谐波原理及抑制
电力谐波的产生原因及抑制方法
电力谐波的产生原因及抑制方法电力谐波是指电力系统中产生的非正弦波形,它由于交流电系统中的非线性负载、电力线上的电容器和电感器等因素引起。
电力谐波在电力系统中的存在可能会导致设备的故障、能源浪费和电网负载能力的下降。
因此,对电力谐波的产生进行有效的抑制是非常重要的。
1.非线性负载:非线性负载是电力谐波的主要源头。
非线性负载通常包括电力电子设备,如电视、计算机、UPS电源、逆变器、风力发电机等。
这些设备的工作原理会产生非线性电流,进而导致电网中谐波的产生。
2.电容器和电感器:电容器和电感器也会对电力谐波的产生做出贡献。
在电力系统中,电容器和电感器常用于无功补偿和电能储存。
然而,由于电容器和电感器的等效电路具有谐振特性,它们会对电力谐波起到放大的作用。
3.电网接地方式:电网的接地方式也会影响电力谐波的产生。
当电网采用不完全中性接地时,地线电流会导致电子设备的谐波污染。
抑制电力谐波的方法有多种,下面将介绍几种常见的方法:1.优化电力系统设计:对于新建的电力系统,可以采用谐波抑制措施进行设计。
例如,将非线性负载远离主要的电源和敏感设备,减少非线性负载对谐波的干扰。
2.增加电力系统的容量:增加系统容量可以降低电力谐波对设备的影响。
通过增加设备的容量,可以减少设备的负载率,从而降低了负载谐波。
3.应用谐波滤波器:谐波滤波器是目前应用最广泛的抑制电力谐波的方法之一、谐波滤波器可将电力谐波从电网中滤除,从而减少对设备的影响。
4.提高设备的抗谐波能力:可以通过改善设备的设计或增加额外的抗谐波装置,使得设备能够更好地抵抗电力谐波的干扰。
5.加强监测和管理:及时监测电力谐波的产生和影响程度,对于谐波超标的情况进行调整和管理。
可以采用在线监测系统对电力谐波进行实时监测,并根据监测结果采取适当的措施。
综上所述,电力谐波的产生原因主要是非线性负载、电容器和电感器以及电网接地方式等因素的综合作用。
为了有效抑制电力谐波,需要采用适当的方法,包括优化电力系统设计、增加系统容量、应用谐波滤波器、提高设备的抗谐波能力以及加强监测和管理等。
电力系统中的谐波及其抑制措施
电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。
谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。
谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。
常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。
谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。
2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。
3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。
为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。
它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。
2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。
3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。
4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。
5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。
综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。
通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。
电力系统谐波基本分析方法抑制方法
电力系统谐波基本分析方法抑制方法電力系統諧波----基本原理、分析方法、抑制方法【摘要】变频器在工业生产中无可比拟的优越性,使越来越多的系统和装置采用变频器驱动方案,而且采用变频器驱动电动机系统因其节能效果明显,调节方便维护简单,网络化等优点,而被越来越多应用,但它非线性,冲击性用电工作方式,带来干扰问题亦倍受关注。
一台变频器来讲,它输入端和输出端都会产生高次谐波,输入端谐波会输入电源线对公用电网产生影响。
本文从变频器产生的谐波原理、谐波测试分析方法,谐波的抑制方法方面进行探讨。
【关键词】电力系统,变频器,谐波分析,谐波抑制。
【引言】谐波存在于电力系统已经很多年了,但是,近年来,随着技术的发展成熟,越来越多的设备系统为提高可靠性和效率广泛采用电力电子变频器,而且电力公司为降低设备所需的额定值以及线路损耗和电压降落,强制要求电力用户提高其自身的功率因数,而电力用户及工厂端改善功率因数的方法是使用功率因数补偿器—电容模组,这两种情况的出现,使得电力系统的谐波问题变得更加严重。
电力用户和工厂端普遍使用的变速传动和电力电子设备是产生这一现象的根源,而这些设备与功率因数校正电容模组之间的相互作用导致了电压和电流的放大效应;半导体电子工业的迅猛发展也导致了大批精密设备的诞生,与过去粗笨的设备相比,这些设备对电力公司供给的电能质量更加敏感,但同时也导致交流电流和电压稳态波形的畸变。
而为了得到可靠清洁的电力能源,人们必须面对电流和电压畸变的问题,而电流和电压的畸变的主要形式是谐波畸变。
【正文】1、变频器谐波产生从结构来看,变频器可分为间接变频和直接变频两大类。
间接变频将工频电流整流器变成直流,然后再由逆变器将直流变换成可控频率交流。
直接变频器则将工频交流变换成可控频率交流,没有中间直流环节。
它每相都是一个两组晶闸管整流装置反并联可逆线路。
正反两组按一定周期相互切换,负荷上就获了交变输出电压,幅值决定于各整流装置控制角,频率决定于两组整流装置切换频率。
谐波治理的原理
谐波治理的原理谐波治理是一种针对电网谐波问题的技术措施。
在电力系统中,谐波是指频率是基波频率的整数倍的电压和电流成分,它们会引起电网中的谐波电压和电流增加,从而导致设备的过热、损坏,影响电网的安全稳定运行。
谐波治理的原理主要包括:谐波发生的机理、谐波产生与传输的特性以及谐波的抑制方法。
首先,谐波发生的机理主要涉及非线性负载的存在。
例如,电力电子设备(如变流器、电力电子变压器等)的普及应用,导致电网中存在大量非线性负载。
这些非线性负载的工作特性决定了它们电流与电压之间存在非线性关系,产生的电流包含了频率是基波频率的整数倍的谐波分量。
接着,谐波的产生与传输的特性主要与电网的拓扑结构有关。
电网中存在大量的线路与变压器,谐波电流在传输过程中会经过这些元件,导致电压波形被扭曲,且谐波电流的影响范围会扩散到整个电网中。
基于以上的分析,谐波治理的方法主要包括以下几个方面:1. 谐波源的控制:在电网中,非线性负载是主要的谐波源。
为了降低谐波电流的产生,可以通过优化非线性负载的设计和选择,减小它们的谐波电流分量。
2. 谐波发生源的隔离:对于谐波较大的设备或非线性负载,可以将其与电网隔离,使用独立供电或者采用特殊设备来加以管理。
3. 电网设备的优化设计:通过优化电网的拓扑结构,减小电缆和变压器等设备的阻抗,降低谐波电流的影响,减少谐波电压的产生。
4. 谐波滤波器的应用:谐波滤波器是一种针对谐波电流或电压进行补偿的装置。
它可以通过选择合适的电抗元件,抵消谐波电流分量,从而降低谐波电压。
5. 谐波控制计算机的使用:谐波控制计算机是一种自动化管理谐波的技术手段。
通过对电网进行全面的监测和分析,可以根据实际情况进行合理的调整和优化,达到谐波治理的效果。
总之,谐波治理的原理是在深刻理解谐波的产生和传输机理的基础上,采取不同的方法和手段,从源头上减小谐波的产生,降低谐波对电网运行的影响,确保电网的安全稳定运行。
谐波治理需要综合考虑电网的特性和需求,在设计和运行中充分考虑谐波问题,采取相应的措施进行处理,以提高电网的电能质量和运行可靠性。
谐波产生的原因危害和抑制措施
谐波产生的原因危害和抑制措施0前言随着电力电子技术的飞速发展,各种新型用电设备越来越多地问世和使用,高次谐波的影响越来越严重。
电力系统受到谐波污染后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。
以前,电力系统考核电能质量的主要指标是电压的幅值和频率,现在世界各国都把电网电压正谐波形畸变率极限值作为电能质量考核指标之一,正确认识谐波已成为电力工作者的重要任务之一。
因此,研究和分析谐波产生的原因、危害和抑制谐波的措施具有重要的实际意义。
1谐波产生的原因在供电系统中谐波的发生主要是由两大因素造成的:(1)可控硅整流装置和调压装置等的广泛使用,晶闸管在大量家用电器中的普通采用以及各种非线性负荷的增加导致波形畸变。
(2)设备设计思想的改变。
过去倾向于采用在额定情况以下工作或裕量较大的设计。
现在为了竞争,对电工设备倾向于采用在临界情况下的设计。
例如有些设计为了节省材料使磁性材料工作在磁化曲线的深饱和区段,而在这些区段内运行会导致激磁材料波形严重畸变。
2谐波对电力系统的危害谐波对电力系统的污染日益严重,谐波源的注入使电网谐波电流、谐波电压增加,其危害波及全网,对各种电气设备都有不同程度的影响和危害。
现将对具体设备的危害分析如下:(1)交流发电机。
同步电动机及感应电动机在定子绕组和转子绕组产生附加热损耗,热损耗除谐波电流铜损I2nR以外,还由于电流的集肤效应,产生附加损耗,对转子引起热损耗增大。
对大型汽轮发电机来说,若发生多次谐波振荡,谐波电流超过额定电流的25%时,由于上述原因可能会导致转子局部过热而损坏。
对变压器来说,铁芯产生热损耗,尤其是涡流损耗大,在变压器绕组中有谐波电流,在铁芯中感应磁通,产生铁损。
(2)架空线路谐波电流产生热损,较大的高次谐波电流分量能显著地延缓潜供电流的熄灭,导致单相重合闸失败。
电缆中的谐波电流会产生热损,使电缆介损、温升增大。
(3)电力电容器由于谐波电流会引起附加绝缘介质损耗,加快电力电容器绝缘老化。
电抗器抑制谐波原理
电抗器抑制谐波原理
电抗器抑制谐波是指通过在负载输出电路中加入电抗器,把谐波电流限制在可接受的范围以内来改善输出负载电压谐波形态的方法。
其原理是:负载输出电路虽经过滤电容平衡,但由于负载负载电抗的存在,仍会有一定程度的谐波存在。
此时,负载端的电流变化,就会引起负载端的电压变化。
而谐波电流,也会随着负载端的电流变化而变化,即同谐波系数的变化而变化。
如果要降低负载端的谐波,就得限制负载端的电流变化,即将不所需要的谐波电流限制在可接受的范围以内。
为此,可以在负载端加入电抗器,限制谐波电流流动的大小。
由于电抗器的阻抗值越大,对谐波电流的抑制也越强,可以有效减少负载端谐波,改善输出电压谐波形态。
电抗器抑制谐波不仅可以有效改善输出电压的谐波,还可以降低系统的能耗,减少电磁辐射的影响,保护电力系统免受恶果。
- 1 -。
谐波原理及抑制
图形
次谐波
谐波分量频率低于基波频率
1 2 infra 3 4 inter 5
这两类干扰是由各种设备吸收的功率为周期性或随机变
化引起的。
例: 电弧炉 波形控制 电弧不稳定
循环变流器
频率变换器 变频器
施耐德电气公司房地产客户部
6
基本概念
定义
傅立叶变换:
所有周期性的非正弦连续函数, 可以被分解成无穷多的
F (Hz)
13
基本概念
电源阻抗对电压和电流畸变的影响
电流谐波畸变依赖于负载
电压谐波畸变依赖于电源
较低的电源阻抗利于谐波电流流向电源, 但同时电压 畸变往往也较低 反之, 高电源阻抗阻止谐波电流流向电源, 但电压总畸 变往往也较高 电源阻抗与总谐波畸变 (u, i) 之间的变化是非线性的
定义
逐次谐波畸变
n次谐波均方根与基波均方根值的比值
Yn Hn % = 100
Y1
频谱
谐波幅值和谐波次数的函数表示。各次谐波幅值表示为基
波的百分数。
施耐德电气公司房地产客户部
9
基本概念
定义
非正弦周期量的均方根值 (RMS)
Yrms =
∫
1
T
y2 (t) dt =
T
0
n=
(Yn)2
l5 (theo) = 20% l1 l7 (theo) = 14% l1
电源阻抗的影响
e’1 wDt a e’2 e’3
I5
5 (theo)
wt
x 100
100
90 80 a= 90° 30° 20° 10°
l1
谐波原理及治理方法
谐波原理及治理方法一、1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。
“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
谐波研究的意义,道理是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
浅析谐波产生的原因-影响及抑制措施
浅析谐波产生的原因\影响及抑制措施摘要:随着高科技的飞速发展,各种新型用电设备也不断地问世和使用,致使产生的高次谐波越来越多。
而电力系统受到谐波影响后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。
本文主要对谐波的产生与危害进行分析,并对店里系统抑制谐波的措施进行探讨,从而保证供电质量。
关键词:谐波;产生原因;影响;抑制措施一、谐波的概念谐波是指对周期性交流分量进行傅立叶级数分解,得到的频率为基波频率大于1整数倍的分量。
通俗地说谐波是一个周期电气量的正弦分量,其频率为基波频率的整数倍。
二、谐波的产生(一)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整换流装置、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备、电力机车、家用电器等,它们大量的用于化工、电气铁道,冶金,矿山等共矿企业以及各式各样的家用电器中。
(二)具有铁磁饱和特性设备,如变压器、电抗器等;变压器中的谐波电流是由励磁回路的非线性引起的,正常情况下,所加电压为额定电压,铁芯工作在线性范围内,谐波电流含量不大,但在轻载时电压升高,铁芯工作在饱和区,此时谐波电流就会大大增加。
在变压器正常工作过程中,如果有暂态扰动、负载剧烈变化都会产生大量谐波。
三、谐波的危害一般来讲,具有非线性特性或者对电流进行周期性开闭的电气设备对容量相对较大的电力系统影响不很明显,而对容量小的系统,谐波产生的干扰就不可忽视,谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,给周围的通信系统和公用电网以外的设备带来危害。
谐波污染对电力系统的危害严重性主要表现在:(一)对供电线路的影响谐波对供电线路产生了附加谐波损耗。
由于集肤效应和邻近效应,使线路电阻随频率增加而提高,造成电能的浪费;由于中性线正常时流过电流很小,故其导线较细,当大量的三次谐波电流流过中性线时,会使导线过热、绝缘老化、寿命缩短、损坏甚至发生火灾。
电抗器抑制谐波原理
电抗器抑制谐波原理
电抗器抑制谐波是利用电抗器对电力系统中的谐波进行抑制的
一种方法。
该抑制方式是将抑制器连接到电源系统的综合侧,以提供额外的谐波补偿。
谐波抑制器是一种电容电抗器(CRD),它具有电抗器的低电压降特性,以及电容器的高电容特性。
该组件用于抑制从电源供电系统中产生的谐波信号,从而使系统电压得到有效补偿。
电抗器抑制谐波是一种非常简单的抑制方式,能够有效减少系统中的谐波噪声。
它可以有效改善电力系统的电压稳定性,使系统能够提供更低的噪声,更高的负载能力,更少的杂散电流,从而改善电力系统的性能。
电抗器抑制谐波可以显著改善电力系统的功率因素和电流因素,以及系统中的电压波动。
此外,它还可以降低系统中的噪声水平,增强系统耐受性,改善系统的可靠性,减少系统电量损失,并确保电源系统的有效运行。
- 1 -。
电力系统的谐波分析与抑制研究
电力系统的谐波分析与抑制研究谐波是电力系统中一个普遍存在的问题,由于谐波的存在会降低系统的效率,引起设备损坏甚至系统崩溃,因此对于电力系统的谐波分析与抑制研究具有重要的意义。
本文将深入探讨谐波的概念、产生原因以及相应的分析与抑制方法。
一、谐波的概念与产生原因谐波是指电力系统中频率是基波频率的整数倍的非基波信号。
在电力系统中,谐波的产生主要有两个原因:非线性负载和谐波源。
非线性负载是指在电力系统中存在的像电子设备、调速电机等具有非线性特性的负载。
由于这些负载的特性,当负载电流不是正弦波时,会产生谐波。
谐波源是指在系统中存在的一些直接产生谐波的设备,例如电弧炉、电弧炉变压器等。
这些设备会直接产生谐波,对系统造成干扰。
二、谐波分析方法为了准确分析电力系统中的谐波问题,我们需要采用适当的谐波分析方法。
常用的谐波分析方法主要有频谱分析法、时间域分析法和组成分析法。
频谱分析法是通过将信号分解为一系列不同频率的正弦波来分析谐波成分。
这种方法基于傅里叶级数展开的理论,对信号进行变换后得到谐波的幅值和相位信息。
时间域分析法主要是针对非周期性谐波进行谐波分析,适用于信号比较复杂的情况。
而组成分析法则是通过对谐波进行分离和归类,进一步研究谐波的频谱特性和波形特征。
三、谐波抑制方法谐波对电力系统的影响必须得到合理的抑制,以保证系统的正常运行。
目前常用的谐波抑制方法主要包括滤波器、变压器设计和降低负载对谐波的响应等。
滤波器是最常见的谐波抑制设备,可以根据不同的谐波成分选择不同类型的滤波器进行抑制。
常用的滤波器包括谐波干扰抑制器、谐波滤波器、有源滤波器等。
这些滤波器可以有效地消除谐波干扰,保证系统的稳定运行。
变压器设计也可以用来抑制谐波。
通过改变变压器的设计参数,例如导电屏蔽、磁纳阻和铜损耗等,可以降低谐波的影响。
此外,合理规划电力系统中的变压器容量分配和联结方式,也可以有效减少谐波问题。
降低负载对谐波的响应也是一种有效的抑制方法。
电力谐波的产生原因及其抑制方法
电力谐波的产生原因及其抑制方法电力谐波指的是电力系统中出现的非正弦波形,是由于电力系统中的非线性负载和电力设备等产生的。
它会对电力系统的稳定性和运行质量产生不利影响,因此需要采取相应的抑制方法来减小谐波水平。
1.非线性负载:电力系统中广泛使用的非线性负载设备,如电弧炉、变频器、电子设备等,其负载特性是非线性的,会导致电流与电压的失配,产生谐波。
2.电力设备:电力系统中的电力设备,如变压器、发电机、变电设备等,其磁化和饱和特性也会引起谐波。
3.电力系统的并联谐振:当电容、电感等元件在电力系统中呈并联连接时,会出现谐振现象,从而产生谐波。
4.电力系统的不对称操作:电力系统中的不对称运行,如三相电流不平衡、电压不平衡等,也会引起谐波的产生。
为了减小电力谐波的影响,可以采取以下几种抑制方法:1.滤波器和补偿器:通过安装合适的谐波滤波器和补偿器,将谐波电流或电压引入这些设备中,并通过调节参数来抑制谐波。
2.谐波控制器:使用专门的谐波控制器,通过对电流进行监测和控制,实现对谐波的有效消除和抑制。
3.谐波发生器:使用谐波发生器对电力系统进行谐波注入,从而实现对谐波的消除或者切除。
4.谐波滤波器:在电力系统中添加谐波滤波器,通过对谐波进行吸收或变换,并将其回馈到电网中,以减小谐波的扰动。
5.调整电力设备:对电力设备进行调整和优化,减小非线性特性,从而降低谐波的产生。
总结起来,电力谐波的产生是由于电力系统中的非线性负载和电力设备等因素所致。
为了有效抑制电力谐波,可以采取滤波器、补偿器、控制器等方法,以减小谐波的影响。
此外,对电力设备进行调整和优化也是降低谐波的有效手段。
对于电力系统的设计和运行,应该重视谐波抑制的问题,从而保证电力系统的正常运行和供电质量。
谐波抑制和无功功率补偿
谐波抑制和无功功率补偿引言在电力系统中,谐波和无功功率是常见的问题,它们会导致电网的不稳定性、能源浪费和设备损坏等一系列负面影响。
因此,谐波抑制和无功功率补偿成为了电力系统优化和能源管理的重要课题。
本文将详细介绍谐波抑制和无功功率补偿的概念、原理、方法以及应用。
谐波抑制概念谐波是指在电力系统中频率为基波频率的整数倍的波形成分。
谐波的产生主要是由非线性负载设备引起的,例如电弧炉、电子设备等。
谐波会导致电压和电流的波形失真,进而影响电力系统的稳定性和设备的正常运行。
谐波抑制是指通过采取措施,减少或消除电力系统中的谐波成分,使电力系统的波形恢复正常,保证电力质量和设备的正常运行。
原理谐波抑制的原理主要包括两个方面:滤波和控制。
1.滤波:通过在电力系统中引入谐波滤波器,对谐波成分进行滤波,将谐波成分从电力系统中分离出来。
常用的谐波滤波器包括谐波阻抗滤波器、谐波电抗滤波器等。
2.控制:通过控制非线性负载设备的工作方式和参数,减少其对电力系统的谐波污染。
常用的控制方法包括谐波限制技术、谐波消除技术等。
方法谐波抑制的方法主要包括被动方法和主动方法。
1.被动方法:被动方法是指通过谐波滤波器等被动设备来实现谐波抑制。
被动方法具有成本低、稳定可靠等优点,但其抑制效果受到负载变化和谐波频率变化的限制。
2.主动方法:主动方法是指通过控制设备的工作方式和参数来实现谐波抑制。
主动方法具有灵活性强、抑制效果好等优点,但其成本较高。
应用谐波抑制广泛应用于电力系统中,特别是对于需要保证电力质量和设备正常运行的场合。
例如,工业生产中的电弧炉、电子设备等非线性负载设备常常会引起谐波,需要采取谐波抑制措施。
此外,谐波抑制也在电网规划、电力设备设计等领域得到广泛应用。
无功功率补偿概念无功功率是电力系统中的一种特殊功率,它与电压和电流之间的相位差有关。
无功功率的存在会造成电网电压的波动和能源的浪费,因此需要进行补偿。
无功功率补偿是指通过采取措施,使电力系统中的无功功率达到平衡,提高电网的稳定性和能源利用效率。
供电系统谐波的产生原因和抑制方法
供电系统谐波的产生原因和抑制方法一、供电系统谐波的产生原因1.非线性负载:非线性负载是谐波产生的主要原因之一、当负载器件的电流与电压的关系远离线性特性时,会产生谐波。
2.整流装置:电力系统中使用的整流装置(如整流器、UPS电源等)都属于非线性负载,其波形形状和额定电压的频率和倍频数之间存在不同的谐波关系。
3.瞬时切换:当电力系统中出现瞬时的负载切换时,会产生谐波。
例如大功率电机启动时的电流冲击。
4.不良的电缆和变压器设计:电缆和变压器的设计不良也会导致谐波的产生。
比如电缆线的电感值较大或者变压器的饱和磁导率不合适等。
5.并联谐振:电力系统中存在并联谐振现象时,会导致谐波的产生。
并联谐振一般是由于电容负载和电感负载的阻抗匹配不良所致。
二、供电系统谐波的抑制方法1.使用线性负载:线性负载的电流和电压之间呈线性关系,因此能够减少谐波的产生。
选择和使用线性负载装置可以有效地降低谐波水平。
2.滤波器:在电力系统中加装滤波器是最常用的谐波抑制方法之一、滤波器可以根据谐波频率的不同,利用谐振电路的特性将谐波分量从电力系统中滤除。
3.调整负载的连接方式:调整负载的连接方式可以减少谐波的产生。
例如,将三相非线性负载从星形连接改为三角形连接,可以减小系统中的零序谐波。
4.限制电容补偿:电容补偿在电力系统中具有调节功率因数和稳定电压的作用,但同时也会引入谐波。
限制电容补偿的容量和位置,可以减少谐波的影响。
5.优化电力系统的设计:合理的电力系统设计可以减少谐波的产生。
例如,选择合适的电缆和变压器设计,提高设备的质量等。
6.使用谐波滤波器装置:谐波滤波器装置是专门用于抑制谐波的设备。
根据系统谐波的频率和倍频数,选择合适的谐波滤波器装置可以有效地消除谐波。
综上所述,供电系统谐波产生的原因主要包括非线性负载、整流装置、瞬时切换、不良设计以及并联谐振等。
要抑制谐波,可以采取使用线性负载、滤波器、调整负载的连接方式、限制电容补偿、优化电力系统设计以及使用谐波滤波器装置等方法。
简述电力系统谐波及其抑制技术
简述电力系统谐波及其抑制技术摘要:谐波污染作为长期影响电力系统安全稳定运行的因素之一,会产生附加的谐波损耗,降低发电、输电及用电设备的效率,谐波影响了电力系统中的电能质量。
对谐波污染的有效治理,对于保证电力系统的经济运行具有重要的意义。
本文介绍了电力系统中常见的谐波产生的原因,分析了谐波的危害性,并总结了电力系统谐波抑制措施。
关键词:电力系统;谐波;抑制技术一、谐波产生的原因1、电源产生谐波电力系统中电力产生的源泉——发电机,由于其现在的制作技术还不成熟,使得目前电网中的发电机达不到标准要求,因此发电机产生的电流难免会偏离正常波形,从而产生谐波,但是谐波量一般很少。
2、电力输送系统产生谐波在电力输出线路中,谐波的主要来源是电流变压器。
由于在变压器铁芯饱和时,磁化曲线会相当于一个非线性的电力设备,偏离了线性。
变压器铁芯越饱和,电波越偏离正弦波形。
而且考虑经济因素,电压器的设计会使工作时的电磁密度选在磁化曲线的近饱和阶段,电波畸变,产生谐波。
3、非线性的用电设备产生谐波现行电力系统的用户端,大量的晶闸管整流设备、引起电荷不平衡的电炉、气体放电类电光源、调压整流设备等非线性设备广泛使用,这些非线性的设备是谐波产生的主要源泉。
这些用电设备即使输入的是完全的正弦波电压,其内部结构也会使电流波形畸变,产生谐波。
二、谐波危害性分析1、它会影响电网的运行谐被电流产生的功率损耗,电网线路损耗的来源之一。
谐波电阻大于基波电阻.增加功率消耗的同时给其他设备带来了一定的危害.以电缆输电系统为例。
谐波在增加功率损耗的同时还可能引起电压出现尖峰.使电缆线的寿命降低.容易引起使电缆老化。
谐渡不仅会引起电缆的老化.还会引起电晕损耗。
综上所述,谐波给电网带来的危害主要有:铁损、电网环境污染、供电质最下降、以及危害塾整个供电网络。
2、影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。
如民用配电系统中的中性线,会产生大量的奇次谐渡,其中3次谐渡的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流:另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
谐波原理及抑制
施耐德电气公司房地产客户部
14
基本概念
术语
主要术语
¨³ Ì £ ± ê » Æ Ü Ï ³ ³ ² ¨º û ± â ¥ Á ¸ É Ò ò É ý ´ Ò Î Å Ò ò É ý û ± º â Ò ò É ý ã Ö ² µ Ò ò É ý TDH FP cosj FD FC
IEC D l cosj1 n FC
图形
次谐波
谐波分量频率低于基波频率
1 2 infra 3 4 inter 5
这两类干扰是由各种设备吸收的功率为周期性或随机变
化引起的。
例: 电弧炉 波形控制 电弧不稳定
循环变流器
频率变换器 变频器
施耐德电气公司房地产客户部
6
基本概念
定义
傅立叶变换:
所有周期性的非正弦连续函数, 可以被分解成无穷多的
施耐德电气公司房地产客户部
12
基本概念
电源阻抗
阻抗和频率的函数关系
输出阻抗与额定负载时输出阻抗的比值
等效图
变压器, 发电机,
电缆
150
Zs Zc % 发电机 X”d=12% 传统UPS
100
UPS
50
变压器 Usc=4%
MLI UPS
50
施耐德电气公司房地产客户部
250
500
750
F (Hz)
13
基本概念
电源阻抗对电压和电流畸变的影响
电流谐波畸变依赖于负载
电压谐波畸变依赖于电源
较低的电源阻抗利于谐波电流流向电源, 但同时电压 畸变往往也较低 反之, 高电源阻抗阻止谐波电流流向电源, 但电压总畸 变往往也较高 电源阻抗与总谐波畸变 (u, i) 之间的变化是非线性的
谐波抑制器原理
谐波抑制器原理
谐波抑制器是一种电子设备,用于抑制电路中的谐波。
谐波是指电路中频率为基波频率的整数倍的波形,它们会干扰电路的正常工作,甚至会损坏电路中的元件。
因此,谐波抑制器的作用就是消除或减小电路中的谐波,保证电路的正常工作。
谐波抑制器的原理是利用滤波器的特性,将谐波滤掉。
滤波器是一种电子元件,它可以选择性地通过或阻止某些频率的信号。
谐波抑制器中常用的滤波器有低通滤波器和高通滤波器。
低通滤波器可以通过低于一定频率的信号,而阻止高于该频率的信号。
因此,当电路中存在高频谐波时,可以使用低通滤波器将其滤掉。
高通滤波器则相反,可以通过高于一定频率的信号,而阻止低于该频率的信号。
因此,当电路中存在低频谐波时,可以使用高通滤波器将其滤掉。
除了滤波器,谐波抑制器还可以使用其他电子元件,如电容器和电感器。
电容器可以通过存储电荷的方式,来阻止高频信号的通过。
电感器则可以通过存储磁场的方式,来阻止低频信号的通过。
谐波抑制器的原理是利用滤波器和其他电子元件,将电路中的谐波滤掉。
这样可以保证电路的正常工作,避免谐波对电路造成的干扰和损坏。
谐波原理及抑制
谐波原理及抑制
谐波原理是指在一个振动系统中,当外力的频率与系统的固有频率相等或接近时,会发生谐振现象。
谐振是指系统的振幅随外力频率的变化而发生明显变化的现象。
在物理学中,任何振动系统都有一系列固有频率,即系统会固有地以特定的频率振动。
当外力的频率与系统的固有频率相同时,系统受到的驱动力最大,振幅也达到最大值。
这种现象被称为共振。
谐波原理在许多领域中都有广泛的应用,比如声学、电子学和机械工程等。
在声学中,谐波原理是解释音乐乐器产生声音的基础,也是研究声音传播和音响系统设计的重要原理之一。
在电子学中,谐振电路常用于信号滤波和放大器设计中。
在机械工程中,谐振原理被用于减振器的设计和振动控制等方面。
为了抑制不要标题的文字重复,需要在文中避免使用重复的词语和句子结构。
可以使用同义词替换、改变句子结构、增加插入语等方式来实现。
同时,也可以通过合理的段落划分和组织结构安排,使文中的内容连贯有序,避免重复的标题出现。
供电系统谐波的产生原因和抑制方法
供电系统谐波的产生原因和抑制方法电气系统中的电气设备产生的电压或电流波形非理想的正弦波时,即说明其中含有频率高于50Hz的电压或电流成分,将频率高于50Hz的电流或电压成分称之为谐波。
谐波对电气设备的正常工作有不利影响,因此,研究谐波的危害与抑制方法,对保证电网的电力质量十分必要。
(1)谐波是如何产生的?谐波来自于三个方面:一是发电设备产生的谐波;二是输配电系统产生的谐波;三是供电系统的电气设备(如变频器、电炉等)等产生的谐波,其中以供电系统的电气设备产生的谐波居多,具体如下:1)晶闸管整流设备:由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥脉冲整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也含有11次及以上奇次谐波电流。
经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
2)变频装置:变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的使用的增多,对电网造成的谐波也越来越多。
3)电弧炉、电石炉:由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。
其中主要是2~7次的谐波,平均可达基波的8%~20%,最大可达45%。
4)气体放电类电光源:荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。
谐波及其抑制
交流电弧炉为三相不平衡谐波电流源,冶炼过程中含有基波负 序电流注入系统
谐波次数h
2
3
4
5
7
谐波含 熔化期 7.7 5.8 2.5 4.2 3.1
有率 精炼期
2.0
2.1
(5) . 家用电器
•桥式整流平波电源: 电视机、电脑
谐波次数h 谐波电流 A
在电话回路内感应的杂音电动势
Uc Us2 VM2 国际电信电话咨询委员会(CCITT)推荐的允许杂音电压值为
(2). 整流装置
单相全控桥式整流器——工作电流中不含有直流分量和 偶次谐波,仅含奇次谐波
三相全控桥式整流器——不产生3次谐波,只有6k±1次 谐波存在
双三相桥式整流器——只有12k±1次谐波存在
(3) . 电力机车
电气铁道的供电,一般有电力系统110kV电网,采用双电 源方式,经铁道沿线建立若干牵引变电所降压到27.5kV或 55kV后通过牵引网(接触网)向电力机车供电。电力机车利 用架空接触导线和钢轨之间形成的单相交流电源,经过全波 整流后驱动直流牵引电动机。
无功功率 视在功率 畸变功率
Q f U h Ih sin φh
h
S UI (
U
2 hLeabharlann )(I2 h
)
h
h
D S 2 (P2 Q2f )
功率因数
PF
P S
UI1 cosφ1 UI
I1 I
cosφ1
1 1 THDI2
cosφ1
I1 I
DPF
假定电压波形接近正弦(实际这样)
有功功率
P UI1 cos1
变压器和电动机等具有铁心的设备,铁心的磁化特性将引 起谐波。工作在磁化特性的非线性区时,产生低次谐波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
In (theo) =
I1 n
,
n = 6k+/-1
l5 (theo) = 20% l1 l7 (theo) = 14% l1
l11 (theo) = 9% l1 l13 (theo) = 8% l1
电源阻抗的影响
I5 x 100
5 (theo)
100 90 80 70 60
5%
a= 90° 30° 20° 10° 5°
施耐德电气公司房地产客户部
定义
功率因数和相移因数
功率因数是有功功率P与视在功率S的比值 P
PF = S
相移因数 cos j1 代表电压与电流基波夹角的余弦。
P1
cos j1=
S1
P1 基波分量的有功功率 S1 基波分量的视在功率
畸变因数 DF 是 PF 与 cos j1 之间的比值
PF
DF = cos j1
.E 3p
+E
U P
wt 2P
-E 1 3 5 7 9 11 n 施耐德电气公司房地产客户部
8
基本概念
定义
逐次谐波畸变
n次谐波均方根与基波均方根值的比值 Yn
Hn % = 100 Y1
频谱
谐波幅值和谐波次数的函数表示。各次谐波幅值表示为基 波的百分数。
施耐德电气公司房地产客户部 9
基本概念
定义
标准和规定
施耐德电气公司房地产客户部
标准化共存
电能生产
输配电 (EDF)
ZL
ZS
G
相互影响
消耗
用户
ZC R
相互影响
ZC R
产生和传送电压畸变 网络改造
产生畸变电流 负载改造
$
综合考虑
$
29
标准和规定
质量等级 兼容性水平
低压供电电网
IEC 1000 - 2 - 2 标准 CIGRE* 推荐 (Electra 出版, 第123期, 1989年3月)
施耐德电气公司房地产客户部 3
基本概念
无谐波
电流包含谐波
线性负载 非线性负载
线性负载概念:
负载被称为“线性的”是指当施加一个正弦波电压时它吸收的电流也 是正弦波的负载。
例, 白炽灯,加热器, 稳态运行的电机。
非线性负载概念:
负载被称为“非线性”是指当加上一个正弦波电压, 它吸收的电流为非 正弦的。
10
0.5
11
3
12
0.2
13
3
非常敏感 (信息处理)
Total THD
5%
二级 2 5 1 6 0.5 5 0.5 1.5 0.5 3.5 0.2 3
一般敏感
8%
三级 3 6 1.5 8 1 7 1 2.5 1 5 1 4.5
不敏感
10%
31
标准和规定
辐射等级
状况:
对每个用户作出必要限制, 以避免进行系统性的检查, 因为电压畸变依赖于电网阻抗: 除非注入电流非常低, 一般来说很难靠限制注入谐波电流来 控制实际的电压畸变。 利用限制谐波电压来约束和惩罚用户。
谐波原理及抑制
内容
1 - 基本概念 2 - 电力生产、配电和消耗各环节产生的谐波干扰 3 - 标准和规定 4 - 谐波对主要元件的影响 5 - 谐波抑制方案 5.1 - 防止和校正 5.2 - 有源滤波器 5.3 - 正弦波采样理论
施耐德电气公司房地产客户部 2
1 - 基本概念
目的:了解本课必备的基本概念
33
标准和规定
工业应用
无国际标准但对不同级别基本存在共识
第一级: 自动接受
根据电压等级和干扰功率。
例如 EDF 干扰功率<1% 正常情况下测量点最小短路功率。
施耐德电气公司房地产客户部 24
谐波干扰
波形 总谐波畸变
感应灯
变频器
开关电源
调光灯
THD (i) %
中型负载 THD (i)
%
萤光灯
THD (i) %
THD (i) 电磁镇流器
%
THD (i) 电子镇流器
%
M
异步电机
THD (i)
(无载)
%
THD (i)
有负载
%
THD (i) %
施耐德电气公司房地产客户部 25
施耐德电气公司房地产客户部
定义
傅立叶变换:
所有周期性的非正弦连续函数, 可以被分解成无穷多的
周期正弦函数的总和, 该正弦函数的频率为基波频率的
整数倍。
f(t) =a2o
+ S [ancos(nw1t) + bnsin(nw1t)] n=1
式中:
2p w1 = T n 为正整数
(T 为周期)
ao, an, bn 为博立叶系数
n=
n=2
(Hn)2
在各次谐波频率下的电源阻抗为电压出现畸变的基本原因
结论: 如果电源阻抗低, 电压畸变就低。
施耐德电气公司房地产客户部 12
基本概念
等效图 变压器, 发电机,
电缆
电源阻抗
阻抗和频率的函数关系
输出阻抗与额定负载时输出阻抗的比值
150 Zs Zc %
传统UPS
100
发电机 X”d=12%
2 - 电力生产、配电和消耗各环节 产生的谐波干扰
目的:认识干扰源的特点
施耐德电气公司房地产客户部 16
谐波干扰
电源
在电网某一点, 谐波畸变依赖于:
负载类型
电缆或导线
变压器接线类型和阻抗
MV/LV
电源阻抗
PSB
EJP U
I
线性负载
施耐德电气公司房地产客户部
M
17
谐波干扰
施耐德电气公司房地产客户部
峰值因数是峰值与周期量均方根值的比值
Y crest
CF =
Y rms
11
基本概念
e
U i
Zs
s
电源阻抗
电压与电流畸变的关系
电源阻抗
对于每个电流谐波In, 对应该频率的电源阻抗Zsn两端存在
谐波电压Un
Un=Zsn.In
逐次谐波畸变 Hn= Un
U1
(U1: 基波值)
THD (%) = 100
施耐德电气公司房地产客户部 23
谐波干扰
中压电网的干扰
第五次谐波电压的变化
第五次谐波 (电压)
在 HV/MV 主变电站的母线上测量
H5 (%)
4
家用电器负载效应
3.5 3
2.5 2
1.5
1
0.5 t (时)
4
8
12
16
20
*资料来源: “中压配电网络的谐波污染”, chaume, EDF – DER Clamart.
i
CR
D
% 100
i
87 64
50
38
15 17
0
N
13
579
11 13
施耐德电气公司房地产客户部 20
谐波干扰
L ligne
Lf Z
e’1
wDt
a
e’2
e’3
wt
l1
ld
wt
(a = 30°)
施耐德电气公司房地产客户部
不间断电源供电:
(用于直流电机的变频驱动器) 带阻感负载的三相六脉动整流桥
理想状态: 电源侧电感Lligne=0
5
基本概念
图形
12 3 4 5
infra
inter
施耐德电气公司房地产客户部
间谐波和次谐波
间谐波
正弦分量不是基波频率的整数倍。
次谐波
谐波分量频率低于基波频率
这两类干扰是由各种设备吸收的功率为周期性或随机变
化引起的。
例: 电弧炉
电弧不稳定
波形控制
循环变流器 变频器
频率变换器
6
基本概念
电源处谐波畸变一般不太突出
18
谐波干扰
电力输配
变压器产生谐波:
B, F
奇次: 材料的磁滞现象
P
0
i
磁饱和 偶次
0º
180º 360º
B, F
通电时饱和励磁
(0)
变压器对极性负载产生的偶次
(b)
U
谐波敏感
U
i i
施耐德电气公司房地产客户部 19
谐波干扰
D
C
电能的消耗
整流型负载
产生很宽频谱范围 (3-15) 的奇次谐波电流 越来越多地使用 形成了重要的谐波污染源
非正弦周期量的均方根值 (RMS)
∫ Yrms =
1
T
y2 (t) dt =
T0
n=
(Yn)2
n=1
电压畸变
谐波均方根值与基波的比值
n= (Yn)2 n=2
THD (%) = 100 Y1*
* 对于 DIN 标准, Y1 由 Y 的均方根值代替
施耐德电气公司房地产客户部 10
基本概念
较公平的方法: 采用允许的干扰功率, 该功率大小正比于用户实际 消耗的负载功率。然而对于低压网络, 该方法很难 用于家庭, 故采用对家用电器产品产生的谐波电流 进行限制。
施耐德电气公司房地产客户部 32
标准和规定
施耐德电气公司房地产客户部
低压开关柜
每相电流小于16A:
IEC1000 - 3 - 2 规定对所有设备即功率范围除大于 1kW 和小于功 率 75W (1999 年降低为50W) 的工业设备外, 其谐波水平应满足
谐波干扰
谐波源
照明
1
FL