数值分析第一章绪论习题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论

1设x 0, x的相对误差为「.,求In x的误差。

* * e* x * _x

解:近似值x*的相对误差为:.=e*

x* x*

1 而In x 的误差为e In x* =lnx*「lnx e*

x*

进而有;(ln x*)::.

2•设x的相对误差为2%求x n的相对误差。

解:设f(x—,则函数的条件数为Cp^胡1

n A.

x nx .

又7 f '(x)= nx n」C p

|=n

n

又;;r((x*) n) : C p ;,x*)

且e r (x*)为2

.;r((x*)n) 0.02 n

3 •下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指

出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0.

解:x;=1.1021是五位有效数字;

X2 =0.031是二位有效数字;

X3 =385.6是四位有效数字;

x4 = 56.430是五位有效数字;

x5 -7 1.0.是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4.

* * * *

其中X1,X2,X3,x4均为第3题所给的数。

解:

*

1 4

;(x-| ) 10

2

* 1 3

;(x 2) 10

2

* 1 1

;(x 3) 10 * 1 3

;(x 4) 10

2

* 1 1

;(x 5) 10

2 (1);(为 X 2 X 4)

=;(为)亠:(x 2)亠:(x 4)

=1 10 4 1

10 J 丄 10^

2 2 2

= 1.05 10”

* * * (2)(X 1X 2X 3)

* * * ** * ** *

X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2)

1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10

(3) XX 2/X 4)

X 4

0.031 1

10” 56.430 丄 10’

2 2

56.430 56.430

=10°

5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 4

3

解:球体体积为V R 3

则何种函数的条件数为

=1.1021汉 0.031 汉 * 汉

10」+

0.215

RV' R 4 - R2

Ik -3

;r(V*) : C pL;r(R*) =3;r(R*)

1

故度量半径R时允许的相对误差限为;r(R*) 1 :0.33

3

6•设Y0=28,按递推公式丄J783 (n=1,2,…)

100

计算到Y oo。若取%/783乏27.982 ( 5位有效数字),试问计算Y oo将有多大误差?

1 f_____

解:;* Yi 二丫n」…-783

100

<1

论。匸丫99 ^783

100

1 ____

783

丫99 - Y98

100

1 .

783

丫98 二丫97

100 1

Y1 = 丫) (783)

100

1

依次代入后,有Y,。。=Y -100':——/783

100

即Y0°=Y)—J7西,

若取,783 27.982,. Y100 =Y0 -27.982

* 1 _3

二那(Y00)=欽丫。)+总(27.982)=『10」

1 」

■ 丫)。。的误差限为10 。

2

7•求方程x2-56x ^0的两个根,使它至少具有4位有效数字(.78^-27.982 )。解:x2-56x 1 =0 ,

故方程的根应为为,2=28±丁783

故X1 = 28 . 783 28 27.982 二55.982

-X1具有5位有效数字

-- 1 1 1

x2 =28-、、783 0.017863

28 、783 28 27.982 55.982

X2具有5位有效数字

N + 1

&当N充分大时,怎样求 2 dx ?

•N 1+x2

N + 1

解 2 dx = arcta n(N 1) 一 arcta nN

设:二 arcta n(N 1),:二 arcta nN 。

则 tan : = N 1,tan : = N.

N 1

1 2 dx

N 1 x 2

=cc 一 B 二 arctan(tan( _ -))

丄 tan 。-tan P

=arctan —

1 tan tan :

丄 N+1_N

二 arctan —

1 +(N +1)N

=arctan — N 2 +N +1

100cm,应怎样测量才能使其面积误差不超过 1cm 2 ? .;(A*) =2A*LI ;(X *).

当 x* =100 时,若;(A*)乞1,

1 2

则;(x*) 10

2

故测量中边长误差限不超过

0.005cm 时,才能使其面积误差不超过 1cm 2 10.设 S = 1gt 2,假定g 是准确的 ,而对t 的测量有 0.1秒的误差,证明当t 增加时S 的 绝对误差

增加,而相对误差却减少。

1

解:;S =-gt 2,t 0

2

.;(S*) =gt 2L ;(t*)

当t *增加时,S*的绝对误差增加 gt 2

L ;(t*) 1 * 2

(t*)

9.正方形的边长大约为了

解:正方形的面积函数为 A(x)二 x 2

相关文档
最新文档