4)第四章_讲义多普勒天气雷达和偏振多普勒天气雷达

合集下载

多普勒天气雷达风场资料的分析和应用PPT共56页

多普勒天气雷达风场资料的分析和应用PPT共56页
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
1
0















21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
多普勒天气雷达风场资料的分析和应 用
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8









若浮Βιβλιοθήκη 烟。9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散

多普勒天气雷达原理与应用4-强对流风暴及其雷达回波特征

多普勒天气雷达原理与应用4-强对流风暴及其雷达回波特征

2004年 2004年4月22日冷空气爆发(合肥雷达) 22日冷空气爆发 合肥雷达) 日冷空气爆发(
Examples - nontopographic
Ongoing MCS
Frontal boundary
Convective storm outflow boundaries
Organized or disorganized?
中气旋模拟图及实例
中气旋模型 -蓝金组合涡旋
对于识别中气旋,最好使用风暴相对速度图(右)而 对于识别中气旋,最好使用风暴相对速度图( 不是基速度图( 不是基速度图(左)。
超级单体风暴的分类
• 经典超级单体风暴 • 强降水超级单体风暴 • 弱降水超级单体风暴
经典超级单体
Classic Supercells
垂直风廓线及其对对流风暴的作用
垂直风切变、 垂直风切变、切变矢量和速度矢图
垂直风切变是指水 平方向的风速随高度 的变化。 的变化 。 在给定的层 次中, 次中 , 切变风矢指的 是高层和底层风矢量 之差, 之差 , 切变风矢可以 在所有风场资料层上 绘出。 绘出 。 速度矢图是由 切变风矢组成的。 切变风矢组成的。
对流有效位能CAPE 对流有效位能CAPE
对流有效位能CAPE 对流有效位能CAPE
指气块在给定环境中绝热上升时的正浮力 所产生的能量的垂直积分, 所产生的能量的垂直积分,是风暴潜在强度的 一个重要指标。 logP图上 CAPE正比于 图上, 一个重要指标。在T-logP图上,CAPE正比于 气块上升曲线(状态曲线) 气块上升曲线(状态曲线)和环境温度曲线 层结曲线)从自由对流高度(LFC) (层结曲线)从自由对流高度(LFC)至平衡 高度(EL)所围成的区域的面积。 高度(EL)所围成的区域的面积。 CAPE数值的增大表示上升气流强度及对流 CAPE数值的增大表示上升气流强度及对流 发展的潜势增加 。

雷达气象学_南京信息工程大学中国大学mooc课后章节答案期末考试题库2023年

雷达气象学_南京信息工程大学中国大学mooc课后章节答案期末考试题库2023年

雷达气象学_南京信息工程大学中国大学mooc课后章节答案期末考试题库2023年1.对流雷暴中,容易产生强龙卷的是()参考答案:超级单体2.与龙卷无关的特殊回波是()参考答案:TBSS3.多普勒天气雷达的天线大小影响()参考答案:高度分辨率_体积分辨率4.多普勒天气雷达不能探测到()速度参考答案:切向5.不属于天气雷达的波段是()参考答案:L6.天气雷达的最重要参数是()波长7.我国业务天气雷达的时间分辨率约为()分钟参考答案:68.瑞利散射的条件可以不包括()参考答案:粒子质量密度9.我国天气雷达的脉冲宽度是1.57微秒,对应的距离分辨率大约是()参考答案:250m10.不是双偏振雷达base data的是()参考答案:Kdp11.判别地物回波的最好回波参量是()参考答案:CC12.我国业务天气雷达的天线波束宽度约为()1度13.Zdr数值最大的是()参考答案:蜻蜓14.用波长为10cm的S波段雷达探测降雨时,某小雨区的雷达反射率是100mm2/m3,用波长5cm的C波段雷达探测,该小雨区的雷达反射率是多少mm2/m3?(注意:不是雷达反射率因子Z)(a)100 (b)200 (c)400 (d)1600请在空内填写A或B或C或D参考答案:D##%_YZPRLFH_%##d15.我国目前的主流业务天气雷达是()参考答案:双线偏振多普勒天气雷达16.探测台风天气时,探测性能最好的雷达波段可能是()参考答案:S17.哲学课本中的天体“红移”与雷达气象学中相对应的知识是()参考答案:多普勒效应18.对流降水的回波特点包括()参考答案:回波高度高_回波强度的一致性差_回波中心的强度大19.降雪回波具有的特点包括()参考答案:回波范围大_回波差异小20.降雨回波强度的上、下限大约是()参考答案:55dBZ_10dBZ21.根据大气折射率分布的不同,出现多种雷达电磁波的折射情况,其中对天气雷达影响最大的折射是()参考答案:大气波导22.S波段雷达估测降雨时,最主要的误差可能来自()参考答案:雨滴谱变化23.双偏振雷达回波参数中,不受衰减影响的有()参考答案:Фdp_Vr24.不能充分体现双偏振雷达探测优势的降水是()参考答案:小雨25.雷达气象方程反映的是:雷达探测的是目标的()参考答案:雷达反射率因子_回波功率26.影响雷达照射体积的参数有()参考答案:目标距离_波束宽度_脉冲宽度27.VCP21和VCP31的探测差别主要有()参考答案:脉冲宽度_探测目标_扫描仰角_时间分辨率28.我国业务天气雷达使用的波段是()参考答案:S_C29.我国业务天气雷达的脉冲宽度约1.67微秒(实际为1.57微秒),230km处的照射体积约为()立方公里(a)2 (b)3 (c)4 (d)其它请在空内填写A 或B或C或D参考答案:B##%_YZPRLFH_%##b30.目标的雷达反射率因子具有()参考答案:和雷达波长无关_和复折射指数项大小无关_和距离远近无关31.雷达电磁波衰减的原因包括()参考答案:介质的吸收_介质的散射32.雷达电磁波折射对雷达探测的影响是()参考答案:目标高度有误差_地物杂波增多_目标距离有误差33.容易发生超折射的气象条件包括()参考答案:暴雨过后_逆温_大气层“上层干、下层湿”34.谱宽最大和最小的目标分别是()参考答案:地物_降雹35.超级单体引起的灾害可能有()参考答案:滑坡或泥石流_龙卷风36.降雪回波功率较小的原因有()参考答案:雪花数量密度小_雪花复折射指数项小_雪花等效直径小37.与真实回波相比,迟到回波(The second-trip echo)的变化包括()参考答案:回波距离_回波高度_回波强度_回波面积38.调整雷达的PRF,可能影响()参考答案:Vmax_Rmax_回波面积_回波强度39.雨滴在降落过程中的破碎,对雷达探测和估测的影响有()参考答案:估测的降雨强度_估测的降雨量_回波强度40.地物回波和降水回波的差异有()参考答案:回波的水平分布_回波的垂直分布_回波的时间分布_径向速度分布41.与冰雹特征回波密切相关的有()参考答案:很强的Z_TBSS_V-形衰减缺口42.与雷暴下沉气流密切相关的有()参考答案:RFD_阵风锋43.与上升气流密切相关的特征回波有()参考答案:BWER_WER44.能够产生龙卷的雷暴类型有()参考答案:飑线_多单体雷暴_超级单体45.回波强度最大和最小的分别是()参考答案:冰雹_降雪(干雪)46.能用于判别冰雹的双偏振雷达参量有()参考答案:Ldr_Zdr_kdp47.和雨滴数密度密切相关的参量有()参考答案:Фdp_Z48.Zdr在0dB附近的目标有()参考答案:小雨_北方降雪_冰雹49.冰雹特殊回波TBSS的长短主要受()的影响。

多普勒天气雷达

多普勒天气雷达

工作原理
多普勒雷达是世界上最先进的天气监测设备,并且已经在很多国家得到深入应用,因此,下面我们就多普勒 雷达的工作原理进行深入分析和研究,以便能够使人们对其工作原理有着更为清楚的认识。
1.1通过气象目标对雷达电磁波的散射和吸收
粒子能够对电磁波进行吸收和散射,这也是粒子对电磁波的两大基本形式。雷达探测大气的基础是由气象目 标对雷达电磁波的吸收和散射所得。如果电磁波的波束在大气传播途中遇到包括云滴、雨滴以及其他悬浮粒子和 空气分子,作为入射的电磁波波束中的有一部分会因为上述的粒子反射到不同地方,这类现象称之为散射。一部 分散射的电磁波波束会被粒子吸收,最终按照雷达的方向返回被雷达天线接收,多普勒天气雷达能够通过接收到 的电磁波束中自带的振幅和位相等数据,得出气象目标的平均速度以及发射率因子和速度谱宽等基本数据,进而 推断并计算出相对应的气象情况和其他内部结构特征。
重要意义
多普勒雷达是世界上最先进的雷达系统,有“超级千里眼”之称。相较于传统天气雷达,多普勒雷达能够监 测到位于垂直地面8-12公里的高空中的对流云层的生成和变化,判断云的移动速度,其产品信息达72种,天气预 报的精确度比以前将会有较大提高。1991至1997年,美国在全国及海外布的165台NEXRDA被称为天气雷达系统的 典范,是世界上最先进的和最精确的天气雷达系统。它所采用的多普勒信号处理技术和自动产生灾害性天气警报 的能力无与伦比。NEXRAD可以自动形成和显示丰富多彩的天气产品,极大地提高了对超级单体、湖泊效应雪、成 层雪、雷暴、降水、风切变、下击暴流、龙卷、锋面、湍流、冰雹等重大灾害性天气的监测和预报能力。对强雷 暴的侦察率是96%,对龙卷的发现率是83%,对龙卷警告的平均预警时间是18分钟,而在未建NEXRDA络之前,美国 国家上述参数的平均值分别是60%,40%和2分钟。从中可以预料CINRDA将从根本上增强探测强雷暴的能力,能较 早地探测到晴空下威胁航行的大气湍流和发生灾害性洪水的可能,并为水资源的管理决策提供极有价值的信息。 新一代天气雷达系统建设是我国20世纪末21世纪初的一项气象现代化工程,计划在全国建成S频段和C频段雷达 156部,该系统建成后,我国的气象现代化水平会上一个新的台阶。

雷达气象学原理多普勒天气雷达

雷达气象学原理多普勒天气雷达
雷达气象学原理 多普勒天气雷达
多普勒天气雷达除此之外,还可利用 降水回波频率与发射频率之间变化的信 息来测定降水粒子的径向速度,并通过 此推断风速分布,垂直气流速度,大气 湍流,降水粒子谱分布,降水中特别是 强对流降水中风场结构特征。
以前,用常规天气雷达进行的天气预报 仅仅使用反射率因子资料。多普勒天气雷达 将提供两种附加的基本资料,径向速度和速 度谱宽,它们将增强对强风暴的探测能力, 也能改进对中尺度和天气尺度系统的预报。
多普勒频率与径向速度的关系
假设多普勒雷达发射脉冲的工作频率为f0,目标与雷达的距
离为r,则雷达波发往目标到返回天线所经过的距离为2r。这 个距离用波长来度量,相当 个波长;用弧度来衡量相当于 个弧度。若所发射的电磁波在天线处的位相为 ,那么电磁波 被散射回到天线时的相位应是
位相的时间变化率
由于目标物的径向运动引起 的雷达回波信号的频率变化,它 就是多普频移或多普勒频率。
多普勒雷达是通过直接测量多普勒 频率来得到径向速度的吗?
4.2 多普勒雷达径向速度探测方法
Pulse-Pair Method 脉冲对方法
取两个连续的脉冲然 后测量接收脉冲的相位, 这种脉冲对位相变化可以 比较容易并且比较准确地 测量
DΦ/dt 实际上就是角 速度 = w = 2πfd
假定当第一个脉冲遇到目标物时,该目标物距雷达的距离为r,则该目标物 产生的回波到达雷达时的位相为:
2、平均多普勒频移及频谱宽度
3、平均多普勒速度和速度谱宽度
注意:脉冲对方法并没有从回波信号中提取频谱或功率谱,从而 不能按以上公式计算和,而是直接对回波信号作简便计算求得。
(8.43)
影响速度谱宽的气象因子
谱宽表征着有效照射体内不同大小的多普勒速度偏离其平 均值的程度。谱宽可以用做速度估计质量控制的工具:当谱宽 增加,速度估计的可靠性就减小。对气象目标物而言,影响谱 宽的主要因子有四个:

C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析

C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析

C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析C波段双偏振多普勒天气雷达原理及主要偏振参数应用分析一、引言雷达技术是现代气象学中非常重要的观测手段之一,可以提供大气中降水、风场以及悬浮颗粒物等信息。

而C波段双偏振多普勒天气雷达作为目前气象雷达中应用较多的类型之一,具备了高分辨率、高灵敏度等优势。

本文将详细介绍C波段双偏振多普勒天气雷达的原理及其主要偏振参数的应用分析。

二、C波段双偏振多普勒天气雷达原理C波段双偏振多普勒天气雷达是基于双偏振技术的,通过观测目标散射的双向偏振特性,来获得降水和颗粒物的物理参数。

其基本工作原理可以分为以下几个步骤:1. 天线发射和接收信号C波段双偏振多普勒天气雷达的天线首先发送一个具有一定频率和极化状态的微波波束,这个波束会与大气中的目标相互作用,然后被目标散射回来。

2. 接收信号的极化分离雷达接收到回波信号后,首先需要进行极化分离,将水平极化和垂直极化信号分离出来,以获得目标的双向极化特性。

3. 目标退偏振比计算在完成极化分离后,可以利用修正的双偏振天线系数,计算目标的退偏振比。

这个参数可以描述目标相对于水平和垂直方向的散射强度差别。

4. 目标的径向速度估计利用多普勒频移原理,可以根据接收到的回波信号的频率偏移,计算出目标在雷达天线方向上的径向速度。

通过多普勒频移,我们可以判断目标是否在向雷达靠近或远离。

5. 目标的径向散射强度估计利用雷达接收到的信号,可以计算出目标的径向散射强度。

这个参数可以反映目标散射微波的能力,从而进一步了解目标的强度和大小。

三、主要偏振参数应用分析C波段双偏振多普勒天气雷达的主要偏振参数包括退偏振比和线性偏振比。

这些参数在气象研究中有着广泛的应用。

1. 退偏振比的应用退偏振比是衡量目标散射极化特性的重要参数。

在气象雷达中,退偏振比常用于识别和区分不同种类的降水。

例如,在雷达图像中,雪花和冰雹的退偏振比可以有较大的差异,利用退偏振比可以准确区分这两种降水类型。

多普勒天气雷达产品的识别与分析(天气雷达基础知识)

多普勒天气雷达产品的识别与分析(天气雷达基础知识)

3.2 强对流天气发生的背景环境
• 大气垂直稳定度 • 水汽条件 • 抬升 • 垂直风切变
3.3 垂直风廓线及其对对流风暴的作用
• 普通单体风暴的风向随高度的分布杂乱无章,基本上是一 种无序分布,而且风速随高度的变化也较小;
• 多单体强风暴和超级单体风暴的风向风速随高度变化分布 是有序的,风向随高度朝一致方向偏转,而且风速随高度 的变化值也比普通单体风暴的大。
• 影响速度谱宽的主要因子有四个: 1. 垂直方向上的风切变; 2. 大气的湍流运动; 3. 不同直径的降水粒子产生的下落末速度的不均匀分布; 4. 由波束宽度引起的横向风效应。
1.8 标准大气雷达测高公式 • H=h0+R*sinθ+R2/17000,单位:千米
1.9 PPI图上距离与高度
1.10 天气雷达的局限性
衰减的暂时的解决办法
• 结合S波段雷达使用 波长:10cm, 强天气的衰减不明显
衰减的暂时的解决办法
课间休 息
3、多普勒天气雷达识别对流风暴及其强烈天气
单元重难点: • 1、风暴的运动 • 2、对流风暴的模型 • 3、个例分析
3.1 对流风暴的分类
普通单体风暴 多单体风暴 超级单体风暴 线风暴(飑线)
• 多普勒频移与目标物在雷达径向方向上的速度分量v有关,满足如下 关系: fd= 2v∕λ (式中λ是雷达波长,fd是多普勒频移)
• 多谱勒速度是径向速度,垂直于雷达波束的速度分量(切向速度)不 能直接测量。
1.7 多谱勒速度谱宽W
• 多谱勒速度谱宽 表征着雷达有效照射体积内不同大小的多谱勒速度偏离其平均值的 程度,实际上它是由散射粒子具有不同的径向速度所引起的。
1.1 天气雷达基本结构

C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析

C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析

C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析C波段双偏振多普勒天气雷达的原理主要包括发射系统、接收系统和信号处理系统三部分。

发射系统通过天线向大气中发射一束电磁波,波长通常在2-4厘米之间。

接收系统接收被大气散射回来的电磁波,其中包含了与水滴、冰晶等天气粒子的相互作用信息。

信号处理系统对接收的电磁波进行处理和分析,提取出天气现象的相关信息,如降水率、降水类型、风速、风向等。

C波段双偏振多普勒天气雷达的主要应用之一是降水类型的判别。

偏振参数可以用来区分不同类型的降水,如雨、雪、冰雹等。

一般来说,雨滴的偏振特性与雪花和冰晶有所不同,因此可以通过观测不同偏振参数的变化来区分不同类型的降水。

例如,线偏振比参数可以用来判断降水中的冰晶含量,而差分反射率可以用来反映降水类型的不均匀性。

另外,C波段双偏振多普勒天气雷达还可以用于测量降水的强度和速度。

降水强度可以通过测量反射率来估计,而降水速度可以通过多普勒频移来计算。

多普勒频移是由于降水粒子的运动引起的频率变化,可以通过测量接收到的电磁波的频率来确定。

通过对多普勒频移的分析,可以得到降水中的风速和风向等信息。

此外,C波段双偏振多普勒天气雷达还可以用于探测风暴等大气现象。

风暴具有强烈的垂直运动和雷暴活动,这些现象在雷达观测中通常表现为强反射信号和强多普勒频移信号。

通过分析不同偏振参数的变化,可以获得风暴的空间结构和演变特征,从而提供强对流天气的监测和预警。

总而言之,C波段双偏振多普勒天气雷达通过观测和分析不同的偏振参数,可以用于判别降水类型、测量降水强度和速度,以及检测风暴等大气现象。

这些信息对于天气预报和气象灾害预警具有重要意义。

天气雷达简介

天气雷达简介

天气雷达简介一、概述天气雷达是探测大气中气象变化的千里眼、顺风耳。

天气雷达通过间歇性地向空中发射电磁波 (脉冲),然后接收被气象目标散射回来的电磁波(回波) ,探测400 多千米半径范围内气象目标的空间位置和特性,在灾害性天气,尤其是突发性的中小尺度灾害性天气的监测预警中发挥着重要的作用。

天气雷达主要由天线、馈线、伺服、发射机、接收机、信号处理、产品生成、显示终端等组成。

天线:发射/ 接收电磁波馈线:传导电磁波伺服:天线等的运转发射机:产生电磁波接收机:接收处理电磁波信号处理:处理回波信息产品生成:根据算法,生成应用产品/控制雷达显示终端:显示产品、控制雷达目标距离的测定:由电磁波的传播速度(近似v=c) 和探测脉冲与回波信号之间的时间间隔△ t来确定。

r=c △ t /2 (1.1) 通常,时间间隔以卩s为单位,故上式可写成:r=0.15 △ t(km)或r=150 △ t (m) (1.2)目标方位角和仰角的测定:目标的方位角和仰角的测定是依靠天线的方向性来实现的。

天气雷达的天线具有很强的方向性,它能将探测脉冲的能量集中地向某一方向发射。

同样,它也只能接收沿同一方向来的回波信号。

所以,只有当天线对准目标时,才能接收到目标的回波信号。

根据这一原理,当发现目标时,天线所在的方位角和仰角就是目标相对于雷达的方位角和仰角。

目标特性的测定: 气象目标对雷达电磁波的散射是雷达探测大气的基础。

降水回波:云、降水粒子的散射。

随相态、几何形状不同而异,雷达回波功率是由有效照射体积内所有气象目标产生的。

晴空回波:在大气中的无云区或很小粒子所组成的云区探测到回波。

气象条件两种:一是大气中存在折射指数不均匀的区域,即湍流大气造成了对雷达波的散射;二是分层大气中存在折射指数垂直梯度很大的区域,即大气对雷达波造成了镜式反射。

多普勒速度探测:多普勒雷达发射出的电磁波,遇到运动的目标物后,返回信号产生频率漂移,从而可导出目标物相对于雷达运动的径向速度。

2DU简介双偏振多普勒天气雷达原理与应用 PPT课件

2DU简介双偏振多普勒天气雷达原理与应用 PPT课件
② 需采用大功率微波转换开关,且要
4、交替发射工作方式时的回波采样情况。如图6所 示:
ZH1 ZH3 ZH2i-1
ZV2 ZV4 ZV2i
图6 交替发射方式的回波采样信号时间序列示意图
(二)、功分后双发双收双偏振体制(也 称同时单发、双收体制)
1、含义图3 2、同时发射方式示意图。

3、同时发射工作方式的回波采样情况,如4所示
波功率 (或 ),通过旋转小椭球粒子群时的雷达气象方 程经距离订正后获得, 2、非球形粒子,为什么会产生ZH与ZV的差异 (1)先从单个非球形(如椭球)粒子看,当满足瑞利条件 时,见下图所示的极化情况,就造成ZH≠ZV,ZDR≠0。
图7 圆球及扁旋转椭球极化示意图
(2)实际回波来自一个有效照射体V*内所有粒子的后向 散射产生的功率,这就要考虑一群粒子的数量、大小、 形状及取向等情况。故ZH与ZV的差异,是一群非球形粒子所造成 。 (3)要获得ZH与ZV,还必须先建立适用于非球形粒 子群、在不同偏振波照射下的雷达气象方程。并且还要 考虑非球形粒子群旋转轴在空间的不同取向。

即KDP是双程传播相位变化值φDP随距离的变化程度。 2、若 (rm) 与 (rn) 不是相邻两库的距离,而是相隔较远的两个库之
间的距离,则KDP代表该降水段上的平均值。 3、KDP值的大小:一般KDP<1°/Km,但含有冰核的大雨滴,KDP
(五)双线偏振雷达的退极化因子LDR
1、LDR的定义为:
(三)双程差分传播相位变化值φDP
1、φDP的含义:设水平及垂直偏振波通过相同长度 的一个降水区(可包含非球形粒子组成),散射 回天线处的相位分别为φHH及φVV,则定义: φDP=φHH -φVV=δ+ ɸdp

(整理)多普勒雷达复习提要.

(整理)多普勒雷达复习提要.

多普勒天气雷达复习提要一、多普勒天气雷达探测基本原理(一)多普勒天气雷达主要参数天气雷达发射脉冲形式的电磁波,当电磁脉冲遇到降水物质(雨滴、雪花和冰雹等)时,大部分能量继续前进,而少部分能量被降水物质向四面八方散射,其中向后散射的能量回到雷达天线,被雷达所接收。

根据雷达接收的降水系统回波特征可以判别降水系统的特性(降水强弱、有无冰雹、龙卷和大风等)。

多普勒天气雷达除了测量雷达的回波强度外,还测量降水目标物沿雷达径向的运动速度和速度脉动程度。

1、波长:是雷达发射的电磁波波长。

天气雷达的波长通常为10公分、5公分、3公分三种,分别称为S波段、C波段、X波段。

2、脉冲重复频率PRF天气雷达间歇地发射脉冲形式的电磁波,每秒钟发射脉冲的个数称为脉冲重复频率(PRF)。

两个相继脉冲之间的时间间隔称为脉冲重复周期(PRT),他等于脉冲重复频率的倒数。

3、脉冲持续时间和脉冲长度天气雷达脉冲持续时间一般为一到几个微米左右。

假设某部天气雷达的相继脉冲之间的间隔为1000微秒,其脉冲持续时间为2微秒左右,则剩余的998微秒是雷达接收来自目标物回波的时间。

发射脉冲的持续时间确定了脉冲在空间的长度。

例如CINRAD-SA型多普雷天气雷达的窄脉冲持续时间为1.57微秒,脉冲在空间的长度约为500m。

4、波束宽度雷达发射的能量主要集中在主瓣内(图2.8a),其中主瓣内两个半功率点(及该处功率为最大的一半)之间角度大小称为波束宽度。

在垂直方向的波束宽度用θ表示,在水平方向的波束宽度用φ表示。

我国多普勒天气雷达的波束宽度大多为1°左右。

5、有效照射深度和有效照射体积雷达发出的脉冲具有一定的持续时间τ,在空间的电磁波列就有一定的长度h=τc 。

位于波束宽度和波束长度范围内的所有粒子都可以同时被雷达波束所照射。

但是其中所有粒子产生的回波并不是都能同时回到雷达天线。

在径向方向上,粒子的回波信号能同时返回雷达天线的空间长度为h/2,称为雷达的有效照射深度。

天气雷达的基本工作原理和参数知识讲解

天气雷达的基本工作原理和参数知识讲解
E(t)ReE1[e(xpi(1ti0t)] E1co2s(f0f1)t

风暴跟踪信息文本产品(上海)
风暴结构产品(SS)
冰雹指数产品(HI)
回波顶高产品(ET)
回波顶高等值线产品(ETC)
垂直液态水含量产品(VIL)
强天气概率产品(SWP)
一小时降水量产品(OHP)
三小时降水量产品(THP )
风暴总降水量产品(STP)
多普勒频率fd与目标物径向 速度Vr的关系
多普勒频率fd 定义: 目标物相对于雷达作径向运动
引起回波信号的频率变化,称 多普勒频移,亦称多普勒频率, 单位:赫兹(Hz)。
多普勒频率fd与目标物径向速度Vr 的关系(证明见P211-212)
fd
2Vr
其中: f d为多普勒频率
Vr 为目标物的径向速度
(单位 Hz )
(也称多普勒速度 , 单位 m / s)
这类产品主要有:
• 平面位置显示(PPI)
• 垂直最大回波强度显示 (CR)
• 等高平面位置显示(CAPPI)
• 距离高度显示(RHI)、
• 任意垂直剖面显示(VCS)
WSR-88D产品生成器根据用户要求生成的基本产 品有:基本反射率产品6种,平均径向速度产品6 种,速度谱宽产品3种,共计3类15种气象产品, 如下表
组合反射率因子 平均值产品图 (LRA)
2001年8月7日 15:26
中层(上图12~33 千英尺)和低层 (下图从地面到 12千英尺)
2010年8月7日15:02弱回波区产品图也 称为反射率因子多层透视图(上海)
风暴跟踪信息产品(STI)

示 产 生 冰 雹 的 可 能
图 中 绿 色 三 角 形

多普勒雷达

多普勒雷达

多普勒雷达多普勒雷达是一种利用多普勒效应来检测目标的速度和方向的无线电探测设备。

多普勒雷达广泛应用于军事、民用航空、气象预报、海洋观测等领域,具有重要的实用价值。

原理多普勒雷达的工作原理基于多普勒效应,当发射的电磁波与目标发生相对运动时,频率会因目标的运动而产生改变。

通过测量这种频率变化,多普勒雷达可以推断目标相对于雷达的速度和方向。

应用军事领域在军事领域,多普勒雷达被广泛用于目标追踪、导弹制导、防空警戒等任务。

多普勒雷达可以更精确地确定目标的速度和方向,有助于提高战斗系统的作战效率。

民用航空在民用航空领域,多普勒雷达被用于飞机的大气层大规模流量监控、飞机起降的高精度跟踪、天气气流和降水监测等方面。

多普勒雷达可以为飞行员提供准确的空中交通管制信息,提升空中航行的安全性。

气象预报多普勒雷达在气象预报领域的应用也十分重要。

通过多普勒雷达可以实时监测大气中的降水、风暴等天气现象,帮助气象学家更准确地预测天气变化,及时发布预警信息,为社会公众提供有效的气象服务。

海洋观测此外,多普勒雷达在海洋观测方面也扮演着重要角色。

通过多普勒雷达可以监测海洋表面的海浪、潮汐、洋流等情况,帮助海洋科学家更好地了解海洋环境,开展海洋资源勘探、海洋灾害监测等工作。

发展趋势随着科学技术的不断发展,多普勒雷达正在不断完善和应用于更多领域。

未来,随着雷达技术的进一步提升,多普勒雷达将更加精准、高效地服务于人类的各个领域,为社会发展做出更大的贡献。

结语总的来说,多普勒雷达是一种极具实用性、广泛应用的技术手段,通过测量目标的速度和方向,帮助人们更好地了解目标的运动状态,为各个领域提供宝贵的数据支持。

我们期待多普勒雷达在未来的发展中能够不断创新,为人类社会的进步做出更大的贡献。

《雷达多普勒效应》课件

《雷达多普勒效应》课件
多普勒效应在雷达技术中起到了至关重要的作用,包括目标速度测量、运动 目标检测、飞行器导航与控制等诸多方面。
多普勒效应的测量方法
1
连续波雷达
使用连续波雷达来测量多普勒效应,能够实时获取目标运动信息。
2
脉冲雷达
利用脉冲雷达的特点,通过测量回波的相位差来计算目标的多普勒频移。
3
多普勒频谱分析
通过对接收到的回波信号进行频谱分析,可以获取目标的速度和位置等信息。
算法和处理复杂性
多普勒效应的数据处理需要复 杂的算法和计算能力,增加了 系统的开发和维护难度。
结论和总结
雷达多普勒效应在现代科技中有着重要应用,尽管存在一些局限和挑战,但 其在目标运动测量和天气预报等领域仍发挥着巨大的作用。
多普勒雷达和普通雷达的区别
多普勒雷达
用于测量目标的速度和运动参数,主要应用于航空、 气象、交通等领域。
普通雷达
用于探测目标的位置和距离,广泛应用于军事、航海、 航空等领域。
多普勒效应在天气预报中的应用
1 气象雷达
2 风速监测
3 暴风雨预警
通过测量气象目标的多普勒 频移,可以预测风速、降水 强度和气象系统的演变趋势。
多普勒雷达可以准确测量风 速,为风能发电和气象研究 提供重要数据。
多普勒雷达可以探测风暴中 的强风和旋转流,提供准确 的暴风雨预警信息。
多普勒效应的局限和挑战
测量角度影响
多普勒效应对于目标的运动方 向和角度有一定限制,测量结 果会受到影响。
信号干扰
强信号和杂波可能导致多普勒 效应的测量误差或干扰。
《雷达多普勒效应》PPT 课件
雷达多普勒效应是一种广泛应用于雷达技术中的现象,通过检测目标散射波 的频率变化来获取目标的运动信息的是当信号源与观察者相对运动时,其频率会发生变化。该效应的原理是基于多普勒频移的概念 和相对运动的物理规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品
4)第四章_多普勒天气雷达和 偏振多普勒天气雷达
目录
4.1多普勒天气雷达 • 4.1.1多普勒频移 • 4.1.2 多普勒谱的提取方法 • 4.1.3 多普勒速度和多普勒速度谱 • 4.1.4 距离折叠和速度折叠 • 4.1.5 多普勒天气雷达的应用 4.2 偏振多普勒天气雷达 • 4.2.1 偏振雷达 • 4.2.2 双线偏振多普勒天气雷达的基本参量 • 4.2.3 双线偏振多普勒天气雷达的应用
2Vr
由于目标物的径向运动引起的雷达 回波信号的频率变化,它就是多普 勒频移或多普勒频率
3. 径向速度
径向速度简单地定义为目标运动平行于雷达径向的分 量。它是目标运动沿雷达径向的分量,既可以向着雷 达,也可以离开雷达。 需要记住的是:①径向速度总是小于或等于实际目标 速度;②由WSR-88D测量的速度只是目标向着或离开雷 达的运动;③当目标运动垂直于雷达径向或静止时径 向速度为零。
取两个连续的脉冲然后测 量接收脉冲的相位
dΦ/dt 实际上就是角 速度 = w = 2πfd
5. 关于相干的几个概念
6. 最大不模糊距离与距离折叠
• 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个 发射脉冲发出前能向前走并返回雷达的最长距离
c Rmax 2PRF
其中,Rmax为最大不模糊距离,c为光速,PRF为脉冲重复频率
一个例子是:当一辆紧急的火车(汽车)鸣着喇叭以相当高的速度向着 你驶来时,声音的音调(频率)由于波的压缩(较短波长)而增加。当 火车(汽车)远离你而去时,这声音的音调(频率)由于波的膨胀(较 长波长)而减低。
发射频率 Vs 多普勒频移 发射频率 多普勒频移
2. 多普勒频率/频移
对于一个运动的目标,向着雷达运动或远离雷达运动所产生的频移 量是相同的,但符号不同:①如果目标移向雷达为正;②如果目标 远离雷达为负。
• 最大不模糊速度 Vmax:最大不模糊速度是雷达能够不模糊 地测量的最大平均径向速度,其对应的相移是180度。
• 速度模糊
Vmax
PRF
4
速度的可能值 v-2nVmax或v+2nVmax
速度折叠
• Nyquist 间隔 –可分辨的速度范围 –最大不模糊速度±Vmax之间
• 如果粒子的径向速度超过了Nyquist 间隔,那么速 度值就会aliased, or folded.
• 这叫速度折叠/混淆(velocity folding/aliasing). –例如: 若nyquist 速度是25 m/s ,粒子的radial velocity是-30 m/s, 那么 就会发生折叠,导致 其值是+20 m/s
4.1多普勒天气雷达
常规数字化天气雷达利用的是降水回波的 幅度信息,即利用信号强度来探测雨区的分布、 强度、垂直结构等。
多普勒天气雷达是基于物理学中的多普勒 效应发展起来的,除常规天气雷达功能之外, 还可利用降水回波频率与发射频率之间变化的 信息来测定降水粒子的径向速度,并通过此推 断风速分布,垂直气流速度,大气湍流,降水 粒子谱分布,降水中特别是强对流降水中风场 结构特征。
距离折叠(模糊)
• 雷达测距公式 R=0.5ct,t为脉冲发出到返回的时间。 • 雷达测距按照最新发出的脉冲从发出到返回的时间
来计算。
• 距离折叠是指雷达确定的目标物方位是正确的但距
离是错误的。当目标物位于雷达最大不模糊距离之 外时会发生这一现象,也就是说,目标物的定位是 模糊的。换句话说,当目标物位于雷达的最大不模 糊距离(Rmax)之外时,雷达却把目标物显示在 Rmax以内的某个位置,我们形象地称之为‘距离折 叠’。
距离折叠是如何发生的?
雷达最大探测距离是250nm
目标位于最大不模糊距离之内,没有距离折叠(模糊)发生。
nm=1.852km nautical mile
目标位于最大不模糊距离之外,距离折叠(模糊)发生。
一个目标物位于nRmax之后若干海里的话(这里n 是任意一个正整数),它将错误地出现在距雷达同一海 里远的位置上。如果雷达的Rmax=250nm,那么位于0-25 0nm的目标物处于第一程;251-500nm的目标物处于第二 程等等,以此类推。一个实际位于550nm(超过2Rmax) 处的目标物,如果被Rmax=250nm雷达探测到,它在雷达 上的显示位置是50nm;一个实际位于300nm(超过1Rmax) 处的目标物,如果被Rmax=250nm雷达探测到,它在雷达 上的显示位置也是50nm。
距离折叠回波的特点: 方位角是正确的 强度较弱 有时具有奇怪的多普勒速度
怎样排除距离折叠回波? • 改变雷达机的脉冲重复频率(PRF) Use a different PRF every 2-3 pulses, i f the echo moves,it is bogus!
7. 最大径向速度与速度模糊
常规天气雷达仅能提供反射率因子资料。 多普勒天气雷达将提供两种附加的基本资料, 径向速度和速度谱宽,它们将增强对强风暴 的探测能力,也能改进对中尺度和天气尺度 系统的预报。
1.多普勒效应
多普勒效应多普勒效应是 奥地利物理学家 J.Doppler1842年首先 从运动着的发声源中发现 的现象,定义为“当接收 者或接收器与能量源处于 相对运动状态时,能量到 达接收者(器)时频率的 变化”。
方向定义有两种情形:
1.目标移向雷达为正,远离雷达为负
2.目标移向雷达为负,远离雷达为正
目标的实际速度与WSR-88D描述的径向速度间的关 系能用数学方法描述成径向速度方程
│Vr│=│V│·cosβ
其中Vr为径向速度,V为实际速度,β为实际速度V 与雷达径向之间最小的夹角,cos为余弦函数。
4. Pulse-P频率为f0,目标与雷达的距离
为r,则雷达波发往目标到返回天线所经过的距离为2r。这个
距离用波长来度量,相当 2 r
个波长;用弧度来衡量相当于
4
r
个弧度。若所发射的电磁波在天线处的位相为 0 ,那么电磁
波被散射回到天线时的相位应是
位相的时间变化率
0
4r
4Vr
f dop
相关文档
最新文档