直线与平面平行的性质(教学设计)
《直线与平面平行》教学设计
直线与平面平行(第二课时)课题:《9.4直线与平面平行》选自人民教育出版社《数学》基础版第九章立体几何第一部分平面的基本性质。
设计理念:本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
内容分析:1、本节课分三个部分内容,分别是:性质定理的猜想、证明、与应用。
2、本节课贯穿线面关系以后的整个教学,是学生进一步顺利、快捷操作立体几何的基础,也是形成学生合理知识链的重要环节。
3、本节课联系了线线位置关系和线面位置关系,在以后为学生后续学习做好“知识、方法及技能”的必要准备。
因此,本小节内容具有重要的“战略”意义,在教材中起到承上启下的作用。
学情分析:任教的学生大多是财会班,女生偏多,学生学习数学的兴趣不大,学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
老师的任务即要让学生主动学习,又要让学生学懂。
教学目标:1、知识与技能:在教师的适当引导和学生的自主学习,使学生通过直观感知和操作确认的方法,推导出直线与平面平行的性质定理,并学会应用定理解决具体问题。
2、过程与方法:(1)在教师的引导下,学生由直观感知获得猜想,经过逻辑论证推导出线面平行的性质定理,发展学生几何直觉、运用图形语言进行交流的能力;(2)通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性。
3、情态与价值观:进一步培养学生观察、发现、归纳的能力和空间想象能力;通过主动参与、积极探究的学习过程,提高学习数学的自信心和积极性,培养合作意识和交往能力,领悟化归与转化的数学思想,提高学生分析解决问题的能力。
《直线与平面平行的性质》教案、导学案、课后作业
《8.5.2 直线与平面平行》教案第2课时直线与平面平行的性质【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。
【教学目标与核心素养】课程目标1.理解直线和平面平行的性质定理并能运用其解决相关问题.2.通过对性质定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的性质定理,线线平行与线面平行转化;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线和平面平行的性质定理.难点:直线和平面平行的性质定理的应用.【教学过程】一、情景导入问题1:观察长方体,可以发现长方体ABCD—A′B′C′D′中,线段A′B 所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B平行吗?问题2:由直线与平面平行可知直线与平面内的直线关系为平行或异面,那么满足什么条件,直线与平面内的直线平行呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本137-138页,思考并完成以下问题1、平面外的直线与平面内的直线有几种位置关系?2、满足什么条件时平面外一条直线与平面内的直线平行?3、用符号语言怎么表示直线与平面平行的性质定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、直线与平面平行的性质定理四、典例分析、举一反三题型一直线与平面平行的性质定理的理解例1 已知直线m,n及平面α,β有下列关系:①m,n⊂β,②n⊂α,③m∥α,④m∥n.现把其中一些关系看作条件,另一些看作结论,组成一个真命题是 .【答案】①②③⇒④或①②④⇒③【解析】结合线面平行的性质定理,可知①②③⇒④,结合线面平行的判定定理,可知①②④⇒③.解题技巧(性质定理理解的注意事项)(1)明确性质定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1、有以下三个命题:①如果一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②过直线外一点,有且只有一个平面和已知直线平行;③如果直线l ∥平面α,那么过平面α内一点和直线l 平行的直线在α内,其中正确命题的个数为( )A.0B.1C.2D.3【答案】C .【解析】结合线面平行的性质定理,可知过直线外一点,有无数个平面和已知直线平行.题型二 直线与平面平行的性质定理的应用 例2如图所示的一块木料中,棱平行于面.(1) 要经过面内的一点P 和棱将木料锯开, 在木料表面应该怎样画线?(2)所画的线与平面是什么位置关系?【答案】(1)见解析(2)直线与平面平行直线与平面相交.【解析】(1)如图,在平面A′C′内,过点P 作直线EF ,使EF ∥B′C′,并分别交棱A′B′、C′D′于点E 、F .连接BE 、CF . 则EF 、BE 、CF 就是应画的线.(2)因为棱BC 平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC ∥B′C′.由(1)知,EF ∥B′C′,所以EF ∥BC .而BC 在平面AC 内,EF 在平面AC 外,所以EF ∥平面AC.BC A C ''A C ''BC AC EF AC ,BE CFAC显然, BE 、CF 都与平面AC 相交. 解题技巧 (性质定理应用的注意事项)(1)欲证线线平行可转化为线面平行解决,常与判定定理结合使用. (2)性质定理中有三个条件,缺一不可,注意平行关系的寻求.常利用中位线性质.跟踪训练二1、如图,AB,CD 为异面直线,且AB ∥α,CD∥α,AC,BD 分别交α于M,N 两点,求证AM ∶MC=BN ∶ND.【答案】证明见解析【解析】连接AD 交α于点P,连接MP,NP因为CD ∥α,平面ACD∩α=MP, 所以CD ∥MP,所以=.同理可得NP ∥AB,=,所以=.五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计AM MCAP PDAP PDBN NDAM MCBN ND七、作业课本139页练习4题,143页习题8.5的1、3、7、10、11题.【教学反思】通过本节课性质定理的学习,使学生进一步了解线线平行和线面平行时刻相互转化的,即空间问题和平面问题可以相互转化.《8.5.2 直线与平面平行》导学案第2课时直线与平面平行的性质【学习目标】知识目标1.理解直线和平面平行的性质定理并能运用其解决相关问题.2.通过对性质定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的性质定理,线线平行与线面平行转化;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线和平面平行的性质定理.【学习难点】:直线和平面平行的性质定理的应用.【学习过程】一、预习导入阅读课本137-138页,填写。
直线与平面平行的判定教学设计 【完整版】
直线与平面平行的判定教学设计§直线与平面平行的判定一、教学内容分析:本节课选自人教A版必修2第二章第二节第一小节《直线与平面平行的判定》,共2课时,本节为第一课时.主要内容有:1.直线与平面平行的判定定理;2.直线与平面平行的判定定理的简单应用.线面平行的判定是研究空间线面关系的起始课,也为其他位置关系的研究做了准备.本节课的主要内容是直线与平面的判定定理的探究与发现、归纳总结、练习与应用.它是在学习了直线与平面的位置关系后,进一步深入研究线面平行的判定办法,同时也为下一步学习线面平行的性质奠定知识与能力的基础.线面平行判定是三大平行判定的核心,学好线面平行对后续学习面面平行及三大垂直的判定与性质等内容,具有良好的示范作用.学习这些内容是培养学生的数学表述与交流能力,直感思维与逻辑思维,推理论证能力及空间想象能力等的重要载体.本节学习内容蕴含丰富的数学思想,主要是化归与转化思想.即“空间问题转化为平面问题”,“无限问题转化为有限问题”,“线线平行与线面平行互相转化”等数学思想.二、学情分析:通过前面课程的学习,学生对简单几何体的结构特征有了初步认识,对几何体的直观图及三视图的画法有了基本的了解.学生已有的认知基础是熟悉日常生活中的具体直线与平面平行的直观形象(学生的客观现实)和平面性质三公理、空间图形的基本关系等数学知识结构(学生的数学现实),初步具备了最朴素的空间观念.但由于刚刚接触立体几何不久,学习经验有限,学习立体几何所应具备的语言表达能力及空间想象能力相对不足,从生活实例中抽象概括出问题的数学本质的能力相对欠缺,从具体情境发现并归纳出直线与平面平行的判定定理以及对定理的理解是教学难点.符号、图形表达能力比较薄弱,空间问题平面化的化归转化思想储备不足,学习上有一定的困难.三、教学目标:学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理,进一步培养学生数学抽象能力、逻辑推理能力、直观想象能力.四、教学重点、难点重点:直线与平面平行的判定定理的发现、理解及应用.难点:探究归纳直线与平面平行的判定定理.五、学法与教学用具1.学法:学生借助实例,通过观察、思考、交流、讨论等,理解判定定理.2.教学用具:多媒体课件,模型.六、教学过程(一)回顾知识空间中直线与平面之间的位置关系有哪些呢并指出直线与平面公共点的个数.(二)创设情景、引出课题由生活中具体图形引出直线与平面平行,并引导学生观察教室里线面平行的例子,怎么判定直线与平面平行呢利用定义,判定直线与平面是否平行,只需要判定直线与平面有没有公共点.但是,由于直线无限伸长,而平面也是无限延展的,看来根据定a 义判定直线与平面是否平行是很困难的,那有没有其他的方法吗这就是我们本节课所要学习的内容.(三)实验探索实验要求:点P 是矩形ABCD 内任意一点,过点P 进行翻折,折痕记为.EF探索发现:如何翻折才能使直线AB ∥平面CDP .(四)研探新知1.展示问题(1)直线a 与平面α平行吗2.展示问题(2)若平面α内有直线b 与a 平行那么平面α与直线a 的位置关系如何是否可以保证直线a 与平面α平行3.定理探究 如图所示,平面α外的直线a 平行于平面α内的直线b .(1)直线a 与b 共面吗共面.(2)直线a 与平面α相交吗不相交.由探究内容,归纳定理.αa b a b αα4.定理的归纳师生共同探讨,得出以下结论:直线与平面平行必须的条件有三个:面外,面内,平行.直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.图形语言:符号语言: ,,a b a b a ααα⊄⊂⇒且∥∥ 简记为:线线平行,则线面平行.5.领悟定理(1)下列选项正确的是(D )A .若平面α外一条直线a 与直线b 平行,则直线a 与平面α平行.B .若直线a 与平面α内一条直线b 平行,则直线a 与平面α平行. C .直线a 在平面α外,直线b 在平面α内,则直线a 与平面α平行.D .直线a 在平面α外,直线b 在平面α内,若a 与b 平行,则直线a 与平面α平行.(2)课本55页第1题.通过找与已知直线平行的平面对定理加深印象.由定理可知,要证明一条已知直线与一个平面平行,只要在这个平面内找出一条直线与已知直线平行,就可断定已知直线与这个平面平行.6.定理的应用abα例1求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.已知:如图,空间四边形ABCD 中,E ,F 分别是AB 、AD 的中点. 求证://EF 平面BCD .证明:连接BD ,∵ BE AE =,FD AF =,∴ BD EF //.∵ ⊄EF 平面BCD ,⊂BD 平面BCD , ∴ //EF 平面BCD小结:要证线面平行,首先要在平面内找一条直线与已知直线平行,将线面平行转化为线线平行,本道题目是根据中位线性质得到线线平行.7.巩固练习1:课本56页第2题.8.巩固练习2:已知,如图P 是平行四边形ABCD 所在平面外一点,M ,N 分别是PC ,AB 的中点.求证:MN .PAD (五)课堂小结请同学们谈谈本节课的收获.(1)直线与平面平行判定定理;(2)数学思想方法:转化的思想;(3)用定理证明线面平行时,寻找平行直线可以通过三角形的F E B CD A中位线、平行四边形的性质、平行线的判定、平行公理等来完成.七、作业布置课本P62习题3.八、板书设计§直线与平面平行的判定多媒体投影区域例题展示区线面平行判定定理(3种语言表示)。
直线与平面平行的性质(教学设计)
课题:直线与平面平行的性质教材:普通高中课程标准实验教科书人教A版数学必修2§2.2.3授课教师:无为第一中学范德泉【三维目标】1.知识与技能通过教师的适当引导和学生的自主学习,使学生由直观感知获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理.2.过程与方法通过直观感知和操作确认的方法,发展几何直觉、运用图形语言进行交流的能力;体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程;通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性.3.情感、态度、价值观通过主动参与、积极探究的学习过程,提高学习数学的自信心和积极性,培养合作意识和交往能力,领悟化归与转化的数学思想,提高学生分析解决问题的能力.【教学重点与难点】1.教学重点直线与平面平行的性质定理.2.教学难点综合应用线面平行的判定定理和性质定理.【教学过程】教学内容师生互动【回顾旧知】直线与平面平行判定定理的内容.通过复习直线与平面平行的判定定理,温故而知新,为后面线线平行与线面平行的相互转化做铺垫.【新课引入】1.如果一条直线与平面平行,那么这条直线是否与这个平面内的所有直线都平行?引导学生结合直观感知,层层递进,逐步探索,体会数学结论的发现过2.在平面α内,有多少条直线与直线a 平行? 3.在平面α内,哪些直线与直线a 平行? 4.由以上的探索与发现你能得出怎样的结论? 5.能否对你发现的结论进行证明?学生根据问题进行直观感知,进而提出合理猜想.并逐步探索,认真思考,画出相应图形,进行观察,感知、猜想.已知://a α,a β⊂,b αβ=I . 求证://a b .证明:因为 b αβ=I ,所以 b α⊂.又因为 //a α, 所以 a 与b 无公共点. 又因为,a β⊂,b α⊂, 所以 b α⊂.引导学生得出猜想,形成经验性结论,体会与感受数学结论的发现与形成过程:直观感知→操作确认→逻辑证明→形成经验.要求学生用语言描述发现的结论,并给出证明.〖直线与平面平行的性质定理〗一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβαI要求学生总结归纳,并能用文字语言符号语言图形语言描述直线与平面平行的性质定理,为学生正确使用定理打下基础.〖定理探微〗1.定理可以作为直线与直线平行的判定方法; 2.定理中三个条件缺一不可;3.提供了过已知平面内一点作与该平面的平行线相平行的直线的方法,即:辅助平面法.明确定理的条件和结论及定理的用途.【例题讲解】例1.(教材P 61例3) 如图所示的一块木料中,棱BC 平行于面''A C .(1)要经过面''A C 内的一点P 和棱BC 将木料锯开,应怎样画线?(2)所画的线与平面AC 是什么位置关系? ★思路点拔:1.怎样确定截面?过点P 所画的线应怎样画? 2.“线面平行” 与“线线平行”之间有怎样的联系? ★解答过程:解:(1)在平面''A C 内,过点P 作直线EF ,使//''EF B C ,并分别交棱''A B ,''C D 于点E ,F .连接BE ,CF ,则EF ,BE ,CF 就是应画的线.(2)因为棱BC 平行于平面''A C ,平面'BC 与平面''A C 交于''B C ,所以//''BC B C ,由(1)知,//''EF B C ,所以,//EF BC ,因此////EF BCEF AC EF AC BC AC ⎫⎪⊄⇒⎬⎪⊂⎭平面平面平面 BE ,CF 显然都与平面AC 相交.引导学生分析画截面的关键是确定截面与上底面的交线,怎样过P点作BC 的平行线是作图的难点.学生经过认真思考,运用所学知识找到作图方法,体会到解决问题后成功的喜悦,认识到数学来源于实践又反过来为实践服务,加强用数学的意识. 例2.(教材P61例4)已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.★思路点拔:1.文字性的命题的解题步骤是什么?2.“线面平行”与“线线平行”之间有怎样的联系? ★解答过程:如图所示,己知直线a ,b ,平面α,且//a b ,//a α,a α⊄,b α⊄.引导学生分析问题的条件与结论,并结合图形写出己知和求证.通过分析寻找解题途径.本题的解题关键是实现线线平行与线面平行的转化.通过教师的板书,规范解题步骤与格式.求证://b α.证明:过a 作平面β,使c αβ=I .因为//a α,a β⊂,c αβ=I ,所以//a c .又因为//a b ,所以//b c . 因为c α⊂,b α⊄,所以//b α.【课堂练习】1. 如图,四面体ABCD 被平面所截,截面与四条棱AD ,AB ,CB ,CD 相交与点E ,F ,G ,H 四点,且截面EFGH 是平行四边形.求证://AC EFGH 平面. ★解答过程:证明:因为EFGH 是平行四边形, 所以//EH FG . 又因为EH ABC ⊄平面,FG ABC ⊂平面, 所以//EH ABC 平面.因为EH ACD ⊂平面,=ACD ABC AC I 平面平面, 所以//EH AC .又因为AC EFGH ⊄平面,EH EFGH ⊂平面, 所以//AC EFGH 平面.学生独立完成练习l ,检查学习效果,使学生掌 证明线面平行问题的方法、步骤与格式,提高综合运用所学知识的能力.2.如图,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 中点,在DM 上取一点G ,过G 和AP 的平面交平面BDM 于GH ,求证://PA GH .★解答过程:证明:连接AC ,设AC BD O =I ,连接OM . 因为ABCD 是平行四边形, 所以OA OC =. 因为MP MC =,所以//OM PA . 因为PA BDM ⊄平面,OM BDM ⊂平面,所以//PA BDM 平面.因为PAG BDM GH =I 平面平面,PA PAG ⊂平面, 所以//PA GH .练习2是证明线线平行问题,本题需作辅助线,比练习1要难,因此组织学习小组进行讨论,通过合作学习、寻找解题途径,最后选2个小组代表上黑板板演证明过程,教师最后进行点评.【小结】小结回顾:注意线面平行的性质定理与判定定理联系和区别,“线面平行”与“线线平行”问题是互相联系的,在解题时要善于将问题进行转化.【布置作业】 教材P64 5、6.(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
高中数学教学课例《直线与平面平行的判定》课程思政核心素养教学设计及总结反思
为线段 AD 上一点,AM=2MD,N 为 PC 的中点.
证明:MN∥平面 PAB;
(四)、课堂小结
1.在解决线面、面面平行的判定时,一般遵循从
“低维”到“高维”的转化,其转化关系为
在应用性质定理时,其顺序恰好相反,但也要注意,
转化的方向总是由题目的具体条件而定,决不可过于
“模式化”.
2.直线与平面平行的主要判定方法
高中数学教学课例《直线与平面平行的判定》教学设计及总 结反思
学科
高中数学
教学课例名
《直线与平面平行的判定》
称
高中立体几何是以培养学生的逻辑思维能力与空
间想象能力为主要目标,本节在学习了直线与直线平行
的基础上,进一步复习直线与平面的判定。引导学生归
纳概括各种平行关系的互相转化,注重三种语言表示,
教材分析 最终达到提升学生能够运用知识解决问题的能力。
否则,会出现错误. 3.解题中注意符号语言的规范应用.
(1)判定定理;(2)面与面平行的性质.
3.平面与平面平Байду номын сангаас的主要判定方法
(1)判定定理;(2)a⊥α,a⊥βα∥β.
(五)、课外作业:对应课时作业本练习
课例研究综
1.线面平行关系证明的难点在于辅助面和辅助线
述
的添加,添加辅助线、辅助面时一定要以某一性质定理
为依据,绝不能主观臆断. 2.在证线面平行时,一定要强调直线不在平面内,
(2)判定定理与性质定理
2.平面与平面平行
(1)平面与平面平行的定义 (2)判定定理与性质定理 诊断自测 判断正误(在括号内打“√”或“×”) 1、(1)若直线 l 上有无数个点不在平面 α 内,则 l∥α.(×) (2)若一条直线平行于一个平面内的一条直线,则 这条直线平行于这个平面.(×) (3)若一条直线平行于一个平面,则这条直线平行 于这个平面内的任一条直线.(×) (4)如果一个平面内的两条直线平行于另一个平 面,那么这两个平面平行.(×) (5)如果两个平面平行,那么分别在这两个平面内 的两条直线平行或异面.(√) 2、如图,在正方体 ABCD-A1B1C1D1 中,E 为 DD1 的中点,则 BD1 与平面 AEC 的位置关系为________. (三)、例题讲解 例 1、如图,在四棱锥 P-ABCD 中,AD∥BC,AB= BC=eq\f(1,2)AD,E,F,H 分别为线段 AD,PC,CD 的 中点,AC 与 BE 交于 O 点,G 是线段 OF 上一点. (1)求证:AP∥平面 BEF; (2)求证:GH∥平面 PAD.
8.5.2直线与平面平行 教案-高一下学期数学人教A版必修第二册
8.5.2直线与平面平行教案一、内容和内容解析1. 内容直线与平面平行的判定与性质.2. 内容解析本节课是在学习了直线与平面平行的定义的基础上,探究直线与平面平行的判定定理和性质定理.直线与平面的平行关系是一种非常重要的空间位置关系.在直线与直线平行、直线与平面平行、平面与平面平行这三种平行关系的相互转化中,直线与平面的平行是很关键的一环.它既是进一步学习平面与平面平行的基础,其中也着直线与直线平行.正如前面所述,空间中,基本图形位置关系的研究,主要是以某两种图形的位置关系为前提(定义),研究相应的充分条件(判定)和必要条件(性质).无论是判定还是性质,都是“空间基本图形确定的相互关系”.直线与平面平行的判定定理,反映了直线与平面在具备了什么条件下互相平行的问题,是充分条件.事实上,假设平面α外的一条直线a与α有交点,则平面α内的任意一条直线b与直线a要么相交,要么异面,即不存在与a平行的直线.直线与平面平行的性质定理,反映了在直线与平面平行的条件下,该直线与平面内特定的一些直线之间的位置关系,是必要条件.直线与平面平行的判定定理和性质定理的发现以及性质定理的证明过程,体现了直观感知、确认操作、思辨论证的立体几何研究的基本方法,有利于学生直观想象、数学抽象、逻辑推理的素养的培养.直线与平面平行的判定和性质的研究,是直线与平面平行、直线与直线平行两种位置关系的相互转化,体现了立体几何研究中空间问题平面化的研究思路.基于以上分析,确定本节课的教学重点:直线与平面平行的判定定理和性质定理的探究.二、目标和目标解析1.目标(1)探究并理解直线与平面平行的判定定理.(2)探究并证明直线与平面平行的性质定理.(3)结合直线与平面判定定理和性质定理的探究,体会立体几何中研究位置关系的判定和性质的方法.2.目标解析达成目标(1)的标志是:学生能在直线与平面平行定义的基础上,将直线与平面平行的判定转化为直线与直线平行的判定.达成目标(2)的标志是:学生能够将直线与平面的平行转化为该直线与平面内的直线之间的位置关系;并通过直线与平面平行的定义、直线与直线的位置关系的定义以及基本事实3的推论3,发现直线与平面平行的性质定理,并能对性质定理进行证明.达成目标(3)的标志是:结合直线与平面平行的判定定理和性质定理的探究,体会什么是判定,什么是性质;了解发现图形位置关系的判定和性质的目标;能实现直线与直线、直线与平面的转化,体会其中空间问题与平面问题的转化.三、教学问题诊断分析在研究直线与平面平行的判定定理时,学生没有将直线与平面平行问题转化为直线与直线平行的问题解决经验.从直线与平面平行的定义转化到直线与平面内的一条直线平行是探究判定定理的关键,这里需要一定的生活实例和实验操作,学生直观感知,不难理解;但其中蕴含的转化思想值得学生认真体会.平面可以看成是由直线组成的.由直线a与平面α平行,可知直线a与平面α内的任何直线b都没有公共点,因此它们是异面直线或平行直线.由于a与b 没有公共点,如果再在四、教学过程设计(一)探究直线与平面平行的判定定理引言在直线和平面的位置关系中,直线和平面平行是一种很重要的位置关系,不仅在现实生活中有广泛应用(比如木料划线),也是我们后面学习平面与平面平行的基础.如何判定直线和平面平行(即直线与平面平行的充分条件)?已知直线和平面平行的条件下,又蕴藏怎样的性质(即直线与平面平行的必要条件)?下面我们重点来探究这两个问题.问题1:根据定义,直线与平面平行是指直线与平面没有公共点.请同学思考,直接用定义去判断直线和平面平行与否是否方便?为什么?师生活动:学生思考后回答,师生对话,由于直线的无限延伸和平面的无限延展,很难直接判断直线与平面是否有公共点,因此很难直接利用定义判断.设计意图:直接用定义不易判定直线与平面是否平行,说明学习本课内容的必要性,激发学生的学习兴趣.由于平面可以看作是直线“编织”而成的“直线网”,因而直线与平面没有公共点即是等价于直线和平面内的任意一条直线没有公共点,但我们也不可能逐一检验平面内的每条直线.问题2:为便于判定,我们能否通过检验平面内较少条数的直线与平面外直线的位置关系来达到目的?如果可以,可以减少到几条?你能用生活中的实例来佐证你的结论吗?师生活动:教师设计如下“观察—探究”的活动,供学生在动手操作的基础上进行合情猜想:如图1(1),门扇的两边是平行的,当门扇绕着一边转动时,另一边与墙面有公共点吗?此时门扇转动的一边与墙面平行吗?如图1(2),将一块矩形硬纸板ABCD平放在桌面上,把这块纸板绕边DC转动.在转动过程中(AB离开桌面),DC的对边AB与桌面有公共点吗?边AB与桌面平行吗?在上述“观察—探究”的基础上,请学生尝试用自己的话说一说他们感受到的直线与平面平行的判定方法以及如何用字母符号和图形表示,之后再让学生看教科书里给出的直线与平面平行的判定定理,及其符号和图形表示.判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.设计意图:将利用定义判断,转化为“直线与平面内的一条直线平行”来进行判断.这一过程,体现了由复杂向简单、由空间向平面的转化.通过设置“观察—探究”活动,学生在直观感知的基础上进行大胆猜想,培养学生的数学抽象、直观想象等数学素养.追问1:为什么平面α外的直线a与α内的一条直线b平行,就可以说直线a和平面α平行了?你能对此做一个简要的解释吗?师生活动:学生思考交流,教师可以给予一定提示(反证法).设计意图:增强说理,说明上述的猜想不是“瞎猜”.同时,反证法中会用到异面直线的判定,这也是对前面学习异面直线知识(教科书P130-例2)的一个回顾.追问2:这一定理告诉我们,通过直线间的平行,可以得出直线与平面平行,请说说这里面蕴含着怎样的数学思想方法?师生活动:学生回答,教师总结,指出转化的数学思想.设计意图:加深学生对定理的认识,明白将空间问题(直线与平面的平行)转化为平面问题(直线间的平行)是一种处理空间几何问题的常用方法.问题3:你能说说一定理在现实生活中的应用吗?师生活动:结合教科书中按照矩形镜子的例子,请同学们再多补充一些生活实例,体会其中的数学道理.设计意图:使学生了解判定定理在实际生活中的应用,培养学生的应用意识,进一步加强对判定定理的理解.(二)应用判定定理,熟练掌握例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边的平面.追问:(1)从要解决的问题来看,本题是要证明直线与平面平行,你能想到用什么方法?(学生活动预设:直线与平面平行的判定定理.)(2)EF与平面BCD中哪条直线平行?为什么?师生活动:在师生共同分析问题后,学生动笔完成证明过程,教师巡视,检查书写是否规范.设计意图:熟悉判定定理的应用,明确要证明直线与平面的平行,只需在平面内找出一条直线与该直线平行即可.同时规范书写格式.(三)探究并证明直线与平面平行的性质定理问题4:根据前述判定定理,我们已经研究了直线与平面平行的充分条件.下面我们将研究已知直线与平面平行,可以得到什么结论.若直线与平面平行,则与平面内的任意一条直线是什么位置关系?师生活动:学生根据定义加以回答:或是异面直线,或是平行直线.设计意图:先对直线与平面平行条件下,该直线与平面内的直线具有怎样的位置关系做整体了解,然后再聚焦性质定理.追问1:若a∥α,平面α内的直线何时与直线a平行呢?你能够证明你的结论吗?师生活动:师生共同探究,假设平面α内的直线b与直线a平行,则a,b确定一个平面,记为β.我们可以将直线b看作是过直线a的平面β与平面α的交线.至此,老师可鼓励学生大胆提出猜想——若平面β经过直线a且与平面α相交,则直线a与平面α和β的交线b平行.在提出问题后,师生共同完成证明,并正式给出直线与平面平行的性质定理的文字、图形以及符号语言的描述.性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.设计意图:不同于通过观察、操作获得直线与平面平行的判定定理的过程,直线与平面平行的性质定理的研究更侧重于呈现提出问题,分析问题,最后解决问题的思辨过程.通过追问1的分析与解答,培养学生发现和提出问题的能力.追问2:直线和平面平行的性质定理给出了又一种判定两条直线平行的方法.请问使用该定理来判断直线与直线平行时共需要几个条件?师生活动:学生认真分析并回答问题.定理中的三个条件:(1)直线a和平面α平行;(2)平面α和平面β相交于直线b;(3)直线a在平面β内.教师然后给出一些命题让学生判断正误(比如“一条直线平行于一个平面,则它平行于这个平面内的所有直线.”),让学生明白定理中的三个条件缺一不可.设计意图:一方面提醒学生直线和平面平行的性质定理可作为直线与直线平行的判定方法,另一方面加深学生对定理结构的认识.(四)定理应用,巩固深化追问1:第(1)问是一个实际应用问题,你能用确切的数学语言对其进行刻画吗?师生活动:翻译成数学语言即是经过棱BC和BC外一点P作一个截面,确定该截面与木料表面的交线.追问2:该问题的数学本质是确定两个平面的交线.为了解决该问题我们可能用到哪些所学的知识?师生活动:直线与平面平行的性质定理,基本事实4和基本事实3及其推论.师生活动:学生思考,教师展示动画素材,为学生直观演示画线以及切割过程.设计意图:熟悉直线和平面平行的判定定理和性质定理的应用,让学生熟练掌握直线和直线平行、直线与平面平行的相互转化,同时规范解答格式.(五)巩固练习1.判断下列命题是否是真命题:(1)如果一条直线与平面内无数条直线没有公共点,则该直线与平面平行.()。
直线与平面平行教学设计
直线与平面平行
【教学目标】
1. 掌握空间直线和平面的位置关系.
2. 掌握直线和平面平行的判定定理,性质定理;并能利用定理进行简单的证明.
3. 通过动手,培养学生勇于实践、合理推理的能力,并使学生树立将空间问题向平面问题转化的思想,体会数学来源于生活,并服务于生活.
【教学重点】
直线与平面平行的判定定理,性质定理.
【教学难点】
直线与平面平行的判定定理,性质定理的理解和应用.
【教学方法】
主要采用讲练结合法.通过动手实践,引导学生“实践—观察—猜想—归纳”,得出直线与平面的位置关系,判断定理和性质定理.利用文字语言,符号语言和图形语言的相互转化,深化对定理的理解,通过例题,使学生明确定理应用的关键,培养学生将立体问题转化为平面问题的解题思想.。
高中数学2.2.3 直线与平面平行的性质定理 教学设计
《直线与平面平行的性质定理》教学设计一.教材内容与学情分析:本节课内容是人教A版数学必修2第二章第二节第三课时《直线与平面平行的性质定理》,“直线与平面平行的位置关系〞是“空间直线平行关系〞和“空间平面平行关系〞的桥梁和纽带。
“直线与平面平行的性质〞是立体几何的第一节性质定理课,揭示了“直线与平面平行的判定定理〞与“直线与平面平行的性质定理〞的内在关系,构建了新的知识与方法体系。
本节课也是在学生已经学习了“空间直线与平面的位置关系〞“直线与平面平行的判定〞等知识的根底上展开的,这为学习“直线与平面平行的性质〞作了必要的知识准备。
其次学生通过“空间几何体〞,“空间点,直线,平面之间的位置关系〞“直线与平面平行的判定〞的学习,已经初步形成了一定的空间思维和想象能力,以及初步具备了逻辑思维和推理论证能力,从而提高了学习的效率。
二、教学目标:1.知识与技能:学生初步学会应用直线与平面平行的性质定理解决简单问题;2.过程与方法:学生通过对线面平行性质的学习,进一步掌握直线与平面平行的判定和性质定理;通过对探究成果的归纳,整理,分析,从而认清结论的地位和作用,建立知识之间的联系;3.情感态度、价值观:学生通过对线面平行的性质的学习,进一步提高空间想象能力和严谨的思维习惯,养成实事求是的学习态度。
三、教学重点、难点:1.重点:线面平行的性质定理及应用。
2.难点:发现线面平行的性质,理解性质定理与判定定理的关系,并把它们整合到数学知识方法体系中。
四、教法与教具选择:1.教学方法:开放式探究、启发式引导、互动式讨论2.教学手段:多媒体、三角板、纸棒。
五、教学过程设计:〔一〕导直线与平面平行的判定定理〔符号描述〕线线平行→线面平行【设计意图】“温故而知新,可以为师也〞,回忆上节课的内容既可以对上节课内容作以稳固,也可为本节内容的展开做铺垫。
尤其是“线线平行→线面平行〞要板书在黑板的左方,等线面平行的性质定理得出后,提炼为“线面平行→线线平行〞只需要在原根底上加上反向箭头即可。
高中数学《直线与平面平行的判定》教案
高中数学《直线与平面平行的判定》教案一、教学目标1.了解平面和直线的性质。
2.学会判断平面和直线是否平行。
3.掌握平面和直线平行的性质和应用。
4.了解平面和直线的几何应用。
二、教学重点1.直线和平面平行的概念、性质。
2.平行线的判定、条件。
3.平面和直线平行的判定、条件。
三、教学难点平行线判定的学习。
四、教学方法理论讲授、图像分析、练习、探究。
五、教学过程1.导入请学生回顾“平面”和“直线”的定义和性质。
2.提出问题请学生思考如何确定平面和直线是否平行。
3.学习平行线的判定(1)定义:“如果两条直线在同一平面内且不相交,则这两条直线互相平行。
”(2)判定方法:①同向性判定法:向同一方向延申出两条射线,如果两条射线在另一条直线上的同一侧,则两线平行;反之,不平行。
②夹角大小判定法:如果两条线段及其相邻角之和为180度,则两线段是平行的。
③斜率判定法:如果两条直线的斜率相等,则两直线平行。
4.学习平面和直线平行的判定(1)定义:“如果一条直线和一个平面没有交点,那么这条直线在这个平面上的任意一条互不重合的直线上的任意一点和这条直线的任意一点的连线就在这个平面上,这时这条直线与这个平面是平行的。
”(2)判定方法:①两直线平行,其中一条直线在所在平面内,则另一条直线与该平面平行。
②直线与平面垂线所在的平面与给定平面互相平行。
③如果一平面与一直线在空间中相交,并且在交点处的夹角是直角,则该平面与该直线平行。
5.练习请学生完成平面和直线平行的练习题。
6.课堂巩固请学生回答以下问题:(1)平行的两条直线斜率是否相同?(2)如何确定两平面是否平行?(3)如果一条直线在平面内,直线上有一点在平面外,这条直线与平面是否平行?(4)如果一个平面和一条直线互相平行,它们有什么共同点?7.作业请学生完成课堂练习题,并预习下节课内容。
六、板书设计高中数学《直线与平面平行的判定》1.平行线的判定①同向性判定法②夹角大小判定法③斜率判定法2.平面和直线平行的判定①两直线平行,在所在平面内,另一条直线与该平面平行。
直线与平面平行的性质教案
直线与平面平行的性质教案一、教学目标1. 知识与技能:(1)理解直线与平面平行的概念;(2)掌握直线与平面平行的性质定理;(3)能够运用直线与平面平行的性质解决几何问题。
2. 过程与方法:(1)通过直观教具,引导学生观察和思考直线与平面平行的性质;(2)利用逻辑推理,证明直线与平面平行的性质定理;(3)运用直线与平面平行的性质,解决实际问题。
3. 情感态度与价值观:(1)培养学生的空间想象能力;(2)培养学生勇于探索、坚持真理的精神。
二、教学重点与难点1. 教学重点:直线与平面平行的性质定理及其证明。
2. 教学难点:直线与平面平行的性质定理的证明及应用。
三、教学准备1. 教具准备:直尺、三角板、多媒体教学设备。
2. 学具准备:学生尺子、三角板、练习本。
四、教学过程1. 导入新课:通过复习直线、平面和平行线的概念,引导学生思考直线与平面平行的性质。
2. 探究新知:(1)教师展示直线与平面平行的实例,引导学生观察和描述直线与平面平行的特点;(3)教师引导学生运用逻辑推理,证明直线与平面平行的性质定理。
3. 巩固新知:(1)教师布置练习题,让学生运用直线与平面平行的性质解决问题;(2)学生互相讨论,教师点评答案。
4. 拓展与应用:(1)教师提出实际问题,引导学生运用直线与平面平行的性质解决;(2)学生独立思考,教师辅导解答。
五、课后作业1. 复习直线与平面平行的性质定理;2. 完成课后练习题,巩固所学知识;3. 思考实际问题,运用直线与平面平行的性质解决问题。
教学反思:本节课通过观察、讨论、证明和应用等环节,使学生掌握了直线与平面平行的性质。
在教学过程中,注意调动学生的积极性,培养学生的空间想象能力和逻辑推理能力。
但在拓展与应用环节,部分学生对新问题的理解仍有困难,需要在今后的教学中加强引导和辅导。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答、练习完成情况,评价学生的学习态度和效果。
直线与平面平行判定教学设计
直线与平面平行判定教学设计直线与平面平行的判定一、教材分析直线和平面平行额判定是高中数学必修课第二册第一章第三节的内容,本章的前两节的内容是分别介绍了平面的基本的性质和空间的平行直线与异面直线,因此我们在学习了这些基本的知识之后,从而来进一步的研究直线与平面之间的关系。
直线与平面的问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。
通过对有关概念和定理的概括、证明和应用,是学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理的能力。
二、学情分析由于学生在初中已学习了平面上两直线平行的各种判定办法,但由于时间长了,也需要再作一些必要的复习。
通过对两条直线的平行的判定的复习,让学生从中获得一些关于直线与平面平行的知识。
线面平行来转换成线线平行这样的转换思想也是学生首次接触的,应该加以必要的强化与引导。
让学生的对抽象概括的能力以及推理论证的能力得以提高。
三、教学目标1.知识能力的目标(1)直观感知、操作确认,归纳概括出判定定理,对判定定理的构成要素及其关系有较清晰的认识,能用三种语言对判定定理进行表述。
初步掌握利用线面平行判定定理证明线面平行的一般步骤。
(2)使学生进一步了解平行的判定方法,学会准确地使用数学语言表述集合对象的位置关系,并运用判定定理解决一些简单的直线和平面平行的推理论证。
2.过程方法目标(1)通过观察、思考、探究等提出问题,以问题引导学生思维活动,经历从实际背景中抽象出数学模型、从现实的生活空间抽象出几何图形和几何问题的过程,发展学生的空间观念、几何直觉(即把握图形的能力)与一定的归纳概括能力;(2)学习和证明问题的过程在想想、猜猜、证证的过程中完成.培养学生先猜后证,运用合情推理去猜想,再运用逻辑推理去证明的推理论证能力.进一步理解掌握化归与转化思想。
懂得将立体问题平面化、线面问题线线化)3.情感态度价值观目标(1)通过数学思辨和推理过程培养学生说理、批判、质疑的严谨风格和理性精神;(2)领会数学科学的应用价值,激发学生的数学学习兴趣.四、教学重点、教学难点教学重点:判定定理的引入与理解。
高中数学必修2《直线、平面平行的判定及其性质》教案
高中数学必修2《直线、平面平行的判定及其性质》教案一、知识与技能:1、理解并掌握直线与平面平行的性质定理;2、引导学生探究线面平行的问题可以转化为线线平行的问题,从而能够通过化归解决有关问题,进一步体会数学转化的思想。
二、过程与方法:通过直观观察、猜想研究线面平行的性质定理,培养学生的自主学习能力,发展学生的合情推理能力及逻辑论证能力。
三、情感、态度与价值观:培养学生主动探究知识、合作交流的意识,在体验数学转化过程中激发学生的学习兴趣,从而培养学生勤于动脑和动手的良好品质。
2重点难点教学重点:线与面平行的性质定理及其应用。
教学难点:线与面的性质定理的应用。
3教学过程3.1 第一学时教学活动活动1【导入】问题引入一、问题引入木工小刘在处理如图所示的一块木料,已知木料的棱BC∥平面A C .现在小刘要经过平面A C 内一点P和棱BC将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?预设:(1)过P作一条直线平行于B C(2)过P作一条直线平行与BC。
(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。
)活动2【讲授】新课讲授二、知识回顾判定一条直线与一个平面平行的方法:1、定义法:直线与平面没有公共点。
2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。
(线线平行线面平行)三、知识探究(一)思考一:如果直线a与平面平行,那么直线a与平面内的直线有哪些位置关系?答:平行或异面。
思考2:若直线a与平面平行,那么在平面内与直线a平行的直线有多少条?这些直线的位置关系如何?答:无数条;平行。
思考3:如果直线a与平面平行,经过直线a的平面与平面相交于直线b,那么直线a、b的位置关系如何?为什么?答:平行;因为a∥,所以a与没有公共点,则a与b没有公共点,又a与b在同一平面内,所以a与b平行。
思考4:综上分析,在直线a与平面平行的条件下我们可以得到什么结论?答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。
直线和平面平行的判定和性质
Hale Waihona Puke 总结:空间直线与平面的位置关系
位置关系 相交 平行 在平面内
公共点的个数 1个 没有
无数个
一、素质教育目标 (一)知识教学点
了解空间直线和平面的位置关系;掌握直线和平面平行的判定定理和性质和性 质定理;进一步熟悉反证法的实质及其一般解题步骤。 (二)能力训练点
通过探究线面平行定义、判定和性质定理及其应用,进一步培养学生观察、 发现的能力和空间想象能力,并且使学生掌握反证法这一重要方法。(三)德育 渗透点培养学生的逻辑思维能力。 二、学法引导在定理的应用上要注意记清条件和结论。 三、重点、难点 (一)重点
的已平知:面 和∥这 个平 面,相交,那 么m。这条直线和交m线平行。
求证: ∥ m
例1:已知:空间四边形ABCD中,E、F 分别是AB、AD的中点。
求证:EF∥平面BCD
A
F E
D B
C
1.使一块矩形木板ABCD的一边AB紧靠 桌面并绕AB转动,当AB的对边转动到各 个位置时,是不是都与桌面所在的平面 平行?为什么?
如图,长方体 ABCD ABCD中 ,
(1)与AB平行的平面是 平面 ABCD 平面 CCDD ;
(2)与 AA平行的平面是平面 BBCC 平面 CCDD ;
(3)与AD平行的平面是 平面 ABCD 平面 BBCC ;
D A
D A
C B
C B
直线与平面平行的判定、性质定理的应用。 (二)难点
线面平行的判定定理的反证法证明、两定理的应用。
直线和平面平行的判定定理:
如果不在一个平面内的一条直线和平面内的一
条直线平行,那么这条直线和这个平面平行。
已知: , m ,且 ∥ m
《直线与平面平行》教案
《直线与平面平行》教案知识目标:1. 掌握什么是平面与平面平行。
2. 掌握什么是直线与平面平行。
3. 理解直线与平面平行的充分必要条件。
能力目标:1. 能够用图形、文字等方式阐述平面与平面平行的概念。
2. 能够通过观察、实验等方式发现直线与平面平行的特点。
3. 能够利用直线与平面平行的性质解决问题。
情感目标:1. 培养学生观察和思维的创新能力。
2. 培养学生发现问题、解决问题的能力。
3. 培养学生学习数学的兴趣和态度。
教学重点:1. 直线与平面平行的概念。
2. 直线与平面平行的性质。
教具准备:1. 教材2. 黑板、彩色粉笔3. 直线、平面的模型4. 绘图工具教学过程:一、导入(5分钟)1. 谈论题:在建筑或城市规划中,我们经常要涉及平行的概念,那么平行是什么呢?2. 学生说出什么是平行,并用黑板上的直线示意图解释一下。
二、展示(10分钟)1. 展示一个平面模型,用黑板绘制一条线段,并让学生探究直线在平面中的位置。
2. 展示两个平面模型,让学生发现直线在两个平面中的位置,引导他们认识到平面与平面平行的概念。
3. 采用示意图解释平面与平面平行的概念,包括定义、性质等。
四、巩固(15分钟)1. 学生根据所学内容,完成相关练习题,并与同桌进行自我评估。
2. 引导学生解决生活中与直线与平面平行相关的实际问题。
3. 教师在黑板上演示实例,让学生跟随教师,掌握解题方法。
五、布置作业(5分钟)1. 出示相关作业,并让学生在下课前完成。
2. 强调作业的重要性,希望能够按时上交。
教学总结:1. 总结平面与平面平行、直线与平面平行的概念;2. 强调直线与平面平行的判断方法;3. 激发学生对于直线与平面平行的兴趣,提高学生的学习热情和积极性。
第三节 直线、平面平行的判定与性质 教案
第三节直线、平面平行的判定与性质核心素养立意下的命题导向1.结合立体几何的定义、公理,会推导直线和平面平行、平面和平面平行的判定定理和性质定理,凸显逻辑推理的核心素养.2.常与求几何体的体积计算相结合,会应用直线和平面平行、平面和平面平行的判定定理、性质定理证明空间的线、面平行关系,凸显直观想象、逻辑推理的核心素养.[理清主干知识]1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b⇒a∥b2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定理两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a⊂α⇒a∥β如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b3.谨记两个结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.[澄清盲点误点]一、关键点练明1.(直线与平面平行的定义)如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.2.(面面平行的判定定理)设α,β是两个不同的平面,m是一条直线且m⊂α,“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥βα∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.3.(平行关系的判定)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.m∥α,n∥α,则m∥n B.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β解析:选C A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D不正确.4.(面面平行的性质定理)设α,β,γ是三个不同的平面,a,b是两条不同的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③二、易错点练清1.(忽视面面平行的条件)下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解析:选D由两个平面平行的判定定理可知,如果一个平面内的两条相交直线与另外一个平面平行,那么这两个平面平行.故可知D符合.2.(对空间平行关系相互转化的条件理解不到位)设m,l表示两条不同的直线,α表示平面,若m⊂α,则“l∥α”是“l∥m”的________条件.解析:由m⊂α,l∥α不能推出l∥m;由m⊂α,l∥m也不能推出l∥α,所以是既不充分也不必要条件.答案:既不充分也不必要3.(忽视线面平行的条件)(1)若直线a与平面α内无数条直线平行,则a与α的位置关系是______________.(2)已知直线a,b和平面α,β,若a⊂α,b⊂α,a∥β,b∥β,则α,β的位置关系是______________.(3)若α∥β,直线a∥α,则a与β的位置关系是___________________________________.解析:(1)由直线与平面平行的判定定理知,a可能平行于α,也可能在α内.(2)当a,b相交时,α∥β;当a,b平行时,α,β平行或相交.(3)当a在β外时,a∥β;当a在β内时,a∥α也成立.答案:(1)a∥α或a⊂α(2)平行或相交(3)a∥β或a⊂β考点一直线与平面平行的判定与性质考法(一)线面平行的判定[例1]如图所示,在空间几何体ABCDFE中,四边形ADFE是梯形,且EF∥AD,P,Q分别为棱BE,DF的中点.求证:PQ∥平面ABCD.[证明]法一:如图,取AE的中点G,连接PG,QG.在△ABE中,PB=PE,AG=GE,所以PG∥BA,又PG⊄平面ABCD,BA⊂平面ABCD,所以PG∥平面ABCD.在梯形ADFE中,DQ=QF,AG=GE,所以GQ∥AD,又GQ⊄平面ABCD,AD⊂平面ABCD,所以GQ∥平面ABCD.因为PG∩GQ=G,PG⊂平面PQG,GQ⊂平面PQG,所以平面PQG∥平面ABCD.又PQ⊂平面PQG,所以PQ∥平面ABCD.法二:如图,连接EQ并延长,与AD的延长线交于点H,连接BH.因为EF∥DH,所以∠EFQ=∠HDQ,又FQ=QD,∠EQF=∠DQH,所以△EFQ≌△HDQ,所以EQ=QH.在△BEH中,BP=PE,EQ=QH,所以PQ∥BH.又PQ⊄平面ABCD,BH⊂平面ABCD,所以PQ∥平面ABCD.考法(二)线面平行的性质定理的应用[例2]如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.[证明]如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴AP∥MO.又MO⊂平面BMD,AP⊄平面BMD,∴AP∥平面BMD.∵平面PAHG∩平面BMD=GH,且AP⊂平面PAHG,∴AP∥GH.[方法技巧]线面平行问题的解题关键(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,解题的思路是利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.(2)应用线面平行性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.[针对训练]如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO⊂平面EOC,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)如图,取AB的中点N,连接DN,MN.因为M是AE的中点,N是AB的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,MN⊂平面DMN,DN⊂平面DMN,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.[证明](1)∵在△A1B1C1中,G,H分别是A1B1,A1C1的中点,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴GH与BC确定一个平面α,∴G,H,B,C∈α,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.易证A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,且A1E⊂平面EFA1,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.[方法技巧]1.判定面面平行的主要方法(1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行).2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.[提醒]利用面面平行的判定定理证明两平面平行,需要说明在一个平面内的两条直线是相交直线.[针对训练]1.如图是长方体被一平面截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:∵平面ABFE∥平面DCGH,平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理,EH∥FG,∴四边形EFGH 是平行四边形. 答案:平行四边形2.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA =PD ,AB =AD ,PA ⊥PD ,AD ⊥CD ,∠BAD =60°,M ,N 分别为AD ,PA 的中点.(1)证明:平面BMN ∥平面PCD ; (2)若AD =6,求三棱锥P -BMN 的体积. 解:(1)证明:如图,连接BD . ∵AB =AD ,∠BAD =60°, ∴△ABD 为正三角形. ∵M 为AD 的中点,∴BM ⊥AD .∵AD ⊥CD ,CD ⊂平面ABCD ,BM ⊂平面ABCD , ∴BM ∥CD .又BM ⊄平面PCD ,CD ⊂平面PCD , ∴BM ∥平面PCD .∵M ,N 分别为AD ,PA 的中点,∴MN ∥PD . 又MN ⊄平面PCD ,PD ⊂平面PCD , ∴MN ∥平面PCD .又BM ⊂平面BMN ,MN ⊂平面BMN ,BM ∩MN =M , ∴平面BMN ∥平面PCD . (2)在(1)中已证BM ⊥AD . ∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BM ⊂平面ABCD , ∴BM ⊥平面PAD .又AD =6,∠BAD =60°,∴BM =3 3. ∵M ,N 分别为AD ,PA 的中点,PA =PD =22AD =32, ∴S △PMN =14S △PAD =14×12×(32)2=94.∴V P -BMN =V B -PMN =13S △PMN ·BM =13×94×33=934.考点三 平行关系的综合[典例] 如图所示,平面α∥平面β,点A ∈α,点C ∈α,点B ∈β,点D ∈β,点E ,F 分别在线段AB ,CD 上,且AE ∶EB =CF ∶FD . (1)求证:EF ∥平面β;(2)若E ,F 分别是AB ,CD 的中点,AC =4,BD =6,且AC ,BD 所成的角为60°,求EF 的长.[解] (1)证明:①当AB ,CD 在同一平面内时,由平面α∥平面β,平面α∩平面ABDC =AC ,平面β∩平面ABDC =BD 知,AC ∥BD . ∵AE ∶EB =CF ∶FD ,∴EF ∥BD . 又EF ⊄β,BD ⊂β,∴EF ∥平面β.②当AB 与CD 异面时,如图所示,设平面ACD ∩平面β=HD , 且HD =AC , ∵平面α∥平面β, 平面α∩平面ACDH =AC , ∴AC ∥HD ,∴四边形ACDH 是平行四边形.在AH 上取一点G ,使AG ∶GH =CF ∶FD , 连接EG ,FG ,BH .∵AE ∶EB =CF ∶FD =AG ∶GH , ∴GF ∥HD ,EG ∥BH .又EG ∩GF =G ,BH ∩HD =H , ∴平面EFG ∥平面β.又EF ⊂平面EFG ,∴EF ∥平面β. 综合①②可知,EF ∥平面β.(2)如图所示,连接AD ,取AD 的中点M ,连接ME ,MF . ∵E ,F 分别是AB ,CD 的中点, ∴ME ∥BD ,MF ∥AC , 且ME =12BD =3,MF =12AC =2.∴∠EMF 为AC 与BD 所成的角或其补角, ∴∠EMF =60°或120°. ∴在△EFM 中,由余弦定理得EF =ME 2+MF 2-2ME ·MF ·cos ∠EMF =32+22±2×3×2×12=13±6,即EF =7或EF =19. [方法技巧]利用线面平行或面面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置.对于线段长或线段比例问题,常用平行线对应线段成比例或相似三角形来解决.[针对训练] 如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是矩形,E ,F ,G 分别是棱BC ,AD ,PA 的中点. (1)求证:PE ∥平面BFG ;(2)若PD =AD =1,AB =2,求点C 到平面BFG 的距离. 解:(1)证明:如图,连接DE .∵在矩形ABCD 中,E ,F 分别是棱BC ,AD 的中点, ∴DF =BE ,DF ∥BE ,∴四边形BEDF 是平行四边形,∴DE ∥BF . ∵G 是PA 的中点,∴FG ∥PD .∵PD ⊄平面BFG ,DE ⊄平面BFG ,FG ⊂平面BFG , BF ⊂平面BFG ,∴PD ∥平面BFG ,DE ∥平面BFG . 又PD ∩DE =D ,∴平面PDE ∥平面BFG . ∵PE ⊂平面PDE ,∴PE ∥平面BFG .(2)法一:∵PD ⊥平面ABCD ,FG ∥PD ,∴FG ⊥平面ABCD . 过点C 在平面ABCD 内,作CM ⊥BF ,垂足为M ,则FG ⊥CM . ∵FG ∩BF =F ,∴CM ⊥平面BFG , ∴线段CM 的长是点C 到平面BFG 的距离.在矩形ABCD 中,∵F 是AD 的中点,AD =1,AB =2,△BCM ∽△FBA , ∴CM BA =BC FB. ∵FB =AB 2+AF 2=172,BC =AD =1, ∴CM =41717,即点C 到平面BFG 的距离为41717.法二:设点C 到平面BFG 的距离为d . 在矩形ABCD 中,AF =12AD =12,AB =2,∴BF =14+4=172. ∵PD ⊥平面ABCD ,BF ⊂平面ABCD ,∴PD ⊥BF .∵FG ∥PD ,∴FG ⊥BF ,又FG =12PD =12,∴△BFG 的面积为12BF ·FG =178.∵△BCF 的面积为12BC ·AB =1,V C -BFG =V G -BCF , ∴13×178d =13×1×12,解得d =41717, 即点C 到平面BFG 的距离为41717.创新考查方式——领悟高考新动向1.如图,已知底面边长为3且高为1的正三棱柱ABC -A 1B 1C 1,过顶点A 作平面α与侧面BCC 1B 1交于EF ,且EF ∥BC ,若∠FAB =x ⎝⎛⎭⎫0<x ≤π6,四边形BCEF 的面积为y ,则函数y =f (x )的图象大致是( )解析:选C 由题意得,在Rt △ABF 中,BF =AB tan x ,所以y =f (x )=BC ·BF =BC ·AB tan x =3tan x ⎝⎛⎭⎫0<x ≤π6.由正切函数的图象及性质,可得C 正确.2.(多选)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 是线段B 1D 1上的两个动点,且EF =22,以下结论正确的为( ) A .AC ⊥BFB .三棱锥A -BEF 的体积为定值C .EF ∥平面ABCDD .异面直线AE ,BF 所成的角为定值解析:选ABC 对于A ,∵ABCD -A 1B 1C 1D 1为正方体,易得AC ⊥平面BDD 1B 1, ∵BF ⊂平面BDD 1B 1,∴AC ⊥BF ,故A 正确;对于B ,∵E ,F ,B 在平面BDD 1B 1上,∴A 到平面BEF 的距离为定值,∵EF =22,又B 到直线EF 的距离为1,∴△BEF 的面积为定值,∴三棱锥A -BEF 的体积为定值,故B 正确; 对于C ,∵EF ∥BD ,BD ⊂平面ABCD ,EF⊄平面ABCD,∴EF∥平面ABCD,故C正确;对于D,设上底面中心为O,当F与B1重合时,E与O重合,易知两异面直线所成的角是∠A1AO;当E与D1重合时,F与O重合,连接BC1,易知两异面直线所成的角是∠OBC1,可知,这两个角不相等,故异面直线AE,BF所成的角不为定值,故D错误.3.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:如图,连接HN,FH,FN,则FH∥D1D,HN∥BD,∵FH∩HN=H,D1D∩BD=D,∴平面FNH∥平面B1BDD1,若M∈FH,则MN⊂平面FNH,∴MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)4.(2021·福建漳州适应性测试)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在正方形D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q所形成的轨迹的长为________.解析:由于QB∥平面D1NT,所以点Q在过B且与平面D1NT平行的平面上,如图,取DC的中点E1,取线段AA1上一点G,使A1G=1,易证平面BGE1∥平面D1NT.延长BE1,AD,交于点E,连接EG,交DD1于点I,显然,平面BGE∩正方形D1DAA1=GI,所以点Q的轨迹是线段GI,易求得GI=10.答案:105.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.解析:如图,过点G作EF∥AC,分别交PA,PC于点E,F,过E,F分别作EN∥PB,FM∥PB,分别交AB,BC于点N,M,连接MN,则四边形EFMN是平行四边形(面EFMN为所求截面),且EF=MN=23AC=2,FM=EN=13PB=2,所以截面的周长为2×4=8.答案:8[课时跟踪检测]1.(多选)已知直线a,b,l,平面α,β,则下列命题中错误的选项为() A.若α⊥β,l⊥α,则l∥βB.若a⊥l,b⊥l,则a∥b C.若α⊥β,l⊂α,则l⊥βD.若l⊥α,l⊥β,则α∥β解析:选ABC对于A,由α⊥β,l⊥α,可知l⊂β或l∥β,故A错误;对于B,当a⊥l,b⊥l时,直线a与b可能平行,也可能相交,还可能异面,故B错误;对于C,当α⊥β,l⊂α时,l可能与平面β平行,也可能斜交,故C错误;对于D,垂直于同一条直线的两个平面互相平行,故D正确.2.(多选)已知α,β,γ是三个不重合的平面,l是直线.给出下列命题,其中正确的命题是()A.若l上两点到α的距离相等,则l∥αB.若l⊥α,l∥β,则α⊥βC.若α∥β,l⊄β,且l∥α,则l∥βD.若m⊥α,n⊥β,且α⊥β,则m∥n解析:选BC对于A,若直线l在平面α内,l上有两点到α的距离为0,相等,此时l不与α平行,所以A错误;对于B,因为l∥β,所以存在直线m⊂β使得l∥m,因为l⊥α,所以m⊥α,又m⊂β,所以β⊥α,所以B正确;对于C,l∥α,故存在m⊂α使得l∥m,因为α∥β,所以m∥β,因为l∥m,l⊄β,所以l∥β,C正确;对于D,因为m⊥α,n⊥β,α⊥β,所以m⊥n,所以D错误,故选B、C.3.(2021·潍坊期中)m,n是平面α外的两条直线,在m∥α的前提下,m∥n是n∥α的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由已知条件m∥α,结合线面平行的性质定理可得,过直线m作一平面β交α于直线l,则m∥l,从而存在l⊂α有m∥l,再由m∥n可得n∥l,从而有n∥α.反之,不一定成立,m,n可能相交、平行或异面.所以m∥n是n∥α的充分不必要条件,故选A. 4.若平面β截三棱锥所得的截面为平行四边形,则该三棱锥的所有棱中与平面β平行的棱有()A.0条B.1条C.2条D.1条或2条解析:选C如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD,又∵EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.同理,AB∥平面EFGH.故有2条棱与平面EFGH平行.因此选C. 5.设m,n是两条不同的直线,α,β是两个不重合的平面,有以下四个命题:①若m∥α,n∥β且α∥β,则m∥n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n∥β且α∥β,则m⊥n;④若m∥α,n⊥β且α⊥β,则m∥n.其中真命题的序号是()A.②③B.③④C.①④D.①②解析:选A对于命题①,直线m,n可以相交、平行或异面,故是错误的;易知②③正确;对于命题④,直线m,n可以相交、平行或异面,故是错误的.故选A.6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β解析:选D m∥α,m∥β,则有m∥l,又AB∥l,所以AB∥m,所以A成立;由于m∥l,l⊥AC,所以m⊥AC,所以B成立;AB∥l,且A∈α,A∉l,α∩β=l,所以AB∥β,所以C成立;C点可以在平面β内,AC与直线l异面垂直,如图所示,此时AC⊥β不成立,所以D不一定成立.7.如图所示,三棱柱ABC-A1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.解析:如图,设BC1∩B1C=O,连接OD.∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD,∴A1B∥OD,∵四边形BCC1B1是菱形,∴O为BC1的中点,∴D为A1C1的中点,则A1D∶DC1=1.答案:18.(2021·苏州调研)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若m∥α,n∥β,m∥n,则α∥β.其中是真命题的是________(填序号).解析:①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m⊂β,故③错误;④α∥β或α与β相交,故④错误.答案:②9.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________.解析:①中,易知NP ∥AA ′,MN ∥A ′B ,∴平面MNP ∥平面AA ′B ,可得出AB ∥平面MNP (如图). ④中,NP ∥AB ,能得出AB ∥平面MNP . 在②③中不能判定AB ∥平面MNP . 答案:①④10.(2021·武汉模拟)如图,已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面PAB ⊥平面ABCD ,E 是棱PA 的中点. (1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.解:(1)证明:在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O (图略),则O 是AC 的中点.又E 是PA 的中点,连接EO ,则EO 是△PAC 的中位线,所以PC ∥EO ,又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC ∥平面EBD .(2)设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V , 则三棱锥E -ABD 的体积V 1=13×S △ABD ×h ,因为E 是PA 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S四边形ABCD×2h =4×13S △ABD ×h =4V 1,所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3. 11.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证: (1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG . 证明:(1)如图,连接AE , 则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO . 又BE ⊄平面DMF , MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG .又M 为AB 的中点, 所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .12.如图,在四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,E ,F 分别在BC ,AD 上,EF ∥AB .现将四边形ABCD 沿EF 折起,使平面ABEF ⊥平面EFDC .若BE =1,在折叠后的线段AD 上是否存在一点P ,且AP =λPD ,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,请说明理由.解:AD 上存在一点P ,使得CP ∥平面ABEF ,此时λ=32.理由如下:当λ=32时,AP =32PD ,可知AP AD =35,如图,过点P 作MP ∥FD 交AF 于点M ,连接EM ,PC , 则有MP FD =AP AD =35,又BE =1,可得FD =5, 故MP =3,又EC =3,MP ∥FD ∥EC ,故有MP 綊EC , 故四边形MPCE 为平行四边形,所以CP ∥ME , 又ME ⊂平面ABEF ,CP ⊄平面ABEF , 故有CP ∥平面ABEF .。
《直线与平面平行的性质》教学设计
《直线与平面平行的性质》教学设计一、教材结构与内容简析:在上一章学生通过整体观察,对空间几何体的结构特征已有了认识,并在本节之前学生已学习了空间两直线的位置关系,空间直线与平面的位置关系,还有线面平行的判定定理以及面与面平行的判定定理,这是学习本节内容的基础,直线与平面的位置关系中平行关系应用最多,而直线与平面平行的性质是本大节的难点,本节内容与下一节面面平行的性质有着密切的联系,在描述直线与直线,直线与平面,平面与平面的位置关系中起着重要的作用。
二、教学目标:⒈知识目标:直线和平面平行的性质定理⒉能力目标:用转化的方法掌握应用直线与平面平行的性质定理,即由线面平行可推得线线平行.⒊情感目标:让学生认识到研究直线与平面平行的性质定理是实际生产的需要,充分体现了理论联系实际的原则.三、教学的重点和难点:重点:直线和平面平行的性质定理.难点:直线和平面平行的性质定理的证明及应用四、教学方法和教学手段的运用:1.建构主义学习理论认为:学生的认知结构是通过同化和顺化而不断发展,学习不是对教师所授予的知识被动接受,而是一个以学生已有的知识和经验为基础的主动的建构过程。
学生真正获得知识的消化,是把新的学习内容正确纳入已有的认知结构,使其成为整个认知结构的有机组成部分,所以在教学中,我以长方体为载体,按照“直观感知----操作确认-----思辩论证”的认识过程展开。
通过创设良好的问题情境,不断引导学生观察、实验、思考、探索,通过自己的亲身实践,充分发挥学生学习的主动性,培养学生的自主、合作、探索能力。
同时采用电脑课件的教学手段,加强直观性和启发性,提高课堂效益。
课前准备:电脑、投影仪、课件、实物模型。
2、学法指导根据本节课特点及学生的认知心理,我把重点放在如何让学生“会学习”这一方面,学生在教师营造的“可探索”环境里,积极参与、生动活泼地获取知识、掌握规律、主动发现、积极探索,从而培养学生观察能力、空间想象能力、探索思维能力,分析问题及解决问题的能力。
线面平行的性质定理教案
《直线与平面平行的性质定理》教案整体设计教学分析上节课已经学习了直线与平面平行的判定定理,这节课让学生体会线面平行的性质定理,并熟悉掌握性质定理证明过程。
灵活运用线面平行的判定定理和线面平性的性质定理之间的转换。
教学目标1、探究直线与平面平行的性质定理。
2、体会直线与平面平行的性质定理的应用。
3、通过线线平行与线面平行转化,培养学生的学习兴趣。
教学难点教学重点:直线与平面平行的性质定理的证明与应用。
教学难点:线面平行性质定理的应用——如何在已知平面中找出已知直线的平行线。
课时安排1课时。
教学过程复习回忆老师和同学一起回忆直线与平面平行的判定定理:(1)文字语言平面外一条直线和此平面内的一条直线平行,则该直线与此平面平行。
(2)符号语言(3)图形语言导入新课1.由线线平行推出线面平行,导入线面平行能推出线线的什么关系;2.已知线面平行,如何在该平面中找出与已知直线的平行线;推进新课(一)提出问题1.线面平行的特点:让学生通过做练习题讨论出线面平行的没有交点之一特点,为证明线面平行的性质定理做好第一步的铺垫。
2.如何说明空间中的两条直线平行:让学生回答目前学的证明两直线平行的方法(1)递推法:由a//b,b//c得出a//c;(2)定义法:在空间中如果两直线没有交点且在同一平面内,则两直线平行。
强调是在同一平面内,否则可能是异面直线(老师用教室里的直线这个例子来说明)。
(二)线面平行的性质定理的证明(三)得出线面平行的性质定理:(1)文字语言一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
(2)符号语言(3)图形语言课程小结学生和老师一起总结线面平行的判定定理和线面平行的性质定理。
课后作业P61 例3、例4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:直线与平面平行的性质
教材:普通高中课程标准实验教科书人教A版数学必修2§2.2.3
授课教师:无为第一中学范德泉
【三维目标】
1.知识与技能
通过教师的适当引导和学生的自主学习,使学生由直观感知获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理.
2.过程与方法
通过直观感知和操作确认的方法,发展几何直觉、运用图形语言进行交流的能力;体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程;通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性.3.情感、态度、价值观
通过主动参与、积极探究的学习过程,提高学习数学的自信心和积极性,培养合作意识和交往能力,领悟化归与转化的数学思想,提高学生分析解决问题的能力.
【教学重点与难点】
1.教学重点直线与平面平行的性质定理.
2.教学难点综合应用线面平行的判定定理和性质定理.
【教学过程】
教学内容师生互动
【回顾旧知】
直线与平面平行判定定理的内容.通过复习直线与平
面平行的判定定理,温故
而知新,为后面线线平行
与线面平行的相互转化
做铺垫.
【新课引入】
1.如果一条直线与平面平行,那么这条直线是否与这个平面内的所有直线都平行?
2.在平面 内,有多少条直线与直线a平行?
引导学生结合直观感知,层层递进,逐步探索,体会数学结论的发现过程.学生根据问题进行直
3.在平面α内,哪些直线与直线a 平行? 4.由以上的探索与发现你能得出怎样的结论? 5.能否对你发现的结论进行证明?
观感知,进而提出合理猜想.并逐步探索,认真思考,画出相应图形,进行观察,感知、猜想.
已知://a α,a β⊂,b αβ=.
求证://a b . 证明:因为 b α
β=,所以 b α⊂.
又因为 //a α, 所以 a 与b 无公共点. 又因为,a β⊂,b α⊂, 所以 b α⊂.
引导学生得出猜想,形成经验性结论,体会与感受数学结论的发现与
形成过程:直观感知→操作确认→逻辑证明→形成经验.要求学生用语言描述发现的结论,并给出证明.
〖直线与平面平行的性质定理〗
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
b a b a a ////⇒⎪⎭
⎪
⎬⎫
=⊂βαβα
要求学生总结归纳,并能用文字语言符号语言图形语言描述直线与平面平行的性质定理,为学生正确使用定理打下基础.
〖定理探微〗
1.定理可以作为直线与直线平行的判定方法; 2.定理中三个条件缺一不可;
3.提供了过已知平面内一点作与该平面的平行线相平行的直线的方法,即:辅助平面法.
明确定理的条件和结论及定理的用途.
【例题讲解】
例1.(教材P 61例3) 如图所示的一块木料中,棱BC 平行于面''A C .
(1)要经过面''A C 内的一点P 和棱BC 将木料锯开,应怎样画线?
(2)所画的线与平面AC 是什么位置关系? ★思路点拔:
1.怎样确定截面?过点P 所画的线应怎样画? 2.“线面平行” 与“线线平行”之间有怎样的联系? ★解答过程:
解:(1)在平面''A C 内,过点P 作直线EF ,使//''EF B C ,并分别交棱''A B ,''C D 于点E ,F .
连接BE ,CF ,则EF ,BE ,CF 就是应画的线.
(2)因为棱BC 平行于平面''A C ,平面'BC 与平面''A C 交于''B C ,所以//''BC B C ,由(1)知,//''EF B C ,所以,//EF BC ,因此
////EF BC
EF AC EF AC BC AC ⎫
⎪
⊄⇒⎬⎪⊂⎭
平面平面平面 BE ,CF 显然都与平面AC 相交.
引导学生分析画截面的关键是确定截面与上底面的交线,怎样过P
点作BC 的平行线是作图的难点.学生经过认真思考,运用所学知识找到作图方法,体会到解决问题后成功的喜悦,认识到数学来源于实践又反过来为实践服务,加强用数
学的意识. 例2.(教材P61例4)已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.
★思路点拔:
1.文字性的命题的解题步骤是什么?
2.“线面平行”与“线线平行”之间有怎样的联系? ★解答过程:
如图所示,己知直线a ,b ,平面α,且//a b ,//a α,a α⊄,b α⊄.
求证://b α.
引导学生分析问题的条件与结论,并结合图形写出己知和求证.通过分析寻找解题途径.本题的解题关键是实现线线
平行与线面平行的转
化.通过教师的板书,规范解题步骤与格式.
证明:过a 作平面β,使
c αβ=.
因为//a α,a β⊂,c αβ=,
所以//a c .
又因为//a b ,所以//b c . 因为c α⊂,b α⊄,所以//b α. 【课堂练习】
1. 如图,四面体ABCD 被平面所截,截面与四条棱AD ,AB ,
CB ,CD 相交与点E ,F ,G ,
H 四点,且截面EFGH 是平行四边形.
求证://AC EFGH 平面. ★解答过程:
证明:因为EFGH 是平行四边形, 所以//EH FG . 又因为EH ABC ⊄平面,FG ABC ⊂平面, 所以//EH ABC 平面.
因为EH ACD ⊂平面,=ACD ABC AC 平面平面,
所以//EH AC .
又因为AC EFGH ⊄平面,EH EFGH ⊂平面, 所以//AC EFGH 平面. 学生独立完成练习l ,检查学习效果,使学生掌 证明线面平行问题的方法、步骤与格式,提高综合运用所学知识的能力.
2.如图,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是
PC 中点,在DM 上取一点G ,
过G 和AP 的平面交平面BDM 于GH ,
求证://PA GH .
练习2是证明线线平行问题,本题需作辅助线,比练习1要难,因此组织学习小组进行讨论,通过合作学习、寻找解题途径,最后选2个小组代表
★解答过程: 证明:连接AC ,设AC
BD O =,连接OM .
因为ABCD 是平行四边形, 所以OA OC =. 因为MP MC =,所以//OM PA . 因为PA BDM ⊄平面,
OM BDM ⊂平面,
所以//PA BDM 平面. 因为PAG
BDM GH =平面平面,PA PAG ⊂平面,
所以//PA GH . 上黑板板演证明过程,教
师最后进行点评.
【小结】
小结回顾:注意线面平行的性质定理与判定定理联系和区别,“线面平行”与“线线平行”问题是互相联系的,在解题时要善于将问题进行转化.
【布置作业】 教材P64 5、6.。