2.具有一定的数学建模的基础.根据以上三个方面的分析,在学生已有的认知基础的条件下,学生可以自主利用古典概型计算概率的公式完成求基本事件的概率.在具体操作过程中,需要老师的引导和帮助.教学难点:理解离散型随机变量分布列的概念,理解分布列对于刻画随机现象的重要性.四、教学策略分析1.《高中数学课程标准》倡导自主探索、动手实践、合作交流等学习方式.根据本节课的教学内容和学生自主学习能力相对比较强的特点,以问题串驱动整个课堂的进行,采用启发、引导、探究相结合的教学方法.2.本节教学内容的脉络是:复习旧知,引入新课——研究实例,抽象概括——探索性质,辨析概念——数学建模,两点分布——实际应用,解决问题——课堂小结,反思提升.首先对上节课已经学习的随机变量的概念加以回顾,并进一步提出后续问题,即“我们更关心随机事件发生的可能性有多大,即随机变量取不同值的概率分布情况是怎样的”,以开门见山的方式提出问题,引发学生的思考.然后对于如何解决这个问题,以三道实际问题“掷骰子”、“掷硬币”、“摸次品”为背景,启发学生寻求解决问题的方法.类比函数的表示方法,研究离散型随机变量分布列的表示方法,进而抽象概括随机变量分布列的概念;探索离散型随机变量的性质,并辨析概念;通过举例,掌握两点分布的分布列模型及其应用;在解决实际问题的过程中,使学生加深对有关数学概念本质的理解,认识数学知识与实际的联系.利用离散型随机变量思想描述和分析某些随机现象,通过类比、推广、特殊化等一系列思维活动,体会统计思想,学会用统计思想分析和处理随机现象的基本方法.3.在探索两点分布和解决实际问题的过程中,通过小组合作交流,同桌协作探究的方式,借助图形计算器等信息技术手段,为学生的数学探究与数学思维提供支持完成调动学生学习的积极性和主动性,培养学生的探究精神及协作意识,使学生真正体会数学抽象、数学建模思想,并能体验成功的喜悦.五、教学过程活动一:研究实例,抽象概括研究问题1:求下列随机变量取各个不同值时的概率:(1)抛掷一枚质地均匀的骰子,向上一面的点数;(2)掷一枚均匀的硬币,向上一面的结果;(3)在含有5件次品的100件产品中,任取3件,则其中含有的次品数.师生活动:教师提问,学生思考回答.从复习旧知入手,引入新课.设计意图以三个贴近学生生活的实例,复习“离散型随机变量”的概念,立足学生的思维起点,注重在学生的“最近发展区”内设置问题,便于学生发现规律,提出问题. “低起点”为本节课学生的高参与度奠定了基础.研究问题2:如何表示上述三个实例中从随机变量到概率的映射?师生活动:教师展示课件,类比函数的三种表示方法,分别对这三组映射进行表示,并说明三种方法的特点.设计意图从学生感兴趣的实际问题入手,轻松的进入课堂,不知不觉地进入数学的情境中.表格在描述掷骰子这个随机试验的规律中起着重要作用,为更好地理解随机变量分布列的概念做好铺垫. 师生活动:分布列可以帮助我们来解决一些实际问题.比如,“掷骰子”试验中“向上点数小于3”的概率,“摸次品”试验中如何求解“至少1件次品”的概率(两种方法).明确分布列完全描述了这个随机变量所刻画的随机现象.从这里可以完整地反映随机事件发生的概率分布状况.设计意图通过对事件之间关系的分析,不仅使随机变量概念在学生头脑中进一步升华,更体现了随机变量描述随机试验结果的科学性和合理性.研究问题3:抽象概括“离散型随机变量的分布列”的概念.师生活动:由师生共同得出离散型随机变量分布列的概念.一般地,若离散型随机变量X 可能取的不同值为12,,,,i n x x x x L LX 取每一个值1,2i x i =,nL ()的概率()i i P X x p == ,以表格的形式表示如下: 表1表1称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为简单起见,也用等式(),1,2,,i i P X x p i n ===L 表示X 的分布列. 师生活动:反思概念,明确指出离散型随机变量的分布列的求解步骤.设计意图1.让学生从特殊到一般,由具体到抽象,得出求离散型随机变量的概念,理解分布列对于刻画随机现象的重要性.揭示数学通常的发现过程,给学生“数学抽象”的体验,这种引出方式自然而易于学生接受.2.培养学生提炼方法,归纳概括的能力,并学会学以致用,渗透从特殊到一般的数学思想.3.通过有效的信息交流,使学生对分布列的概念有更深刻的认识,真正把课堂还给学生.活动二:探索性质,理解作用研究问题4:探索“离散型随机变量的分布列”的性质.师生活动:学生根据概率的性质,结合具体的实例,小组讨论离散型随机变量的分布列的性质,并且辨析概念.离散型随机变量的分布列的性质:(1)0,1,2,;i p i n ≥=L(2)11ni i p ==∑ .设计意图1.以问题研讨的形式替代教师的讲解,分化难点、解决重点,有利于学生对知识的掌握,并强化对分布列概念的理解.2.学生在讨论、合作中解决问题,充分体会成功的愉悦.3.在课堂教学中,通过展示,让学生辨析、交流、讨论,实质是抓住了概念构建中的一个非常重要的“生长点”,使得学生对于概念有了一个主动辨别、探究、构建的过程.活动三:概念应用,数学建模研究问题5:在掷一枚图钉的随机试验中,令1,0,X ⎧=⎨⎩针尖向上;针尖向下.如果针尖向上的概率为p ,试写出随机变量X 的分布列.师生活动:利用分布列和概率的性质,可以计算由离散型随机变量表示的事件的概率,这也是我们学习分布列的目的.学生板演,从具体实例中抽取特殊的分布列模型,师生共同总结两点分布的概念,并且介绍相关数学文化.若随机变量X 的分布列具有表2的形式,则称X 服从两点分布,并称(1)p P X ==为成功概率,两点分布又称0-1分布.表2设计意图回扣课始的问题(掷硬币),便于学生感受建立概率模型的整个过程,完善学生的认知结构,提升学生的数学素养,培养学生从数学的视角思考问题、分析问题和解决问题的能力.研究问题6:在某年级的联欢会上设计一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,(1)至少摸到3个红球就中奖,求中奖的概率;(2)如果要将这个游戏的中奖概率控制在55%左右,那么应该如何设计中奖规则?师生活动:学生以小组为单位,思考讨论,交流解题思路并利用图形计算器完成概率的求解.学生之间互相评价,共同提高.设计意图1.可以利用三种方法完成(1),但是在(2)中充分体现分布列的重要性.分布列体现出概率分布的完整性和概率分布的规律性,完全描述了这个随机变量所刻画的随机现象,从而可以完整地反映随机事件发生的概率分布状况.2.学生熟练使用图形计算器,节约时间,方便,正确率高.活动四:总结反思1.本节课你都有哪些收获?2.给你印象最深的是什么?3.课后,你还想进行什么探究?师生活动:教师引导,学生回答.从知识结构、数学思想方法等方面,对所学知识进行反思.设计意图通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构,便于理解记忆,归纳梳理了本节的知识和方法.通过思考问题,拓展学生的视野,提高学生探究意识.课后作业1.《选修2-3》(人教A版)P49 习题2.1:A 组5,6 ; B组1,22.思考作业:一个人在街边摆一个小摊,挂个牌,上面写着有奖摸球.规则如下:共有10个红球,和10个白球,这些球除颜色外完全相同.将这20个球一起放入口袋中,每次摸出10个球.出10元钱可以参与游戏.请大家根据所学知识,考虑是否参与?设计意图在布置作业环节中,设置了两组练习,一组必做题,一组思考题,这样可以使学生在完成基本学习任务的同时,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生的学习兴趣.。

相关文档
最新文档