高考数学小题限时训练一
2013高考数学(理科)小题限时训练1
![2013高考数学(理科)小题限时训练1](https://img.taocdn.com/s3/m/6dd78a6d9b6648d7c1c74614.png)
2013高考数学(理科)小题限时训练一15小题共75分,时量:45分钟,考试时间:2012年8月22日第3节 姓名1.集合}20{,M =,}|{M x x P ∈=,则下列关系中,正确的是A.MP;B.P M ;C. M P =;D. M P ⊆2.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是A .(-∞,-1)B .(-∞,-1]C .(1,+∞)D .[1,+∞) 3.已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则A .12()()f x f x >B .12()()f x f x <C .12()()f x f x =D .1()f x 与2()f x 的大小不能确定 4.函数y =log a |x +b | (a >0,a ≠1,ab =1)的图象只可能是5.函数()f x 、(2)f x +均为偶函数,且当x ∈[0,2]时,()f x 是减函数, 设),21(log 8f a =(7.5)b f =,(5)c f =-, 则a 、b 、c 的大小关系是 A .a b c >> B .a c b >> C .b a c >> D .c a b >>6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是 A .(-∞,-1)∪(2,+∞); B .(-1,2);C .(-2,1);D .(-∞,-2)∪(1,+∞)7.函数f (x )=-x 2+(2a -1)|x |+1的定义域被分成了四个不同的单调区间, 则实数a 的取值范围是A .a >23 B.12<a <32 C .a >12 D .a <128. 下列判断正确的是A .函数22)(2--=x xx x f 是奇函数; B .函数()(1f x x =-C .函数()f x x =D .函数1)(=x f 既是奇函数又是偶函数9.已知函数f (x )=x 2-4x +3,集合M ={(x ,y )|f (x )+f (y )≤0},集合N ={(x ,y )|f (x )-f (y )≥0},则集合M ∩N 的面积是A.π4B.π2C .πD .2π10.已知()y f x =是奇函数,且满足)1()1(-=+x f x f ,当(0,1)x ∈时,xx f -=11log )(2,则()y f x =在(1,2)内是A .单调减函数,且()0f x <B .单调减函数,且()0f x >C .单调增函数,且()0f x >D .单调增函数,且()0f x <11.若f (x )=a -x 与g (x )=a x -a (a >0且a ≠1)的图象关于直线x =1对称,则a =________.12.已知集合A 中有10个元素,集合B 中有6个元素,全集U 中有18个元素,且有A ∩B ≠∅,设集合∁U (A ∪B )中有x 个元素,则x 的取值范围是 .13.若函数f (x )=4xx 2+1在区间(m,2m +1)上是单调递增函数,则m 的取值范围为__________.14.已知函数1)(2++=x b ax x f 的值域是[-1,4 ],则b a 2的值是 . 15.关于函数)0(||1lg)(2≠+=x x x x f ,有下列命题: ①其图象关于y 轴对称; ②当0>x 时,)(x f 是增函数;当0<x 时,)(x f 是减函数;③)(x f 的最小值是2lg ;④)(x f 在区间(-1,0)、(2,+∞)上是增函数; ⑤)(x f 无最大值,也无最小值.其中所有正确结论的序号是 .11. ;12. ;13. ; 14. ; 15. 。
高考数学大二轮复习 专题一 平面向量、三角函数与解三角形 第二讲 三角函数的图象与性质限时规范训练
![高考数学大二轮复习 专题一 平面向量、三角函数与解三角形 第二讲 三角函数的图象与性质限时规范训练](https://img.taocdn.com/s3/m/0138e4a6294ac850ad02de80d4d8d15abf230056.png)
第二讲 三角函数的图象与性质1.(2019·豫南九校联考)将函数y =sin ⎝⎛⎭⎪⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫x 2-5π24B .y =sin ⎝ ⎛⎭⎪⎫x 2-π3C .y =sin ⎝ ⎛⎭⎪⎫x 2-5π12 D.y =sin ⎝⎛⎭⎪⎫2x -7π12 解析:函数y =sin ⎝ ⎛⎭⎪⎫x -π4经伸长变换得y =sin ⎝ ⎛⎭⎪⎫x 2-π4,再作平移变换得y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π6-π4=sin ⎝ ⎛⎭⎪⎫x 2-π3.答案:B2.(2019·某某亳州一中月考)函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( )解析:由题意得函数的周期为T =2π,故可排除B ,D.对于C ,图象过点⎝ ⎛⎭⎪⎫π3,0,代入解析式,不成立,故选A. 答案:A3.(2019·某某某某十校期末测试)要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫2x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,∴要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象向左平移π6个单位长度.答案:B4.(2019·东北三省三校一模)已知函数f (x )=3sin ωx +cos ωx (ω>0)的图象的相邻两条对称轴之间的距离是π2,则该函数的一个单调增区间为( )A.⎣⎢⎡⎦⎥⎤-π3,π6 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤-π3,2π3解析:由题意得2πω=2×π2,解得ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z),解得-π3+k π≤x ≤π6+k π.当k =0时,有x ∈⎣⎢⎡⎦⎥⎤-π3,π6.故选A.答案:A5.(2019·高考全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( ) A .2B.32 C .1D.12解析:由题意及函数y =sin ωx 的图象与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A. 答案:A6.(2019·某某某某一模)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,其中ω为常数,且ω∈(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .1 B.π2C .2D.π解析:∵函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,∴π3ω+π3=k π,k ∈Z ,∴ω=3k -1,k ∈Z ,由ω∈(1,3),得ω=2.由题意得|x 1-x 2|的最小值为函数的半个周期,即T 2=πω=π2.答案:B7.(2019·某某平遥中学调研)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝ ⎛⎭⎪⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( ) A .x =π12B.x =π4C .x =π3D.x =2π3解析:由题意知图象过A (0,3),B ⎝ ⎛⎭⎪⎫π6,0, 即f (0)=2sin φ=3,f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫π6·ω+φ=0,又ω>0,|φ|<π,并结合图象知φ=2π3,π6·ω+φ=π+2k π(k ∈Z),得ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3, 移动后g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3,所以对称轴满足2x +π3=π2+k π(k ∈Z),解得x =π12+k π2(k ∈Z),所以满足条件的一条对称轴方程是x =π12,故选A.答案:A8.(2019·某某某某适应性统考)已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的五个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B.ω=2,φ=π6C .ω=12,φ=π3D.ω=12,φ=π12解析:由题意知T =4×⎝⎛⎭⎪⎫π12+π6=π,所以ω=2.因为A ⎝ ⎛⎭⎪⎫-π6,0,所以0=sin ⎝ ⎛⎭⎪⎫-π3+φ. 又0<φ<π2,所以φ=π3.答案:A9.(2019·某某某某3月模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,若f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,则ω的可能取值为( )A.23 B.2 C.143D.263解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2, ∴sin ⎝ ⎛⎭⎪⎫-π6=-sin ⎝ ⎛⎭⎪⎫π2ω-π6=-12,∴π2ω-π6=2k π+π6或π2ω-π6=2k π+5π6,k ∈Z ,∴ω=4k +23或ω=4k +2,k ∈Z.∵函数f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,∴ωx -π6∈⎝ ⎛⎭⎪⎫-π6,ωπ2-π6,∴2π<ωπ2-π6≤3π,∴133<ω≤193,∴ω=143或ω=6.故选C.答案:C10.(2019·贺州一模)已知函数f (x )=sin(2x +φ)(φ∈R),若f ⎝ ⎛⎭⎪⎫π3-x =f (x ),且f (π)>f ⎝ ⎛⎭⎪⎫π2,则函数f (x )取得最大值时x 的可能值为( )A.π6B.π5C.π3D.π2解析:因为f ⎝ ⎛⎭⎪⎫π3-x =f (x ), 即y =f (x )的图象关于直线x =π6对称,即函数f (x )在x =π6时取得最值,①当函数f (x )在x =π6时取得最大值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π3=f (π),满足题意, ②当函数f (x )在x =π6时取得最小值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2>f ⎝ ⎛⎭⎪⎫π3=f (π),不满足题意, 综合①②得:函数f (x )取得最大值时x 的可能值为π6.故选A. 答案:A11.(2019·某某一模)若函数f (x )=sinωx2·sin ⎝⎛⎭⎪⎫ωx 2+π2(ω>0)在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,则ω的取值X 围是( ) A .(0,5)B.[1,5)C.⎝ ⎛⎭⎪⎫0,92 D.⎣⎢⎡⎭⎪⎫1,92 解析:f (x )=sinωx2sin ⎝⎛⎭⎪⎫ωx 2+π2=12sin ωx ,当ωx =2k π+π2,即x =2k π+π2ω(k ∈Z)时函数取最大值,又函数f (x )在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,即有两种情况,一是区间⎣⎢⎡⎦⎥⎤-π3,π2内只有一个极值点,二是函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π2内单调递增,所以有⎩⎪⎨⎪⎧π2≤ωπ2<5π2,-3π2<-ωπ3或⎩⎪⎨⎪⎧π2≥ωπ2,-π2≤-ωπ3,解得ω∈⎣⎢⎡⎭⎪⎫1,92或ω∈(-∞,1],又∵ω>0,所以ω∈⎝ ⎛⎭⎪⎫0,92,故选C. 答案:C12.(2019·某某一模)函数f (x )=sin(2x +θ)+cos 2x ,若f (x )最大值为G (θ),最小值为g (θ),则( )A .∃θ0∈R ,使G (θ0)+g (θ0)=πB .∃θ0∈R ,使G (θ0)-g (θ0)=πC .∃θ0∈R ,使|G (θ0)·g (θ0)|=πD .∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π解析:f (x )=sin(2x +θ)+cos 2x =cos θ·sin 2x +⎝ ⎛⎭⎪⎫sin θ+12·cos 2x +12=54+sin θsin(2x +φ)+12,所以G (θ)=54+sin θ+12,g (θ)=-54+sin θ+12, ①对于选项A ,G (θ0)+g (θ0)=54+sin θ+12-54+sin θ+12=1,显然不满足题意,即A 错误,②对于选项B ,G (θ0)-g (θ0)=54+sin θ+12+54+sin θ-12=254+sin θ∈[1,3],显然不满足题意,即B 错误, ③对于选项C ,G (θ0)·g (θ0)=⎝ ⎛⎭⎪⎫54+sin θ+12·⎝ ⎛⎭⎪⎫54+sin θ-12=1+sin θ∈[0,2],显然不满足题意,即C 错误,④对于选项D ,⎪⎪⎪⎪⎪⎪G (θ)g (θ)=⎪⎪⎪⎪⎪⎪⎪⎪154+sin θ-12+1∈[2,+∞),即∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π,故D 正确, 故选D. 答案:D13.(2019·某某模拟)函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1(x ∈R)的最大值为________.解析:∵f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (x )max =2. 答案:214.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3, ∴x =π2和x =2π3均不是f (x )的极值点,其极值应该在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π6也不是函数f (x )的极值点,又f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性, ∴x =π6-⎝⎛⎭⎪⎫7π12-π2=π12为f (x )的另一个相邻的极值点,故函数f (x )的最小正周期T =2×⎝⎛⎭⎪⎫7π12-π12=π.答案:π15.(2019·某某某某武邑中学模拟)将f (x )=2sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则ω的最大值为________.解析:将f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π4ω+π4=2sin ωx 的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则满足T 4≥π4,即T ≥π,即2πω≥π,所以0<ω≤2,即ω的最大值为2.答案:216.已知函数f (x )=2a sin(πωx +φ)⎝ ⎛⎭⎪⎫a ≠0,ω>0,|φ|≤π2,直线y =a 与f (x )的图象的相邻两个距离最近的交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[a ,2a ];②在[2,4]上,当且仅当x =3时函数取得最大值; ③f (x )的图象可能过原点. 其中真命题的个数为________.解析:对于①,∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴结合图象可以看出,当a >0时,f (x )在[2,4]上的值域为[a ,2a ],当a <0时,f (x )在[2,4]上的值域为[2a ,a ],①错误;对于②,根据三角函数图象的对称性,显然x =2和x =4的中点是x =3,即当a >0时,f (x )在x =3处有最大值f (3)=2a ,当a <0时,f (x )在x =3处有最小值f (3)=2a ,②错误; 对于③,f (0)=2a sin φ,令f (0)=0,得φ=0,此时f (x )=2a sin πωx ,由2a sin πωx =a 得sin πωx =22,则πωx =2k π+π4(k ∈Z)或πωx =2k π+3π4(k ∈Z),∴x =2k +14ω(k ∈Z)或x =2k +34ω(k ∈Z),∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴令⎩⎪⎨⎪⎧2k +14ω=2,2k +34ω=4,解得k =18∉Z ,即不存在这样的k 符合题意,③错误. 综上,没有真命题. 答案:0。
打卡第三天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)解析版
![打卡第三天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)解析版](https://img.taocdn.com/s3/m/7f0a987ef6ec4afe04a1b0717fd5360cbb1a8d50.png)
【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)新高考真题限时训练打卡第三天一、单选题(本题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2020·海南·高考真题)设集合A ={2,3,5,7},B ={1,2,3,5,8},则A B ⋂=()A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【分析】根据集合交集的运算可直接得到结果.【详解】因为A{2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C【点睛】本题考查的是集合交集的运算,较简单.2.(2020·海南·高考真题)()()12i 2i ++=()A .45i +B .5iC .5i-D .23i+【答案】B【分析】直接计算出答案即可.【详解】()()212i 2i 2i 4i 2i 5i ++=+++=故选:B【点睛】本题考查的是复数的计算,较简单.3.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A .2种B .3种C .6种D .8种【答案】C【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有12323C C =种分法第二步,将2组学生安排到2个村,有222A =种安排方法所以,不同的安排方法共有326⨯=种故选:C 【点睛】解答本类问题时一般采取先组后排的策略.4.(2019·全国·高考真题)设α,β为两个平面,则//αβ的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.5.(2020·山东·统考高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范围是()A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A【分析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB 方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果.【详解】AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅ 等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB ⋅的取值范围是()2,6-,故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.6.(2019·全国·高考真题)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③【答案】C【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案.【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴ 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x \的最大值为2,故④正确.综上所述,①④正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .二、多选题(本题共2小题,每小题5分,共10分。
高考数学总复习 提能拔高限时训练单元检测—统计(理)(练习+详细解析)
![高考数学总复习 提能拔高限时训练单元检测—统计(理)(练习+详细解析)](https://img.taocdn.com/s3/m/ac7af52e03d8ce2f0166231a.png)
单元检测(十二) 统计(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分)则D ξ和E ξ分别等于( )A.0和1B.1.8和1C.2和2D.0.8和2 解析:E ξ=1×0.4+2×0.2+3×0.4=2,D ξ=(1-2)2×0.4+(2-2)2×0.2+(3-2)2×0.4=0.8. 答案:D2.在某路段检测点,对200辆汽车的车速进行检测,检测结果表示为如下频率分布直方图,则车速不小于90 km/h 的汽车约有____________________辆.( )A.20B.30C.60D.10 解析:频率=(0.02+0.01)×10=0.3, 频数=200×0.3=60(辆). 答案:C3.采用简单随机抽样从个体数为6的总体中抽取一个容量为3的样本,则对于总体中指定的个体a 前两次未被抽到,第三次恰好被抽到的概率为( )A.61 B.41 C.31 D.21 解法一:对于从6个个体中抽取1个,每个个体被抽到的概率均为61,故选A.解法二:611415161415=∙∙∙=C C C C C P . 答案:A4.已知随机变量ξ~B (6,31),则P (ξ=2)等于…( ) A.163 B.2434 C.24313 D.24380 解析:24380)311()31()2(26226=-==-C P ξ.答案:D5.某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天平均需服务的对象个数是( )A.np (1-p )B.npC.nD.p (1-p ) 解析:一天需服务的对象个数服从二项分布,其期望是np,故选B. 答案:B6.一对酷爱运动的年轻夫妇,让刚满十个月大的婴儿把“0,0,2,8,北,京”六张卡片排成一行,若婴儿能使得排成的顺序为“2008北京”或“北京2008”,则受到父母的夸奖,那么婴儿受到父母夸奖的概率为( ) A.1801 B.2401 C.3601 D.7201 解析:婴儿受到父母夸奖的概率180122266==A A P . 答案:A7.一个盒子中装有大小相同的黑球10个,红球12个,白球4个,从中任取2个,其中白球的个数记为ξ,则等于22622214122C C C C +的是( ) A.P (0<ξ≤2) B.P (ξ≤1) C.E ξ D.D ξ解析:22622214122C C C C +表示的是没有白球或有1个白球的概率. 答案:B8.设随机变量ξ服从标准正态分布N (0,1),已知Φ(-1.96)=0.025,则P (|ξ|<1.96)等于( )A.0.025B.0.050C.0.950D.0.975解析:ξ服从标准正态分布N (0,1)⇒P (|ξ|<1.96)=P (-1.96<ξ<1.96)=Φ(1.96)-Φ(-1.96)=1-2Φ(-1.96)=1-2×0.025=0.950. 答案:C9.从N 个编号中抽n 个号码入样,考虑用系统抽样方法抽样,则抽样间隔为( )A.n N B.n C.][n N D.1][+n N注:][n N 表示n N的整数部分.解析:n N 不一定是整数,][n N 表示nN 的整数部分.答案:C10.期中考试后,老师算出了全班40个人数学成绩的平均分为M.如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N,则NM为( )A.4140 B.1 C.4041 D.2 解析:设40个人的数学总分为Z,则Z =40M,且Z =41N-M. 由40M =41N-M, ∴M=N.故选B. 答案:B11.对于样本频率分布直方图与总体密度曲线的关系,下列说法中正确的是( ) A.频率分布直方图与总体密度曲线无关 B.频率分布直方图就是总体密度曲线C.样本容量很大的频率分布直方图就是总体密度曲线D.如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线 答案:D12.设随机变量ξ的概率密度函数⎪⎩⎪⎨⎧≤≤-<≤=,,0,21,2,10,)(其他x x x x x f 则下列结论中正确的是( )A.41)21(=≤ξP B.41)23(=≥ξP C.41)23(=≤ξP D.)21()23(≥=≤ξξP P 解析:画出该函数图象,23≤x 、21≥x 分别与图象、坐标轴围成的面积相等.答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于____________________________________________. 解析:ξ=0表示失败,故31)0(==ξP . 答案:31 14.有一批数量很大的产品,其次品率为20%,现对这批产品进行抽查,每次抽出一件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品但抽查次数最多不超过5次,则抽查次数ξ的期望E ξ为____________________________________.解析:P (ξ=k )=(80%)k-1×20%,k =1,2,3,4,P (ξ=5)=(1-20%)4×20%+(1-20%)5=0.409 6.∴E ξ=1×0.2+2×0.16+3×0.128+4×0.102 4+5×0.409 6≈3.36. 答案:3.3615.抛掷两枚骰子,当至少有一个5点或一个6点时,就设这次试验成功,则在30次试验中成功次数η的期望是_______________________,方差是__________________________.解析:η~B (30,p ),其中9564641=⨯-=p , ∴3509530=⨯==np E η, 27200949530)1(=⨯⨯=-=p np D η.答案:350 2720016.若随机变量ξ的分布列为31)(==m P ξ,P (ξ=n )=a,若E ξ=2,则D ξ的最小值等于________________________. 解析:由题意,得131=+a ,231=⨯+⨯a n m ,32=a ,m +2n =6, 0)2(2)2(32)42(31)2(32)2(3122222≥-=-⨯+-⨯=-⨯+-⨯=n n n n m D ξ,则D ξ的最小值等于0. 答案:0三、解答题(本大题共6小题,共70分)17.(本小题满分10分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率;(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.解:由题图可知,参加活动1次、2次和3次的学生人数分别为10、50和40. (1)该合唱团学生参加活动的人均次数为3.2100230100403502101==⨯+⨯+⨯.(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为994121002402502100=++=C C C C P . (3)从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A,“这两人中一人参加2次活动,另一人参加3次活动”为事件B,“这两人中一人参加1次活动,另一人参加3次活动”为事件C,易知9950)()()1(21001401502100150110=+=+==C C C C C C B P A P P ξ; 998)()2(2100140110====C C C C P P ξ; 又9941)0(0===P P ξ.ξ的数学期望3992991990=⨯+⨯+⨯=ξE . 18.(本小题满分12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳的成活与否是相互独立的,成活率为p.设ξ为成活沙柳的株数,数学期望E ξ为3,标准差σξ为26. (1)求n 、p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:由题意,知ξ服从二项分布B (n,p ),k n kk n p p C k P --==)1()(ξ,k =0,1,…,n.(1)由E ξ=np =3,23)1()(2=-=p np σξ,得211=-p ,从而n =6,21=p .(2)记“需要补种沙柳”为事件A,则P (A )=P(ξ≤3),得3264)(==A P ,或32216416151)3(1)(=++-=>-=ξP A P . 19.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100(2)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元);若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.分析:本题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力. 解:(1)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.(2)ξ的可能值为8,10,12,14,16,且P (ξ=8)=0.22=0.04, P (ξ=10)=2×0.2×0.5=0.2,P (ξ=12)=0.52+2×0.2×0.3=0.37, P (ξ=14)=2×0.5×0.3=0.3,P (ξ=16)=0.32=0.09. 故ξ的分布列为E ξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元).20.(本小题满分12分)在一次智力竞赛中,比赛共分三个环节:选答,抢答,风险选答.第一环节“选答”中,每位选手可以从6道题目(其中4道选择题,2道操作题)中任意选3道题目作答,答对每道题目可得100分;第二环节“抢答题”,一共为参赛选手准备了5道抢答题,在每一道题目的抢答中,每位选手抢到的概率是相等的;第三环节“风险选答”中,一共为选手准备了A 、B 、C 三类不同的题目,选手每答对一道A 类、B 类、C 类题目,将分别得到300分、200分、100分,但如果答错,则相应地要扣去300分、200分、100分,而选手答对一道A 类、B 类、C 类题目的概率分别为0.6、0.7、0.8,现在甲、乙、丙三位选手参加比赛,试求: (1)乙选手在第一环节中至少选到一道操作题的概率是多少?(2)在第二环节中,甲选手抢到的题目多于乙选手而不多于丙选手的概率是多少? (3)在第三环节中,就每一次答题而言,丙选手选择哪类题目得分的期望值更大一些?解:(1)在第一环节中,乙选手可以从6道题目中任意选3道题目作答,一共有36C 种不同的选法,其中没有操作题的选法有34C 种,所以至少有一道操作题的概率是54511136341=-=-=C C P . (2)在第二环节中,甲选手抢到的题目多于乙选手而不多于丙选手的情况共有以下三种情况:甲、乙、丙三位选手抢到题目的数目分别为:1,0,4;2,0,3;2,1,2.所以所求概率为275)31()31()31()31()31()31()31(22213225333225444152=++=C C C C C C C P . (3)在第三环节中,就每一次答题而言,丙选手的得分是一个随机变量η,若选A 类题,其得分期望是E (A )=300×0.6+(-300)×0.4=60(分),选B 类题,其得分期望是E (B )=200×0.7+(-200)×0.3=80(分), 选C 类题,其得分期望是E (C )=100×0.8+(-100)×0.2=60(分). 由于EB >EA =EC,故应选B 类题目. 21.(本小题满分12分)(2009北京海淀期末练习)某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关.若T ≤1,则销售利润为0元;若1<T ≤3,则销售利润为100元;若T >3,则销售利润为200元.设每台该种电器的无故障使用时间T ≤1,1<T ≤3及T>3这三种情况发生的概率分别为p 1,p 2,p 3,又知p 1,p 2是方程25x 2-15x +a =0的两个根,且p 2=p 3.(1)求p 1,p 2,p 3的值;(2)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列; (3)求销售两台这种家用电器的销售利润总和的平均值. 解:(1)由已知得p 1+p 2+p 3=1,∵p 2=p 3,∴p 1+2p 2=1.∵p 1,p 2是方程25x 2-15x +a =0的两个根, ∴5321=+p p . ∴511=p ,5232==p p . (2)ξ的可能取值为0,100,200,300,400.2515151)0(=⨯==ξP ,2545251)100(12=⨯⨯==C P ξ,25852525251)200(12=⨯+⨯⨯==C P ξ,2585252)300(12=⨯⨯==C P ξ,2545252)400(=⨯==ξP ,(3)销售两台这种家用电器利润总和的平均值为2402544002583002582002541002510=⨯+⨯+⨯+⨯+⨯=ξE . ∴销售两台这种家用电器利润总和的平均值为240元.22.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(1)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (2)ξ表示依方案乙所需化验次数,求ξ的期望.若甲化验次数不少于乙化验次数,则p =P (ξ1=1)×P (ξ2=1)+P (ξ1=2)×[P (ξ2=1)+P (ξ2=2)]+P (ξ1=3)×[P(ξ2=1)+P(ξ2=2)+P(ξ2=3)]+P(ξ1=4)=0+0.2×(0+0.6)+0.2×(0+0.6+0.4)+0.4=0.12+0.6=0.72.(2)Eξ=1×0+2×0.6+3×0.4=2.4.。
【金版教程】2021届高考数学大一轮总温习 6-6(2)直接证明与间接证明限时标准训练 理(1)
![【金版教程】2021届高考数学大一轮总温习 6-6(2)直接证明与间接证明限时标准训练 理(1)](https://img.taocdn.com/s3/m/9f9e5449a9956bec0975f46527d3240c8447a122.png)
05限时标准特训A 级 基础达标1.[2021·皖北联考]假设P =a +a +7,Q =a +3+a +4(a ≥0),那么P ,Q 的大小关系( ) A .P >QB .P =QC .P <QD .由a 取值决定解析:假设P <Q ,∵要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a a +7<2a +7+2a +3a +4,只要证:a 2+7a <a 2+7a +12,只要证:0<12,∵0<12成立,∴P <Q 成立.答案:C2.[2021·三明模拟]设a ,b ∈R ,那么“a +b =1”是“4ab ≤1”的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件解析:假设“a +b =1”,那么4ab =4a (1-a )=-4(a -12)2+1≤1;假设“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;那么“a +b =1”是“4ab ≤1”的充分没必要要条件.答案:A3.[2021·张家口模拟]分析法又称执果索因法,假设用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0 解析:b 2-ac <3a⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.答案:C4.[2021·汕头模拟]设x ,y ,z >0,那么三个数y x +y z ,z x +z y ,x z +x y( ) A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2解析:假设这三个数都小于2,那么三个数之和小于6,又y x +y z +z x +z y +x z +x y =(y x +x y )+(y z +z y)+(z x +x z )≥2+2+2=6,当且仅当x =y =z 时取等号,与假设矛盾,故这三个数至少有一个不小于2.另取x =y =z =1,可排除A 、B.答案:C5.[2021·四平质检]设a ,b 是两个实数,给出以下条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤解析:①中假设a =34,b =12,那么a +b >1,故①不能;②中假设a =b =1,那么a +b =2,故②不能;③能,④中假设a =b =-2,那么a 2+b 2>2,故④不能;⑤中假设a =b =-2,那么ab >1,故⑤不能.∴只有③能,选C.答案:C6.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数解析:自然数a ,b ,c 中为偶数的情形为a ,b ,c 全为偶数;a ,b ,c 中有两个数为偶数;a ,b ,c 全为奇数;a ,b ,c 中恰有一个数为偶数,因此反设为a ,b ,c 中至少有两个偶数或都是奇数.答案:B7.不相等的三个正数a 、b 、c 成等差数列,而且x 是a 、b 的等比中项,y 是b 、c 的等比中项,那么x 2、b 2、y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:由已知条件,可得⎩⎪⎨⎪⎧ a +c =2b , ①x 2=ab , ②y 2=bc , ③由②③得⎩⎪⎨⎪⎧ a =x 2b ,c =y 2b ,代入①,得x 2b +y 2b=2b , 即x 2+y 2=2b 2.故x 2、b 2、y 2成等差数列,应选B.答案:B8.假设a ,b ,c 是不全相等的正数,给出以下判定:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判定正确的选项是________.解析:①②正确;③中a ≠c ,b ≠c ,a ≠b 可能同时成立,如a =1,b =2,c =3.答案:①②9.请阅读以下材料:假设两个正实数a 1,a 2知足a 21+a 22=1,那么a 1+a 2≤ 2. 证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,因此Δ≤0,从而得4(a 1+a 2)2-8≤0,因此a 1+a 2≤ 2.依照上述证明方式,假设n 个正实数知足a 21+a 22+…+a 2n=1时,你能取得的结论为________. 解析:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1,因为对一切实数x ,恒有f (x )≥0,因此Δ≤0,从而得4(a 1+a 2+…+a n )2-4n ≤0,因此a 1+a 2+…+a n ≤n . 答案:a 1+a 2+…+a n ≤n 10. 已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1. 解:假设a ,b ,c 均小于1,即a <1,b <1,c <1,那么有a +b +c <3,而a +b +c =2x 2-2x +12+3=2(x -12)2+3≥3, 二者矛盾;故a ,b ,c 至少有一个不小于1.11.[2021·南京联考]已知函数f (x )=a x +x -2x +1(a >1).(1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,由于a >1,ax 1<ax 2,∴ax 2-ax 1>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=x 2-2x 1+1-x 1-2x 2+1x 1+1x 2+1=3x 2-x 1x 1+1x 2+1>0,于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,即f (x 2)>f (x 1), 故函数f (x )在(-1,+∞)上为增函数.(2)证法一:假设存在x 0<0(x 0≠-1)知足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1.∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.证法二:假设存在 x 0<0(x 0≠-1)知足f (x 0)=0,①假设-1<x 0<0,则x 0-2x 0+1<-2,0<ax 0<1,∴f (x 0)<-1,与f (x 0)=0矛盾.②若x 0<-1,那么x 0-2x 0+1>0,1>ax 0>0,∴f (x 0)>0,与f (x 0)=0矛盾,故方程f (x )=0没有负数根.12.已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2.证明:a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤ 2. 只需证|a |+|b |≤2|a +b |, 只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2),只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2,只需证|a |2+|b |2-2|a ||b |≥0,即(|a |-|b |)2≥0,上式显然成立,故原不等式得证.B 级 知能提升1.假设a ,b ∈R ,那么下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,∴a 2+b 2≥2(a -b -1)恒成立.答案:B 2.凸函数的性质定理为:若是函数f (x )在区间D 上是凸函数,那么关于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x nn ≤f (x 1+x 2+…+x nn ),已知函数y =sin x 在区间(0,π)上是凸函数,那么在△ABC中,sin A +sin B +sin C 的最大值为________.解析:∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π),∴f A +f B +f C3≤f (A +B +C3)=f (π3), 即sin A +sin B +sin C ≤3sin π3=332, 因此sin A +sin B +sin C 的最大值为332. 答案:3323.已知二次函数f (x )=ax 2+bx +c 的图象与x 轴有两个不同的交点,假设f (c )=0且0<x <c 时,f (x )>0,(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.解:(1)证明:∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a, ∴x 2=1a (1a≠c ), ∴1a是f (x )=0的一个根. (2)假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f (1a )>0与f (1a )=0矛盾,∴1a≥c , 又∵1a ≠c ,∴1a>c . (3)证明:由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a, 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.。
2020新课标高考数学(文)总复习专题限时训练:锥体中的线面关系及计算含解析
![2020新课标高考数学(文)总复习专题限时训练:锥体中的线面关系及计算含解析](https://img.taocdn.com/s3/m/f5c35a49bb68a98271fefa86.png)
C.16πD.64π
解析:∵AB=1、AC=2、
∠BAC=60°、∴AB⊥BC.
∵SA⊥平面ABC、∴BC⊥平面SAB、
∴BC⊥SB、∴SC是球O的直径.∵SA=2 、AC=2、
∴SC=4.球O的表面积为16π.故选C.
答案:C
6.已知正三棱柱ABC-A1B1C1的底面边长为2、侧棱长为 、D为BC的中点、则三棱锥A-B1DC1的体积为( )
答案:
专题限时训练(大题规范练)
(建议用时:60分钟)
1.如图、四棱锥P-ABCD中、侧面PAD为等边三角形且垂直于底面ABCD、AB=BC= AD、∠BAD=∠ABC=90°.
(1)证明:直线BC∥平面PAD;
(2)若△PCD的面积为2 、求四棱锥P-ABCD的体积.
解析:(1)证明:在平面ABCD内、
∴BD⊥AO、BD⊥CO.
折起后仍有BD⊥AO、BD⊥CO、AO∩CO=O、
AO、CO⊂平面AOC、
∴BD⊥平面AOC.
∵BD⊂平面BCD、∴平面AOC⊥平面BCD.
(2)由(1)知BD⊥平面AOC、
∴VA-BCD= S△AOC·BD、
∴ × OA·OC·sin∠AOC·BD= 、
连接BG、D′G、则BG⊥D′G、∠D′BG就是AC与BD′所成的角.设∠D′FG=θ.经计算得D′F= 、
BE=FG= 、
CF= 、EF=BG= 、在△D′FG中、由余弦定理得
D′G2=D′F2+FG2-2·D′F·FG·cosθ= -5cosθ.
∴在Rt△D′GB中、
BD′= = 、
∴cos∠D′BG= = .
答案:
14.设α、β是两个不重合的平面、m、n是两条不重合的直线、给出下列四个命题:
2005年高考数学复习客观题限时训练(一)
![2005年高考数学复习客观题限时训练(一)](https://img.taocdn.com/s3/m/1f04c76e48d7c1c708a1456d.png)
在同一点取得相同得最小 5 4
A.
B.4
C.8
D.
11. 函数 y 1 1 x 2 ( 1 x 0 ) 的反函数是
.
12.在 2 和 30 之间插入两个正数,使前三个数成等比数列,后三个等差数列,则插入的两 个数分别是 13.已知 3 x 12
中国教育开发网
中国特级教师高考复习方法指导〈数学复习版〉
9 . 数 列 a n 中 , a n 0 , 且 a n a n 1 是 公 比 为 q ( q 0 ) 的 等 比 数 列 , 满 足
a n a n 1 a n 1 a n 2 a n 2 a n 3 ( n N ) ,则公比 q 的取值范围是
中国特级教师高考复习方法指导〈数学复习版〉
2005 年高考数学复习客观题限时训练(一)
集合、函数、数列、不等式
(时间:45 分钟,分值:70 分)
班级________________姓名________________座位________________ 题号 1 2 3 4 5 6 7 8 9 选项 题号 11 12 13 14 答案
1.设 f : x x 2 是集合 A 到集合 B 的映射,如果 B={1,2},则 A∩B 一定是 A. B. 或{1} C.{1} D. 或{2}
10
2.设集合 M { x | x 2} , P { x | x 3} ,则“ x M 或 x P ”是“ x P M ”的 A.充分条件但非必要条件 C.充分必要条件 B.必要条件但非充分条件 D.非充分条件也非必要条件
3.定义在 R 上的函数 y f ( x ) 的值域为[a,b],则 y f ( x 1) 的值域为 A. [a,b] C. [a-1,b-1] 过 x 年后湖水量 y 与 x 的函数关系是
新高考仿真模拟卷A-【10天刷完高考真题】冲刺2023年高考数学考前必刷限时训练(考通用)原新高版
![新高考仿真模拟卷A-【10天刷完高考真题】冲刺2023年高考数学考前必刷限时训练(考通用)原新高版](https://img.taocdn.com/s3/m/979a861f7275a417866fb84ae45c3b3567ecdd8f.png)
绝密★启用前2023年普通高等学校招生全国统一考试˙仿真模拟卷A数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}02A x x =<<,{}2|10B x x =-<,则A B ⋃=()A .()1,1-B .()1,2-C .()1,2D .()0,12.已知,其中是实数,是虚数单位,则A .B .C .D .3.马林•梅森(MarinMersenne ,1588-1648)是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物.梅森在欧几里得、费马等人研究的基础上对21p -作了大量的计算、验证工作.人们为纪念梅森在数论方面的这一贡献,将形如21p -(其中p 是素数)的素数,称为梅森素数(素数也称质数).在不超过30的素数中,随机选取3个不同的数,至少有一个为梅森素数的概率是()A .815B .15C .715D .651204.已知sin 29,cos52,tan 50a b c =︒=︒=︒,则()A .a b c >>B .c a b >>C .b c a >>D .c b a>>5.我国于2021年5月成功研制出目前国际上超导量子比特数量最多的量子计算原型机“祖冲之号”,操控的超导量子比特为62个.已知1个超导量子比特共有“|0>,|1>”2种叠加态,2个超导量子比特共有“|00>,|01>,|10>,|11>”4种叠加态,3个超导量子比特共有“|000>,|001>,|010>,|011>,|100>,|101>,|110>,|111>”8种叠加态,…,只要增加1个超导量子比特,其叠加态的种数就呈指数级增长.设62个超导量子比特共有N 种叠加态,则N 是一个()位的数.(参考数据:lg 20.3010≈)A .18B .19C .62D .636.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是()A .2B .4C .8D .167.棱长为a 的正方体内有一个棱长为x 的正四面体,且该正四面体可以在正方体内任意转动,则x 的最大值为()A .12aB .2a C .6a D .3a 8.若关于x 的方程()2ln ln x ax x x -=存在三个不等实根,则实数a 的取值范围是()A .211,e e ⎛⎫-∞- ⎪⎝⎭B .211,0e e ⎛⎫- ⎪⎝⎭C .1,e e ⎛⎫-∞- ⎪⎝⎭D .1,0e e ⎛⎫- ⎪⎝⎭二、多选题(本题共4小题,每小题5分,共20分。
2023年高考数学选填限时训练 巩固小卷12份 带解析(解题达人选填)
![2023年高考数学选填限时训练 巩固小卷12份 带解析(解题达人选填)](https://img.taocdn.com/s3/m/ddb05afb51e2524de518964bcf84b9d528ea2c81.png)
y ex e .
15. 已知直线 Ax+By+C=0(其中 A2+B2=C2,C≠0)与圆 x2+y2=6 交于 M,N 两点,O 是坐标原点,则|MN|
= 25 ;
=
10 .(本题第一空 2 分,第二空 3 分)
建议用时:55 分钟
满分:80 分
一、选 择 题 :本题共8 小题,每小题 5 分,共40 分. 在每小题 给出的四个选项中,只有一个项是符合题目要求 的.
1. 设集合 A={x|x2-3x-4>0},B={x|x>2},则 A∪B=( B)
A. {x|x>4}
B. {x|x>2 或 x<-1}
C. {x|x>4 或 x<-1}
m 球的体积之比为 m,圆柱的表面积与球的表面积之比为 n,若 f(x)=(
x3-
1
)8,则(ACD)
n
x
A. f(x)的展开式中的常数项是 28
B. f(x)的展开式中的各项系数之和为 256
C. f(x)的展开式中的二项式系数最大值是 70
D. f(i)=0,其中 i 为虚数单位
三 、填 空 题 :本题共4 小题,每小题 5 分,共 20 分. 13. 写出一个与向量 a=(2,1)共线的向量: (4,2)(答案不唯一) .
且其余两个整数至少有一个比“水仙四妹”小的概率是( D )
3
1
A.
B.
20
4
3 C.
10
9 D.
20
8.
x2 双曲线 C:
a2
-y2=1(a>0)的右焦点为 F,点 P 为 C 的一条渐近线上的点,O 为坐标原点,若|PO|=|PF|,则 S△OPF 的最小值为
A051高考必备-高中数学计算限时训练_removed
![A051高考必备-高中数学计算限时训练_removed](https://img.taocdn.com/s3/m/af4cbdc5fbb069dc5022aaea998fcc22bcd14330.png)
前言计算对高考来说是个难题, 2022年新高考卷的计算量特别大, 导致不少学生在计算上栽了跟头。
计算不行, 那自然是平常计算训练得少,一般是不存在“我努力了”“我真的尽力了”“我仔细了但没办法算到底”等情况的。
刚才的话语是针对那些公式不背、计算跳步骤、不演算打草稿的人说的, 并不针对“题目不理解”“导数做不出”等情况, 因为这种情况就是真的不会。
在高中阶段通常有哪些计算会困住学生呢?其实有很多, 这里我就打个比方:①圆雉曲线当中的化简;②空间向量当中的夹角的正余弦值计算;③三角函数当中的相关计算, 如边角互换等;④导数当中的代数变形, 还有就是复合函数的求导;⑤数列当中的通项公式和求和公式等, 比如错位相减法;⑥排列组合的相关计算、公式推导等都是难点。
在这本计算训练中还有不少的计算没有“嵌人其中”, 因为没有必要, 本书主要训练的是学生的计算能力, 并不是训练学生的题型解读能力, 至于这个题目有哪几个切人点等并不是本书的主要目标。
记清楚:本书主要是训练学生的计算速度、计算能力。
有的学生不清楚自己在计算上面到底缺失什么, 老是想着往“高深”的方面提高自己, 这有什么用?这就和有的学生水平一般, 但是一上来就问压轴题怎么做一样, 并没有什么作用! 从最基础的开始训练自己, 比如就从计算73273×132151开始, 不要小看这类题目, 这类题目很钕炼学生的计算能力。
学生们在做本书习题时最好每次把使用了多少时间在书中做标注, 这本计算训练考查的就是限时计算能力, 最后再强调一下:不要小看里面的部分题目, 请正视它, 用心去解决它。
现在再来介绍一下本书的大概组成:(1)训练1∼10为初中内容, 就是让学生简单回顾一下初中的相关计算。
(2)训练11∼46是一些考试试卷中可能会遇到的计算专题的加强训练。
(3)训练47∼97是各个知识点组成的计算综合训练, 每个训练包含着不同的知识点, 记住:不要被学校的教学进度限制住自己的学习进度。
2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-6-2
![2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-6-2](https://img.taocdn.com/s3/m/625af791ccbff121dc3683b4.png)
专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.若∀x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,x 2>x 1,y 1=sin x 1x 1,y 2=sin x 2x 2,则( ) A .y 1=y 2 B .y 1>y 2 C .y 1<y 2D .y 1,y 2的大小关系不能确定 答案:B解析:设y =sin x x ,则y ′=(sin x )′·x -sin x ·(x )′x 2=x cos x -sin x x 2.因为在⎝ ⎛⎭⎪⎫0,π2上x <tan x ,所以x cos x -sin x <0,所以y ′<0,所以y =sin x x 在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以y 1>y 2.2.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,2) C.⎣⎢⎡⎭⎪⎫1,32 D .⎣⎢⎡⎭⎪⎫32,2答案:C解析:f ′(x )=4x -1x =(2x -1)(2x +1)x .∵x >0,∴由f ′(x )=0得x =12.令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎨⎧k -1≥0,k -1<12<k +1⇒1≤k <32.3.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .[0,1)B .(-1,1) C.⎝ ⎛⎭⎪⎫0,12 D .(0,1)答案:D解析:f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增, 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.4.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞)答案:D解析:∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞).5.(2019·曲靖二模)已知偶函数f (x )的定义域是(-∞,0)∪(0,+∞),其导函数为f ′(x ),对定义域内的任意x ,都有2f (x )+xf ′(x )>0成立,若f (2)=1,则不等式x 2f (x )<4的解集为( ) A .{x |x ≠0,±2} B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 答案:B解析:令g (x )=x 2f (x )-4,g (2)=0. ∵g (-x )=x 2f (-x )-4=x 2f (x )-4=g (x ),∴g (x )在定义域(-∞,0)∪(0,+∞)上为偶函数.当x >0时,g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )]>0成立. ∴函数g (x )在(0,+∞)上为增函数. ∴不等式x 2f (x )<4⇔g (|x |)<g (2). ∴|x |<2,x ≠0.解得x ∈(-2,0)∪(0,2).6.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ) A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )答案:A解析:因为xf ′(x )≤-f (x ),f (x )≥0, 所以⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0,则函数f (x )x 在(0,+∞)上单调递减. 由于0<a <b ,则f (a )a ≥f (b )b ,即af (b )≤bf (a ).7.(2019·甘肃模拟)若点(m ,n )在函数f (x )=13x 3-x (x >0)的图象上,则n -m +22的最小值是( ) A.13 B .23 C.223 D .2 2答案:C解析:∵点(m,n)在函数f(x)=13x3-x(x>0)的图象上,∴n=13m3-m,则n-m+22=13m3-2m+2 2.令g(m)=13m3-2m+22(m>0),则g′(m)=m2-2,可得g(m)在(0,2)递减,在(2,+∞)递增,∴g(m)的最小值是g(2)=223.8.定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,且(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.不确定答案:C解析:由(x-1)f′(x)<0可知,当x>1时,f′(x)<0,函数单调递减.当x<1时,f′(x)>0,函数单调递增.因为函数f(x+1)是偶函数,所以f(x+1)=f(1-x),f(x)=f(2-x),即函数f(x)图象的对称轴为x=1.所以,若1≤x1<x2,则f(x1)>f(x2);若x1<1,则x2>2-x1>1,此时有f(x2)<f(2-x1),又f(2-x1)=f(x1),所以f(x1)>f(x2).综上,必有f(x1)>f(x2).9.已知函数f(x)=ax-1+ln x,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围是()A.a>2 B.a<3 C.a≤1 D.a≥3 答案:C解析:函数f(x)的定义域是(0,+∞),不等式ax-1+ln x≤0有解,即a≤x-x ln x在(0,+∞)上有解,令h(x)=x-x ln x,可得h′(x)=1-(ln x+1)=-ln x.令h′(x)=0,可得x=1,当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,可得当x=1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.10.直线y =a 分别与直线y =2(x +1),曲线y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3 B .2 C.324 D .32答案:D解析:解方程2(x +1)=a ,得x =a2-1.设方程x +ln x =a 的根为t (t >0),则t +ln t =a , 则|AB |=⎪⎪⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪⎪⎪t 2-ln t 2+1. 设g (t )=t 2-ln t2+1(t >0), 则g ′(t )=12-12t =t -12t (t >0).令g ′(t )=0,得t =1.当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)·(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6.同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立, 故实数a 的取值范围为[-6,-2].12.设函数f (x )=3sin πm x ,若存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2.则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案:C解析:由正弦函数的图象知,f (x )的极值点x 0满足f (x 0)=±3. ∴πx 0m =k π+π2,k ∈Z .∴x 0=⎝ ⎛⎭⎪⎫k +12·m .∴不等式x 20+f 2(x 0)<m 2⇔⎝ ⎛⎭⎪⎫k +122m 2+3<m 2(k ∈Z )⇔m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3(k ∈Z ). 存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2⇔存在整数k 使不等式m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠0且k ≠-1时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不成立.∴k =0或-1时,m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3⇔34m 2>3⇔m >2或m <-2. 二、填空题13.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是__________. 答案:⎝ ⎛⎭⎪⎫-22,0解析:作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0.解得-22<m <0.14.(2019春·潍坊期中)已知函数f (x )的定义域为R ,f (-2)=-2,若对∀x ∈R ,f ′(x )<3,则不等式f (x )>3x +4的解集为________. 答案:(-∞,-2)解析:根据题意,设g (x )=f (x )-3x -4,则g ′(x )=f ′(x )-3.由对∀x ∈R ,f ′(x )<3,则g ′(x )<0,即g (x )在R 上为减函数. 又由f (-2)=-2,则g (-2)=f (-2)+6-4=0, 则f (x )>3x +4⇒f (x )-3x -4>0⇒g (x )>g (-2), 即不等式的解集为(-∞,-2).15.(2019·南开区二模)已知函数f (x )=e x -1e x -2sin x ,其中e 为自然对数的底数,若f (2a 2)+f (a -3)<0,则实数a 的取值范围为________. 答案:⎝ ⎛⎭⎪⎫-32,1解析:∵f (x )=e x -1e x -2sin x ,∴f (-x )=e -x -e x +2sin x =-f (x ), ∵f (x )′=e x +1e x -2cos x ≥2e x ·e -x -2cos x ≥0,∴f (x )在R 上单调递增且为奇函数.由f (2a 2)+f (a -3)<0,可得f (2a 2)<-f (a -3)=f (3-a ), ∴2a 2<-a +3,解得-32<a <1. 16.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案:⎣⎢⎡⎭⎪⎫94,+∞解析:由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立.令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min .又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.专题限时训练 (大题规范练)(建议用时:30分钟)1.(2019·河南模拟)已知函数f (x )=x ln x +e. (1)若f (x )≥ax 恒成立,求实数a 的最大值; (2)设函数F (x )=e x -1f (x )-x 2-2x +1,求证:F (x )>0. 解析:(1)函数f (x )=x ln x +e 的定义域为(0,+∞), f (x )≥ax 恒成立⇔a ≤x ln x +e x .令φ(x)=x ln x+ex,则φ′(x)=x-ex2,可得φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)min=φ(e)=2,∴a≤2.故实数a的最大值为2.(2)由(1)可知f(x)≥2x,只需证明2x≥x2+2x-1e x-1.令g(x)=2x-x2+2x-1e x-1,则g′(x)=2-3-x2e x-1=2e x-1+x2-3e x-1.令h(x)=2e x-1+x2-3,h′(x)=2e x-1+2x>0在(0,+∞)恒成立.注意到h(1)=0,所以当x∈(0,1)时,h(x)<0,g′(x)<0,x∈(1,+∞)时,h(x)>0,g′(x)>0,∴g(x)在(0,1)单调递减,在(1,+∞)单调递增,∴g(x)min=g(1)=0.∴2x≥x2+2x-1e x-1.当且仅当x=1时取等号,而f(x)≥2x,当且仅当x=e时取等号,∴F(x)>0.2.(2019·蓉城名校联盟联考)已知函数f(x)=ax2-2(a+1)x+2ln x,a∈R.(1)讨论函数f(x)的单调性;(2)是否存在最大整数k,当a≤k时,对任意的x≥2,都有f(x)<e x(x-1)-ax-ln x成立?(其中e为自然对数的底数,e=2.718 28…),若存在,求出k的值;若不存在,请说明理由.解析:(1)f (x )的定义域为(0,+∞), f ′(x )=2ax -2(a +1)+2x =2(ax -1)(x -1)x,所以当a ∈(-∞,0]时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a ∈(0,1)时,f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,f (x )在(0,+∞)上单调递增;当a ∈(1,+∞)时,f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单凋递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.(2)ax 2-2(a +1)x +2ln x <e x (x -1)-ax -ln x 对x ≥2恒成立⇔ax 2-(a +2)x +3ln x <e x (x -1). ①当x =2时,得4a -(a +2)×2+3ln 2<e 2, 所以2a <e 2+4-ln 8<8+4-2=10, 所以a <5,则整数k 的最大值不超过4.下面证明:当a ≤4时,不等式①对于x ≥2恒成立, 设g (x )=ax 2-(a +2)x +3ln x -e x (x -1)(x ≥2), 则g ′(x )=2ax -(a +2)+3x -x e x . 令h (x )=2ax -(a +2)+3x -x e x .则h ′(x )=2a -3x 2-(x +1)e x <2a -(x +1)e x ≤2a -3e 2≤8-3e 2<0,所以h (x )在[2,+∞)上单调递减,所以h (x )=2ax -(a +2)+3x -x e x ≤h (2)=3a -12-2e 2≤232-2e 2<0. 即当x ∈[2,+∞)时,g ′(x )<0, 所以g (x )在[2,+∞)上单调递减,所以g(x)=ax2-(a+2)x+3ln x-e x(x-1)≤g(2)=2a-4+3ln 2-e2<8-4+3-e2=7-e2<0.所以a≤4时,不等式①恒成立,所以k的最大值为4.。
2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-2-1
![2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-2-1](https://img.taocdn.com/s3/m/83c135deaf1ffc4fff47acab.png)
专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.(2018·高考全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12答案:B解析:设该等差数列的公差为d ,根据题中的条件可得3⎝ ⎛⎭⎪⎫3×2+3×22×d =2×2+d +4×2+4×32×d ,整理解得d =-3,所以a 5=a 1+4d =2-12=-10,故选B.2.(2017·江西省五市联考)已知等差数列{a n }的前10项和为30,a 6=8,则a 100=( ) A .100 B .958 C .948 D .18 答案:C解析:法一 因为等差数列{a n }的前10项和为30,所以a 1+a 10=6,即a 5+a 6=6,因为a 6=8,所以a 5=-2,公差d =10,所以-2=a 1+4×10,即a 1=-42,所以a 100=-42+99×10=948,故选C.法二 设等差数列{a n }的公差为d ,由已知得⎩⎨⎧a 1+5d =8,10a 1+10×92d =30,解得⎩⎪⎨⎪⎧a 1=-42,d =10,所以a 100=-42+99×10=948,故选C. 3.已知数列{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110答案:D解析:a 7是a 3与a 9的等比中项,公差为-2,所以a 27=a 3·a 9. 所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20, 所以S 10=10×20+10×92×(-2)=110.故选D.4.(2019·吉林模拟)已知等比数列{a n }的前n 项和为S n ,若1a 1+1a 2+1a 3=2,a 2=2,则S 3=( ) A .8 B .7 C .6 D .4答案:A解析:1a 1+1a 2+1a 3=a 1+a 3a 1a 3+1a 2=a 1+a 2+a 3a 22=S 34=2,则S 3=8.故选A.5.(2019·怀化三模)《孙子算经》是中国古代重要的数学著作,书中有一道题为:今有出门望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?若记堤与枝的个数分别为m ,n ,一等差数列{a n }的前n 项和为S n ,且a 2=m ,S 6=n ,则a 5为( ) A .18 B .81 C .234 D .243 答案:C解析:∵a 2=9,S 6=93, ∴729=6(a 2+a 5)2=3(a 5+9),∴a 5=234.故选C.6.(2018·昆明市调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( ) A .-2nB .2nC .2n -1D .2n +1答案:B解析:由题意,得a 2a 8=a 24.又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.7.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 7,则k =( ) A .22 B .23 C .24 D .25答案:A解析:{a n }为等差数列,所以a k =a 1+a 2+…+a 7=7a 4,则a 1+(k -1)d =7(a 1+3d ).因为a 1=0,所以(k -1)d =21d ,d ≠0,解得k =22,故选A.8.正项等比数列{a n }中的a 1,a 4 037是函数f (x )=13x 3-4x 2+6x -3的极值点,则log6a 2 019=()A .1B .2 C. 2 D .-1答案:A解析:因为f ′(x )=x 2-8x +6,且a 1,a 4 037是方程x 2-8x +6=0的两根,所以a 1·a 4 037=a 22 019=6,即a 2 019=6,所以log6a 2 019=1,故选A.9.(2018·湖北八校联考)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=( ) A .36 B .33 C .32 D .31答案:D解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=31.故选D.10.(2018·大连模拟)在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( ) A .n (3n -1) B .n (n +3)2 C .n (n +1) D .n (3n +1)2答案:C解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.11.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( ) A.32 B .53 C.256 D .不存在答案:A解析:∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,∴q 2-q -2=0,∴q =2.∵存在两项a m ,a n 使得a m a n =4a 1,∴a m a n =16a 21,∴q m +n -2=16=24,而q =2,∴m +n -2=4,∴m +n =6,∴1m +4n =16(m +n )·⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当m =2,n =4时,等号成立,∴1m +4n 的最小值为32.故选A.12.数列{a n }的通项a n =n 2⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510答案:A解析:由于cos 2n π3-sin 2n π3=cos 2n π3以3为周期,故S 30=⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302=∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2 =∑k =110 ⎝ ⎛⎭⎪⎫9k -52=9×10×112-25=470.二、填空题13.(2019·北京四中热身卷)若等差数列{a n }满足a 1=12,a 4+a 6=5,则a 2 019=________. 答案:2 0192解析:∵等差数列{a n }满足a 1=12,a 4+a 6=5, ∴12+3d +12+5d =5, 解得d =12,∴a 2 019=12+2 018×12=2 0192.14.等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则{a n }的公比q =__________. 答案:-12解析:由题意得,2S 3=S 1+S 2,∴2(a 1+a 2+a 3)=a 1+(a 1+a 2),整理得a 2+2a 3=0,∴a 3a 2=-12,即公比q =-12.15.(2017·石家庄市高三质量检测)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =__________.答案:78解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2, 所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n4.令T n =n 2+n 4=14,解得n =7,所以a k =78.16.(2018·云南师大附中月考)已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.答案:n ·2n2n -1解析:由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎝ ⎛⎭⎪⎪⎫n -1a n -1-1(n ≥2,n ∈N *). 又1a 1-1=-12,∴数列⎩⎨⎧⎭⎬⎫n a n -1是以-12为首项,12为公比的等比数列,故n a n-1=-12n ,∴a n =n ·2n 2n-1(n ∈N *). 专题限时训练 (大题规范练)(建议用时:60分钟)1.(2019·河北模拟)已知数列{a n }满足a 1=2且a n +1=3a n +2n -1(n ∈N *). (1)求证:数列{a n +n }为等比数列; (2)求数列{a n }的通项公式; (3)求数列{a n }的前n 项和S n .解析:(1)数列{a n }满足a 1=2且a n +1=3a n +2n -1, 可得a n +1+n +1=3a n +3n =3(a n +n ),可得数列{a n +n }是首项为3,公比为3的等比数列. (2)a n +n =3n ,即a n =3n -n (n ∈N *). (3)S n =(3+9+…+3n )-(1+2+…+n ) =3(1-3n )1-3-12n (n +1)=32(3n -1)-12n (n +1).2.(2017·山西省八校联考)已知等比数列{a n }的公比q >1,a 1=1,且2a 2,a 4,3a 3成等差数列.(1)求数列{a n }的通项公式;(2)记b n =2na n ,求数列{b n }的前n 项和T n .解析:(1)由2a 2,a 4,3a 3成等差数列可得2a 4=2a 2+3a 3,即2a 1q 3=2a 1q +3a 1q 2. 又q >1,a 1=1,故2q 2=2+3q , 即2q 2-3q -2=0,得q =2, 因此数列{a n }的通项公式为a n =2n -1. (2)b n =2n ×2n -1=n ×2n ,T n =1×2+2×22+3×23+…+n ×2n , ① 2T n =1×22+2×23+3×24+…+n ×2n +1, ② ①-②得-T n =2+22+23+…+2n -n ×2n +1,-T n =2(2n -1)2-1-n ×2n +1,T n =(n -1)×2n +1+2.3.(2017·福建省高中毕业班质量检测)已知等差数列{a n }的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }的前n 项和T n 满足T n =(n +5)a n . (1)求a n ;(2)求数列{1a nb n}的前n 项和.解析:(1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧ a 2=2,S 5=15,即⎩⎪⎨⎪⎧a 1+d =2,5a 1+10d =15,解得a 1=d =1,所以a n =n .(2)由(1)得,a n =n ,所以T n =n (n +5).当n ≥2时,b n =T n -T n -1=n (n +5)-(n -1)(n +4)=2n +4, 当n =1时,b 1=T 1=6也满足上式, 所以b n =2n +4(n ∈N *).所以1a n b n =1n (2n +4)=12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2. 设{1a nb n }的前n 项和为P n ,则当n ≥2时,P n =1a 1b 1+1a 2b 2+…+1a n b n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12+13+…+1n -⎝ ⎛⎭⎪⎫13+14+…+1n +1n +1+1n +2 =14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14(n +1)-14(n +2).当n =1时,P 1=1a 1b 1=16也满足上式.综上,P n =38-14(n +1)-14(n +2).4.已知数列{a n }满足:a 1=1,na n +1=2(n +1)a n +n (n +1)(n ∈N *). (1)若b n =a nn +1,试证明数列{b n }为等比数列; (2)求数列{a n }的通项公式a n 及其前n 项和S n .解析:(1)证明:由na n +1=2(n +1)a n +n (n +1)得a n +1n +1=2a nn +1,得a n +1n +1+1=2a n n +2=2⎝ ⎛⎭⎪⎫a n n +1,即b n +1=2b n .又b 1=2,所以数列{b n }是以2为首项,2为公比的等比数列. (2)由(1)知b n =2n ,得a nn +1=2n ,即a n =n (2n -1),∴S n =1×(2-1)+2×(22-1)+3×(23-1)+…+n (2n -1) =1×2+2×22+3×23+…+n ·2n -(1+2+3+…+n ) =1×2+2×22+3×23+…+n ·2n-n (n +1)2.令T n =1×2+2×22+3×23+…+n ·2n , 则2T n =1×22+2×23+3×24+…+n ·2n +1, 两式相减,得-T n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1,∴T n =2(1-2n )+n ·2n +1=(n -1)·2n +1+2,n(n+1)∴S n=(n-1)·2n+1+2-2.。
备战2022年高考数学寒假选择题+填空题精准限时训练 1(新高考版)(原卷版)
![备战2022年高考数学寒假选择题+填空题精准限时训练 1(新高考版)(原卷版)](https://img.taocdn.com/s3/m/6cda78ef112de2bd960590c69ec3d5bbfd0adaa3.png)
D. 13 或 9 44
二、多选题(本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目
要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.)
9.(2021·海南华侨中学高二阶段练习)关于方程 x2 y2 1(m 3 且 m 11) 所对应的图形,下列说 m 3 11 m
,则 A B (
)
A.x 2 x 2
B.x 2 x 2
C.x 1 x 2
D.x 1 x 2
2.(2021·广东汕头·高三期末)已知 i 为虚数单位,复数 z 满足: x(1 i) 4 3i ,则 z =( )
A. 7 i 2
B. 7 i 2
C. 1 i 2
D. 1 i 2
a1 42 ,则下列结论中正确的是( A. a0 6
n
C. ai 1092 i0
) B. an1 192
n
D. 1iiai 6 i 1
三、填空题:(本题共 4 小题,每小题 5 分,共 20 分,其中第 16 题第一空 2 分,第二空 3 分。)
13.(2021·河北沧州·高三阶段练习)已知点 A(1, 2) , B(x, y)(6 y 2) 都在抛物线 C : y2 2 px( p 0)
A. 4
B. 8
C. 32 3
D.16
5.(2021·内蒙古·赤峰二中高三阶段练习(理))随着网络技术的发达,电子支付变得愈发流行,若电
子支付只包含微信支付和支付宝支付两种.若某群体中的成员只用现金支付的概率为 0.45,既用现金支付也
用非现金支付的概率为 0.15,则不用现金支付的概率为
A.0.3
B
,点
P
【创新设计】2015高考数学(人教通用,文科)二轮专题训练:小题综合限时练1
![【创新设计】2015高考数学(人教通用,文科)二轮专题训练:小题综合限时练1](https://img.taocdn.com/s3/m/84b2ff0fbed5b9f3f90f1cb2.png)
限时练(一)(建议用时:40分钟)一、选择题1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ). A .{0} B .{0,1} C .{-1,0}D .{-1,0,1}解析 A ∩B ={-1,0}. 答案 C2.若(1+2a i)i =1-b i ,其中a ,b ∈R ,则|a +b i|=( ). A.12+i B . 5 C.52D .54 解析 因为(1+2a i)i =1-b i ,所以-2a +i =1-b i ,a =-12,b =-1,|a +b i|=|-12-i|=52. 答案 C3.设a =log 123,b =(13)0.2,c =213,则( ). A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析 由函数的性质得到a =log 123<0,b =(13)0.2∈(0,1),c =213>1,所以,a <b <c . 答案 A4.等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ). A .21B .24C .28D .7解析 ∵a 2+a 4+a 6=3a 4=12,∴a 4=4, ∴S 7=a 1+a 72×7=7a 4=28. 答案 C5.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分也不必要条件解析 由(a -b )·a 2<0,得a ≠0且a <b ;反之,由a <b ,不能推出(a -b )·a 2<0,即“(a -b )·a 2<0”是“a <b ”的充分非必要条件. 答案 A6.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12 B .32 C .1D . 3解析 抛物线y 2=4x 的焦点为(1,0),双曲线x 2-y 23=1的渐近线为x ±33y =0,所以抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是|1±33×0|1+⎝ ⎛⎭⎪⎫332=32. 答案 B7.某程序框图如图所示,若输出的S =57,则判断框内应填入( ).A .k >7?B .k >6?C .k >5?D .k >4?解析 由程序框图可知,程序在运行过程中各变量值变化如下表:k S 是否满足条件 循环前 1 1 否 第一次循环 2 4 否 第二次循环 3 11 否 第三次循环 4 26 否 第四次循环557是所以退出循环的条件应为k >4. 答案 D8.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则f (x )的解析式为( ).A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3C .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6D .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6解析 由图象可知A =1,且14T =14×2πω=7π12-π3=π4, ∴ω=2,f (x )=sin(2x +φ).把⎝ ⎛⎭⎪⎫7π12,-1代入得:-1=sin ⎝ ⎛⎭⎪⎫2×7π12+φ,又∵|φ|<π2, ∴7π6+φ=3π2, ∴φ=π3, ∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 答案 A9.已知O 是坐标原点,点A (-2,1),若点M (x ,y )为平面区域⎩⎨⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则O A →·OM →的取值范围是( ). A .[-1,0] B .[-1,2] C .[0,1]D .[0,2]解析 ∵A (-2,1),M (x ,y ),∴z =O A →·OM →=-2x +y ,作出不等式组对应的平面区域及直线-2x +y =0,如图所示.平移直线-2x +y =0,由图象可知当直线经过点N (1,1)时,z min =-2+1=-1;经过点M (0,2)时,z max =2. 答案 B10.如图F 1,F 2是双曲线C 1:x 2-y23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1F 2|=|F 1A |,则C 2的离心率是( ).A.13 B .23 C.15D .25解析 由题意知,|F 1F 2|=|F 1A |=4, ∵|F 1A |-|F 2A |=2,∴|F 2A |=2, ∴|F 1A |+|F 2A |=6, ∵|F 1F 2|=4, ∴C 2的离心率是46=23. 答案 B11.已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此几何体的体积V 为( ).A.323 B .403 C.163D .40解析 观察三视图可知,该几何体为四棱锥,底面为直角梯形,两个侧面与底面垂直,棱锥的高为4,由图中数据得该几何体的体积为13×4+12×4×4=403.答案 B12.已知定义在R 上的函数f (x )是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }满足a 1=-1,且S n n =2×a nn +1(其中S n 为{a n }的前n 项和),则f (a 5)+f (a 6)=( ). A .-3 B .-2 C .3D .2解析 ∵函数f (x )是奇函数, ∴f (-x )=-f (x ),∵f (32-x )=f (x ), ∴f (32-x )=-f (-x ),∴f (3+x )=f (x ), ∴f (x )是以3为周期的周期函数. ∵S n n =2×a nn +1,∴S n =2a n +n ,S n -1=2a n -1+(n -1)(n ≥2). 两式相减并整理得出a n =2a n -1-1, 即a n -1=2(a n -1-1),∴数列{a n -1}是以2为公比的等比数列,首项为a 1-1=-2, ∴a n -1=-2·2n -1=-2n ,a n =-2n +1, ∴a 5=-31,a 6=-63.∴f (a 5)+f (a 6)=f (-31)+f (-63)=f (2)+f (0)=f (2)=-f (-2)=3. 答案 C 二、填空题13.曲线f (x )=e x 在x =0处的切线方程为__________. 解析 ∵f ′(x )=e x ,∴f ′(0)=1.又f (0)=1, ∴切线方程为:y -1=x ,即x -y +1=0.答案 x -y +1=014.已知向量p =(2,-1),q =(x,2),且p ⊥q ,则|p +λq |的最小值为__________. 解析 ∵p ·q =2x -2=0,∴x =1, ∴p +λq =(2+λ,2λ-1),∴|p +λq |=(2+λ)2+(2λ-1)2=5λ2+5≥ 5. 答案515.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由sin B +cos B =2,得2sin ⎝ ⎛⎭⎪⎫B +π4=2,sin ⎝ ⎛⎭⎪⎫B +π4=1,而B ∈(0,π),所以B =π4.由正弦定理得,sin A =a sin B b =12,又A +B +C =π,A ∈⎝ ⎛⎭⎪⎫0,3π4,∴A =π6. 答案 π616.已知a >0,b >0,方程为x 2+y 2-4x +2y =0的曲线关于直线ax -by -1=0对称,则3a +2bab 的最小值为______.解析 该曲线表示圆心为(2,-1)的圆,直线ax -by -1=0经过圆心,则2a +b -1=0,即2a +b =1,所以 3a +2b ab =3b +2a =(3b +2a )(2a +b )=6a b +2ba +7≥26a b ·2ba +7=7+43(当且仅当a =2-3,b =23-3时等号成立).答案 7+4 3。
全品高考数学考前专题限时训练含答案作业手册
![全品高考数学考前专题限时训练含答案作业手册](https://img.taocdn.com/s3/m/6fe799b4804d2b160a4ec0bf.png)
全品高考数学考前专题限时训练含答案(基础+提升)作业手册(共75页)-本页仅作为预览文档封面,使用时请删除本页-专题限时集训(一)[第1讲 集合与常用逻辑用语](时间:5分钟+30分钟)基础演练1.已知全集U ={x ∈Z |1≤x ≤5},集合A ={1,2,3},∁U B ={1,2},则A ∩B =( )A .{1,2}B .{1,3}C .{3}D .{1,2,3}2.命题“对任意x ∈R ,都有x 3>x 2”的否定是( )A .存在x 0∈R ,使得x 30>x 2B .不存在x 0∈R ,使得x 30>x 2C .存在x 0∈R ,使得x 30≤x 2D .对任意x ∈R ,都有x 3≤x 23.若p :(x -3)(x -4)=0,q :x -3=0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知集合M ={x |x ≥x 2},N ={y |y =2x,x ∈R },则M ∩N =( ) A .(0,1) B .[0,1] C .[0,1) D .(0,1]5.已知集合A ={0,1,2,3},B ={x |x 2-x =0},则集合A ∩B 的子集个数是________.提升训练6.已知全集I ={1,2,3,4,5,6},集合M ={3,4,5},N ={1,2,3,4},则图11中阴影部分表示的集合为( )图11A .{1,2}B .{1,2,6}C .{1,2,3,4,5}D .{1,2,3,4,6}7.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -1x =0,x ∈R ,则满足A ∪B ={-1,0,1}的集合B 的个数是( )A .2B .3C .4D .98.命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是( )A .若a ,b ,c 成等比数列,则b 2≠acB .若a ,b ,c 不成等比数列,则b 2≠acC .若b 2=ac ,则a ,b ,c 成等比数列D .若b 2≠ac ,则a ,b ,c 不成等比数列9.已知集合M ={y |y =lg(x 2+1)},N ={x |4x<4},则M ∩N 等于( ) A .[0,+∞) B .[0,1) C .(1,+∞) D .(0,1]10.已知集合M ={x |x 2-3x =0},集合N ={x |x =2n -1,n ∈Z },则M ∩N =( ) A .{3} B .{0} C .{0,3} D .{-3}11.若a ,b 为实数,则“ab <1”是“0<a <1b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.给出如下四个判断: ①∃x 0∈R ,e x 0≤0;②∀x ∈R +,2x >x 2;③设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -1x +1<0,B ={x |x 2-2x +1-a 2<0,a ≥0},则“a =1”是“A ∩B ≠∅”的必要不充分条件;④a ,b 为单位向量,其夹角为θ,若|a -b |>1,则π3<θ≤π.其中正确判断的个数是( ) A .1 B .2 C .3 D .413.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是________________________________________________________________________.14.若集合P ={0,1,2},Q =(x ,y )⎩⎪⎨⎪⎧x -y +1>0,x -y -2<0,x ,y ∈P ,则集合Q 中元素的个数是__________.15.命题“存在实数x ,使得不等式(m +1)x 2-mx +m -1≤0”是假命题,则实数m 的取值范围是________.专题限时集训(二)[第2讲 平面向量与复数](时间:5分钟+30分钟)基础演练1.复数5i1+2i的虚部是( )A .1B .-1C .iD .-i2.若复数z 满足(z -3)(2-i)=5(i 为虚数单位),则在复平面内z 对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.在△ABC 中,“AB →·BC →>0”是“△ABC 是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.向量a =(3,-4),向量|b|=2,若a·b =-5,则向量a 与b 的夹角为( ) A .π3 B .π6C .2π3D .3π45.已知平面向量a ,b ,若|a |=3,|a -b |=13,a ·b =6,则|b |=________,向量a ,b 夹角的大小为________.提升训练6.复数5i -2的共轭复数是( )A .-2+iB .2+iC .-2-iD .2-i7.在复平面内,复数z =(1+2i)2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.已知复数z 1=(2-i)i ,复数z 2=a +3i(a ∈R ).若复数z 2=kz 1(k ∈R ),则a =( )A .32B .1C .2D .139.如果复数2-b i1+2i(b ∈R ,i 为虚数单位)的实部和虚部互为相反数,那么b 等于( )A . 2B .23C .-23D .210.已知△ABC 的三边长AC =3,BC =4,AB =5,P 为AB 边上任意一点,则CP →·(BA →-BC →)的最大值为( )A .8B .9C .12D .1511.已知向量a ·(a +2b )=0,|a |=|b |=1,且|c -a -2b|=1,则|c |的最大值为( )A .2B .4C .5+1D .3+112.已知a ,b ∈R ,i 是虚数单位.若(1+a i )(1-i )b +i=2-i ,则a +b i =________.13.在△ABC 中,AB =2,D 为BC 的中点.若AD →·BC →=-32,则AC =________.14.已知四边形ABCD 是边长为3的正方形,若DE →=2EC →,CF →=2FB →,则AE →·AF →的值为________.15.在平面直角坐标系xOy 中,已知点A 的坐标为(3,a ),a ∈R ,点P 满足OP →=λOA →,λ∈R ,|OA →|·|OP →|=72,则线段OP 在x 轴上的投影长度的最大值为________.专题限时集训(三)[第3讲 不等式与线性规划](时间:5分钟+30分钟)基础演练1.已知集合A ={x |0<x <2},B ={x |(x -1)(x +1)>0},则A ∩B = ( ) A .(0,1) B .(1,2)C .(-∞,-1)∪(0,+∞)D .(-∞,-1)∪(1,+∞)2.已知全集U =R ,集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -1x +1<0,N ={x |x 2-x <0},则集合M ,N 的关系用图示法可以表示为( )图313.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥0,2x -y -2≤0,则目标函数z =x -2y 的最大值为( )A .32 B .1 C .-12D .-24.若a <b <0,则下列不等式不成立的是( )A .1a -b >1aB .1a >1bC .|a |>|b |D .a 2>b 25.若x >0,y >0,则x +yx +y 的最小值为( )A . 2B .1C .22D .12提升训练6.已知集合A ={x |x 2-2x -3<0},集合B ={x |2x +1>1},则∁B A =( )A .(3,+∞)B .[3,+∞)C .(-∞,-1]∪[3,+∞)D .(-∞,-1)∪(3,+∞)7.已知集合A ={x |x 2-6x +5≤0},B ={y |y =2x+2},则A ∩B =( ) A .∅ B .[1,2) C .[1,5] D .(2,5]8.已知向量a =(m ,1-n ),b =(1,2),其中m >0,n >0.若a ∥b ,则1m +1n的最小值是( )A .2 2B .3+22C .4 2D .3+29.已知M (x ,y )是不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y +1≥0,2x +y -4≤0表示的平面区域内的动点,则(x +1)2+(y+1)2的最大值是( )A .10B .495C .13D .1310.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a 2+b 2=3c 2,则cos C 的最小值为( )A .12B .14C .32 D .2311.设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0,y ≤x ,x +2y -a ≤0,若目标函数z =3x +y 的最大值为6,则a =________.12.已知x ,y 均为正实数,且xy =x +y +3,则xy 的最小值为________.13.已知x ,y 满足⎩⎪⎨⎪⎧y -2≤0,x +3≥0,x -y -1≤0,则x +2y -6x -4的最大值是________.14.已知函数f (x )=x (x -a )(x -b )的导函数为f ′(x ),且f ′(0)=4,则a 2+2b 2的最小值为________.15.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为8,则ab 的最大值为________.专题限时集训(四)[第4讲 算法、推理证明、排列、组合与二项式定理](时间:5分钟+30分钟)基础演练1.给出下面类比推理的命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”,类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”,类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”,类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”,类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比正确的为( ) A .①② B .①④ C .①②③ D .②③④2.二项式⎝ ⎛⎭⎪⎫2x +1x 展开式中的常数项是( )A .15B .60C .120D .2403.执行如图41所示的程序框图,其输出结果是( )A .-54B .12C .54D .-124.现有3位男生和3位女生排成一行,若要求任何两位女生和任何两位男生均不能相邻,且男生甲和女生乙必须相邻,则这样的排法总数是( )A .20B .40C .60D .805.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,….根据上述规律,第n 个等式为____________.提升训练6.阅读如图42所示的程序框图,若输入n 的值为1,则输出的S 的值为( ) A .176 B .160 C .145 D .1177.已知a n =3n +2,n ∈N *,如果执行如图43所示的程序框图,那么输出的S 等于( )A .B .37C .185 D8.阅读如图44所示的程序框图,则输出s 的值为( ) A .12 B .32C .- 3D .39.6个人站成一排,其中甲、乙必须站在两端,且丙、丁相邻,则不同站法的种数为( )A .12B .18C .24D .3610.⎝⎛⎭⎪⎪⎫3x -13x 的展开式中各项系数之和为A ,所有偶数项的二项式系数和为B .若A +B =96,则展开式中含有x 2的项的系数为 ( )A .-540B .-180C .540D .18011.对任意实数x ,都有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2=________. 12.航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,且最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为________.(用数字作答)13.观察下列等式: 121=1,12+221+2=53,12+22+321+2+3=73,12+22+32+421+2+3+4=93,则第n 个等式为__________________.14.阅读如图45所示的程序框图,若输入i =5,则输出的k 的值为________.图4515.有n个球(n≥2,n∈N*),任意将它们分成两堆,求出两堆球数的乘积,再将其中一堆任意分成两堆,求出这两堆球数的乘积,如此下去,每次任意将其中一堆分成两堆,求出这两堆球数的乘积,直到不能分为止,记所有乘积之和为S n.例如,对于4个球有如下两种分法:(4)→(1,3)→(1,1,2)→(1,1,1,1),此时S4=1×3+1×2+1×1=6;(4)→(2,2)→(1,1,2)→(1,1,1,1),此时S4=2×2+1×1+1×1=6.于是发现S4为定值6,则S5的值为________.专题限时集训(五)A[第5讲 函数、基本初等函数Ⅰ的图像与性质](时间:5分钟+30分钟)基础演练1.已知定义在复数集C 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧1+x ,x ∈R ,(1-i )x ,x ∉R ,则f (1+i)=( )A .-2B .0C .2D .2+i2.下列函数中,在定义域内既是奇函数又是增函数的是( )A .y =⎝ ⎛⎭⎪⎫12 B .y =sin x C .y =x 3D .y =log 12x3.已知a =,b =,c =log 23则( ) A .a >b >c B .c >b >a C .c >a >b D .a >c >b4.已知函数y =f (2x )+x 是偶函数,且f (2)=1,则f (-2)=( ) A .2 B .3 C .4 D .55.已知函数f (x )=⎩⎪⎨⎪⎧log 4 x ,x >0,3x ,x ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫14=________.提升训练6.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=2x,则f (-3)=( )A .18B .-18C .8D .-87.设函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,x 12,x >0,若f (x )>1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(0,+∞)8.下列函数中,在区间(0,+∞)上单调递减,且是偶函数的是( )A .y =x 2B .y =-x 3C .y =-lg|x |D .y =2x9.设a =log 32,b =log 23,c =log 125,则( )A .c <b <aB .a <c <bC .c <a <bD .b <c <a10.定义区间[x 1,x 2]的长度为x 2-x 1.若函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为( )A .152B .154C .3D .3411.设函数f (x )=2C 图5112.已知函数f (x )对定义域内的任意x ,都有f (x +2)+f (x )<2f (x +1),则函数f (x )可以是( )A .f (x )=2x +1B .f (x )=e xC .f (x )=ln xD .f (x )=x sin x13.函数f (x )=16-x -x2的定义域是________. 14.已知y =f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,则满足f (m )<f (1) 的实数m 的取值范围是________.15.设函数f (x )=a ln x +b lg x +1,则f (1)+f (2)+…+f (2014)+f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫13+…+f ⎝ ⎛⎭⎪⎫12014=________.专题限时集训(五)B[第5讲 函数、基本初等函数Ⅰ的图像与性质](时间:5分钟+30分钟)基础演练1.对于函数y =f (x ),x ∈R ,“函数y =|f (x )|的图像关于y 轴对称”是“y =f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.下列函数中,既是偶函数又在区间(1,2)上单调递增的是( ) A .y =log 2|x | B .y =cos 2xC .y =2x -2-x 2D .y =log 22-x 2+x3.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0 B .3 C .-1 D .-24.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a =( )A .12B .45C .2D .95.已知y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.提升训练6.函数y =1x -sin x的大致图像是( )AC 图527.已知定义在R 上的函数f (x )满足f (4)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2014)=( )A .-2- 3B .-2+3C .2- 3D .2+38.设a =14,b =log 985,c =log 83,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a9.已知定义在R 上的函数f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫x +2012x -1=3x ,则f (2014)=( )A .0B .2010C .-2010D .201410.已知函数y =f (x ),若对于任意的正数a ,函数g (x )=f (x +a )-f (x )都是其定义域上的增函数,则函数y =f (x )可能是( )A .y =2xB .y =log 3(x +3)C .y =x 3D .y =-x 2+4x -611.若a >2,b >2,且12log 2(a +b )+log 22a =12log 21a +b +log 2b2,则log 2(a -2)+log 2(b -2)=( )A .2B .1C .12D .0 12.已知定义在R 上的函数y =f (x )在区间(-∞,a )上是增函数,且函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有( )A .f (x 1)>f (x 2)B .f (x 1)≥f (x 2)C .f (x 1)<f (x 2)D .f (x 1)≤f (x 2)13.若x ,y ∈R ,设M =x 2-2xy +3y 2-x +y ,则M 的最小值为________.14.设函数f (x )的定义域为D ,若存在非零实数l ,使得对于任意x ∈M (M ⊆D ),有x +l ∈D ,且f (x +l )≥f (x ),则称f (x )为M 上的“l 高调函数”.如果定义域是[0,+∞)的函数f (x )=(x -1)2为[0,+∞)上的“m 高调函数”,那么实数m 的取值范围是________. 15.函数f (x )=2sin πx 与函数g (x )=3x -1的图像的所有交点的橫坐标之和为________.专题限时集训(六)[第6讲 函数与方程、函数模型及其应用](时间:5分钟+40分钟)基础演练1.“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.函数f (x )=2x+4x -3的零点所在的区间是( ) A .⎝ ⎛⎭⎪⎫14,12 B .⎝ ⎛⎭⎪⎫-14,0 C .⎝ ⎛⎭⎪⎫0,14 D .⎝ ⎛⎭⎪⎫12,34 3.函数f (x )=tan x -1x 在区间⎝⎛⎭⎪⎫0,π2内零点的个数是( )A .0B .1C .2D .34.已知函数f (x )与g (x )的图像在R 上连续,由下表知方程f (x )=g (x )的实数解所在的区间是( )A .(-1C .(1,2) D .(2,3)5.若函数f (x )=ax +b 的零点为x =2,则函数g (x )=bx 2-ax 的零点是x =0和x =________.提升训练6.已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,0]∪(1,+∞)D .(-∞,1]∪(2,+∞)7.已知函数f (x )是定义域为R 的奇函数,且当x ≤0时,f (x )=2x-12x +a ,则函数f (x )的零点的个数是( )A .1B .2C .3D .48.已知函数f (x )=4-a x ,g (x )=4-log b x ,h (x )=4-x c的图像都经过点P ⎝ ⎛⎭⎪⎫12,2,若函数f (x ),g (x ),h (x )的零点分别为x 1,x 2,x 3,则x 1+x 2+x 3=( )A .76B .65C .54D .329.若直角坐标平面内的两个不同的点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图像上;②P ,Q 关于原点对称.则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(注:点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12,x >0,-x 2-4x ,x ≤0,则此函数的“友好点对”有( )A .0对B .1对C .2对D .3对10.若关于x 的方程⎪⎪⎪⎪⎪⎪x +1x -⎪⎪⎪⎪⎪⎪x -1x -kx -1=0有五个互不相等的实根,则k 的取值范围是( )A .⎝ ⎛⎭⎪⎫-14,14 B .⎝ ⎛⎭⎪⎫-∞,-14∪⎝ ⎛⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫-∞,-18∪⎝ ⎛⎭⎪⎫18,+∞ D .⎝ ⎛⎭⎪⎫-18,0∪⎝ ⎛⎭⎪⎫0,18 11.已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.12.已知定义在R 上的函数f (x )为增函数,且对任意x ∈(0,+∞),有f [f (x )-log 2x ]=1恒成立,则函数f (x )的零点为________.13.已知函数g (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,若函数f (x )=2x ·g (ln x )+1-x 2,则函数f (x )的零点个数为________.14.已知函数f (x )=2x,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 分别有一个解、两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围.15.某单位拟建一个扇环面形状的花坛(如图61所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米,设小圆弧所在圆的半径为x米,圆心角为θ(弧度).(1)求θ关于x的函数关系式.(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比值为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值?16.如图62所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径r=310 mm,滴管内液体忽略不计.(1)如果瓶内的药液恰好156 min滴完,问每分钟滴下多少滴?(2)在条件(1)下,设开始输液x min后,瓶内液面与进气管的距离为h cm,已知当x=0时,h=13,试将h表示为x的函数.(注:1 cm3=1000 mm3)专题限时集训(七)[第7讲 导数及其应用](时间:5分钟+40分钟)基础演练1.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .22.曲线f (x )=x 3+x -2在点P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( ) A .(1,0) B .(2,8)C .(2,8)或(-1,-4)D .(1,0)或(-1,-4)3.如图71所示,阴影区域是由函数y =cos x 的一段图像与x 轴围成的封闭图形,那么这个阴影区域的面积是( )A .1B .2C .π2 D .π4.函数f (x )=12x 2-ln x 的最小值为( )A .12B .1C .-2D .3 5.曲线y =ln x -1在x =1处的切线方程为____________.提升训练6.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =( )A .1B .12C .0D .-17.函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图像大致是( )D图728.如图73所示,长方形的四个顶点为O (0,0),A (4,0),B (4,2),C (0,2),曲线y =x 经过点B .现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域的概率是( )A .512B .12C .23D .349.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在区间[-1,1]上是减函数,则a 的取值范围是( )A .0<a <34B .12<a <34C .a ≥34D .0<a <1210.方程f (x )=f ′(x )的实数根x 0叫作函数f (x )的“新驻点”.如果函数g (x )=x ,h (x )=ln (x +1),φ(x )=cos x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫π2,π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α<β<γB .α<γ<βC .γ<α<βD .β<α<γ11.已知定义在区间⎝⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是它的导函数,且恒有f (x )<f ′(x )·tan x 成立,则( )A .3f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3 B .f (1)<2f ⎝ ⎛⎭⎪⎫π6sin 1 C .2f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4 D .3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3 12.函数f (x )=2ln x +x 2在点x =1处的切线方程是________.13.由曲线y =2x 2,直线y =-4x -2,x =1围成的封闭图形的面积为________.14.已知函数f (x )=x 2+2x ,g (x )=x e x. (1)求f (x )-g (x )的极值;(2)当x ∈(-2,0)时,f (x )+1≥ag (x )恒成立,求实数a 的取值范围.15.已知函数f(x)=x ln x.(1)求f(x)的单调区间和极值;(2)设A(x1,f(x1)),B(x2,f(x2)),且x1≠x2,证明:f(x2)-f(x1)x2-x1<f′⎝⎛⎭⎪⎫x1+x22.16.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0恒成立,求k的最大值.专题限时集训(八)[第8讲 三角函数的图像与性质](时间:5分钟+40分钟)基础演练1.函数y =sin x sin ⎝ ⎛⎭⎪⎫π2+x 的最小正周期是( ) A .π2B .2πC .πD .4π2.将函数y =sin ⎝⎛⎭⎪⎫x +π6(x ∈R )的图像上所有的点向左平移π4个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍,所得的函数图像的解析式为( )A .y =sin ⎝⎛⎭⎪⎫2x +5π12(x ∈R ) B .y =sin ⎝ ⎛⎭⎪⎫x 2+5π12(x ∈R ) C .y =sin ⎝ ⎛⎭⎪⎫x 2-π12(x ∈R ) D .y =sin ⎝ ⎛⎭⎪⎫x 2+5π24(x ∈R ) 3.为了得到函数y =cos ⎝⎛⎭⎪⎫2x +π3的图像,可将函数y =sin 2x 的图像( ) A .向左平移5π6 B .向右平移 5π6C .向左平移 5π12D .向右平移5π124.已知向量a =(sin θ,cos θ),b =(2,-3),且a ∥b ,则tan θ=________.5.若点P (cos α,sin α) 在直线y =-2x 上,则tan ⎝⎛⎭⎪⎫α+π4=________. 提升训练6.函数f (x )=2sin(ωx +φ)(ω>0,0≤φ≤π)的部分图像如图81所示,其 中A ,B 两点之间的距离为5,则f (x )的单调递增区间是( )A .[6k -1,6k +2](k ∈Z )B .[6k -4,6k -1](k ∈Z )C .[3k -1,3k +2](k ∈Z )D .[3k -4,3k -1](k ∈Z )7. 已知P 是圆(x -1)2+y 2=1上异于坐标原点O 的任意一点,直线OP 的倾斜角为θ.若|OP |=d ,则函数d =f (θ)的大致图像是( )A B图82 8.函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图像向左平移π6个单位后关于原点对称,则函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-32 B .-12 C .12 D .329.已知f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,满足f (x )=-f (x +π),f (0)=12,则g (x )=2cos(ωx +φ)在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值与最小值之和为( )A .3-1B .3-2C .23-1D .210.将函数f (x )=3sin 2x -cos 2x 的图像向左平移m 个单位⎝⎛⎭⎪⎫m >-π2,若所得的图像关于直线x =π6对称,则m 的最小值为( )A .-π6B .-π3C .0D .π1211.如图83所示,直角三角形POB 中,∠PBO =90°,以O 为圆心、OB 为半径作圆弧交OP 于A 点,若AB 等分△OPB 的面积,且∠AOB =α,则αtan α=________.12.将函数f (x )=sin ⎝⎛⎭⎪⎫3x +π4的图像向右平移π3个单位长度,得到函数y =g (x )的图像,则函数y =g (x )在区间⎣⎢⎡⎦⎥⎤π3,2π3上的最小值为 ________ .13.已知α∈R ,sin α+3cos α=5,则tan 2α=________.14.已知函数f (x )=4sin 2⎝ ⎛⎭⎪⎫π4+x -23cos 2x -1,且π4≤x ≤π2.(1)求f (x )的最大值及最小值;(2)求f (x )在定义域上的单调递减区间.15.已知函数f (x )=23cos x sin x +2cos 2x .(1)求f ⎝ ⎛⎭⎪⎫4π3的值; (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.16.在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标;(2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.专题限时集训(九)[第9讲 三角恒等变换与解三角形](时间:5分钟+40分钟)基础演练1.在钝角三角形ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积为( ) A .14 B .32C .34 D .122.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a =2,A =45°,B =105°,则c = ( )A .32B .1C . 3D .6+223.函数f (x )=sin 2x -sin ⎝⎛⎭⎪⎫2x +π3的最小值为( ) A .0 B .-1 C .- 2 D .-24.若cos 2θ=13,则sin 4θ+cos 4θ的值为( )A .1318B .1118 C .59D .1 5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若sin 2A +sin 2C -sin 2B =3sin A sinC ,则B =________.提升训练6.已知sin 2α=13,则cos 2 ⎝⎛⎭⎪⎫α-π4=( ) A .13 B .-13 C .23 D .-237.已知△ABC 的外接圆O 的半径为1,且OA →·OB →=-12,C =π3.从圆O 内随机取一点M ,若点M 在△ABC 内的概率恰为334π,则△ABC 为( ) A .直角三角形 B .等边三角形 C .钝角三角形 D .等腰直角三角形8.已知A ,B ,C 是△ABC 的三个内角,其对边分别为a ,b ,c .若(sin A +sin B )(sinA -sinB )=sinC (2sin A -sin C ),则B =( )A .π4B .π3C .π2D .2π39.在△ABC 中,若AB →·AC →=7,||AB →-AC →=6,则△ABC 的面积的最大值为( )A .24B .16C .12D .810.已知△ABC 的重心为G ,内角A ,B ,C 的对边分别为a ,b ,c .若aGA →+bGB →+33cGC →=0,则A 等于( )A . π6B .π4C . π3D .π211.已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos(π-α)=-45,则tan 2α=______ . 12.在△ABC 中,C =60°,AB =3,AB 边上的高为43,则AC +BC =________.13.已知∠MON =60°,由此角内一点A 向角的两边引垂线,垂足分别为B ,C ,AB =a ,AC =b ,若a +b =2,则△ABC 外接圆的直径的最小值是________.14.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2B2=3sin B ,b =1.(1)若A =5π12,求c ;(2)若a =2c ,求△ABC 的面积.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若B =60°,b =4,求△ABC 的面积.16.如图91所示,已知OPQ 是半径为3,圆心角为π3的扇形,C 是扇形弧上的动点(不与P ,Q 重合),ABCD 是扇形的内接矩形,记∠COP =x ,矩形ABCD 的面积为f (x ).(1)求函数f (x )的解析式,并写出其定义域;(2)求函数y =f (x )+f ⎝⎛⎭⎪⎫x +π4的最大值及相应的x 值.专题限时集训(十)[第10讲数列、等差数列、等比数列](时间:5分钟+40分钟)基础演练1.若等差数列{a n}的前n项和为S n,已知a5=8,S3=6,则a9=( ) A.8 B.12C.16 D.242.等比数列{a n}中,a2=1,a8=64,则a5=( )A.8 B.12C.8或-8 D.12或-123.已知等差数列{a n}中,a3+a4-a5+a6=8,则S7=( )A.8 B.21C.28 D.354.已知数列{a n}为等差数列,且a1+a7+a13=π,则tan(a2+a12)的值为( )A. 3 B.- 3C.33D.-335.等比数列{a n}满足对任意n∈N*,2(a n+2-a n)=3a n+1,a n+1>a n,则数列{a n}的公比q =________.提升训练6.设等差数列{a n}的前n项和为S n,若a2+a4+a9=24,则S9= ( )A.36 B.72C.144 D.707.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2-S n=36,则n=( ) A.5 B.6C.7 D.88.已知数列{a n}是各项均为正数的等比数列,若a2=2,2a3+a4=16,则a5=( ) A.4 B.8C.16 D.329.在数列{a n}中,“a n=2a n-1(n=2,3,4,…)”是“{a n}是公比为2的等比数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.在各项均为正数的等比数列{a n}中,a m+1a m-1=2a m(m≥2),数列{a n}的前n项积为T n,若T2k-1=512(k∈N*),则k的值为( )A.4 B.5C.6 D.711.设等差数列{a n}的前n项和为S n,若S9=11,S11=9,则S20=________.12.已知等比数列{a n}的前n项积为T n,若a3a4a8=8,则T9=________.13.已知等比数列{a n}中,a4+a8=⎠⎛24-x2dx,则a6(a2+2a6+a10)=________.14.已知数列{a n }的首项为1,其前n 项和为S n ,且对任意正整数n ,有n ,a n ,S n 成等差数列.(1)求证:数列{S n +n +2}为等比数列; (2)求数列{a n }的通项公式.15.已知数列{a n }的前n 项和为S n ,a 1=1且3a n +1+2S n =3(n 为正整数). (1)求数列{a n }的通项公式;(2)若∀n ∈N *,32k ≤S n 恒成立,求实数k 的最大值.16.已知数列{a n}是公差不为零的等差数列,a1=2且a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)若{b n-(-1)n a n}是等比数列,且b2=7,b5=71,求数列{b n}的前2n项和.专题限时集训(十一)[第11讲 数列求和及数列的简单应用](时间:5分钟+40分钟)基础演练1.等差数列{a n }的通项公式为a n =2n +1,其前n项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为( )A .70B .75C .100D .1202.已知等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C . 8D .2+log 3 53.等差数列{a n }的前n 项和为S n (n =1,2,3,…),若当首项a 1和公差d 变化时, a 5+a 8+a 11是一个定值,则下列选项中为定值的是( )A .S 17B .S 16C .S 15D .S 144.数列{a n }的前n 项和为S n ,若a n =1n (n +2),则S 10等于( )A .1112B .1124C .175132D .1752645.设等比数列{a n }的各项均为正数,其前n 项和为S n .若a 1=1,a 3=4,S k =63,则k =________.提升训练6.等差数列{a n }的前n 项和为S n ,且满足S 35=S 3992 ,a =(1,a n ),b =(2014,a 2014),则a ·b 的值为( )A . 2014B . -2014C . 1D .07.已知一次函数f (x )=kx +b 的图像经过点P (1,2)和Q (-2,-4),令a n =f (n )f (n+1),n ∈N *,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,当S n =625时,n 的值为( )A .24B .25C .23D .268.已知幂函数y =f (x )的图像过点(4,2),令a n =f (n +1)+f (n ),n ∈N *,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,则当S n =10时,n 的值是( )A . 110B . 120C . 130D . 1409.已知a n =⎠⎛0n (2x +1)d x(n∈N *),数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,数列{b n }的通项公式为b n=n -8,则b n S n 的最小值为( )A .-3B .-4C .3D .410.设数列{a n }满足a 1=2,a n +1=4a n -3n +1,n ∈N *,则数列{a n }的前n 项和可以表示为( )A .B .C .D .11.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形的面积为S n ,则S 1+S 2+…+S 2014=________ .12.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.13.已知函数 f (x )=⎩⎪⎨⎪⎧(-1)nsin πx 2+2n ,x ∈[2n ,2n +1),(-1)n +1sin πx 2+2n +2,x ∈[2n +1,2n +2)(n ∈N ),若数列{a m }满足a m =f ⎝ ⎛⎭⎪⎫m 2(m ∈N *),且{a m }的前m 项和为S m ,则S 2014-S 2006=________.14.已知数列{a n }与{b n },若a 1=3,且对任意正整数n 满足a n +1-a n =2, 数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .15. 已知函数f (x )=4x,数列{a n }中,2a n +1-2a n +a n +1a n =0,a 1=1,且a n ≠0, 数列{b n }中, b 1=2,b n =f ⎝ ⎛⎭⎪⎫1a n -1(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .16. 中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题.若某地区2012年人口总数为45万,专家估计实施 “放开二胎” 新政策后人口总数将发生如下变化:从2013年开始到2022年每年人口比上年增加0.5万,从2023年开始到2032年每年人口为上一年的99%.(1)求实施新政策后第n 年的人口总数a n 的表达式(注:2013年为第一年).(2)若新政策实施后2013年到2032年的人口平均值超过49万,则需调整政策,否则继续实施.问2032年后是否需要调整政策?=(1-10≈专题限时集训(十二)A[第12讲 空间几何体的三视图、表面积及体积](时间:5分钟+30分钟)基础演练1.某几何体的三视图如图121所示,根据图中标出的尺寸(单位:cm)可得这个几何体的体积是( )A .13 cm 3B .23 cm 3C .43 cm 3D .83cm 3 1 1222.图122是一个封闭几何体的三视图,则该几何体的表面积为( ) A .7π B .8π C .9π D .11π3. 一只蚂蚁从正方体 ABCD A 1B 1C 1D 1的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点 C 1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是( )图12A .①② B .①③ C .②④ D .③④4. 某四棱锥的三视图如图125所示,记A 为此棱锥所有棱的长度的集合,则( )图125A .2∈A ,且4∈AB .2∈A ,且4∈AC . 2∈A ,且25∈AD .2∈A ,且17∈A提升训练5.如图126所示,三棱柱ABC A 1B 1C 1的侧棱长和底边长均为2,且侧棱 AA 1⊥底面A 1B 1C 1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A . 3B .2 3C .4D .43图12 127 6.某几何体的三视图如图127所示,则它的体积是( )A .8+433B .8+423C .8+233D .3237.若某棱锥的三视图(单位:cm)如图128所示,则该棱锥的体积等于( )A .10 cm 3B .3. 30 cm 3 D .40 cm 398.一个简单组合体的三视图及尺寸如图129所示,则该组合体的体积为( ) A .42 B .48 C .56 D .449. 某由圆柱切割获得的几何体的三视图如图1210所示,其中俯视图是中心角为60°的扇形, 则该几何体的侧面积为( )A .12+103πB .6+103π C . 12+2π D .6+4π图1210 图121110. 如图1211所示,边长为2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,△AED ,△EBF ,△FCD 分别沿DE ,EF ,FD 折起,使A ,B ,C 三点重合于点A ′.若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为( )A. 2 B.62C.112D.5211.边长是22的正三角形ABC内接于体积为43π的球O,则球面上的点到平面ABC的最大距离为________.专题限时集训(十二)B[第12讲 空间几何体的三视图、表面积及体积](时间:5分钟+30分钟)基础演练1.某空间几何体的三视图如图1212所示,则该几何体的体积为( ) A .83 B .8 C .323D .1612 图12132.一个几何体的三视图如图1213所示,则该几何体的体积为( ) A .13 B .23C .2D .1 3. 图1214 ( )14A .3+π6B . 3+43πC .33+43πD .33+π64. 一个四面体的四个顶点在空间直角坐标系O xyz 中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体以yOz 平面为投影面的正视图的面积为( )A .3B .52C . 2D .72提升训练5.一个几何体的三视图如图1215所示,其中正视图是边长为2的正三角形,俯视图为正六边形,则该几何体的侧视图的面积为( )A .32B .1C .52D .1215 1216 6.一个几何体的三视图如图1216所示,则它的体积为( ) A .203 B .403C .20D .407. 已知某几何体的三视图如图1217所示,其中俯视图是圆,则该几何体的体积为( )A .π3B .2π3C . 23D .1317 18 8.图1218是一个几何体的三视图,则该几何体的体积是( ) A .54 B .27 C .18 D .99. 用一个边长为4的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为1的鸡蛋(视为球体)放在其上(如图1219所示),则鸡蛋中心(球心)与蛋托底面的距离为___________.图1210. 直三棱柱ABC A 1B 1C 1的各顶点都在同一个球面上.若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积为________.11.如图1220所示,已知球O是棱长为1的正方体ABCDA1B1C1D1的内切球,则平面ACD1截球O的截面面积为________.专题限时集训(十三)[第13讲空间中的平行与垂直](时间:5分钟+40分钟)基础演练1.能够得出平面α与平面β一定重合的条件是:它们的公共部分有( )A.两个公共点B.三个公共点C.无数个公共点D.共圆的四个公共点2.直线a⊥平面α,b∥α,则a与b的关系为( )A.a⊥b,且a与b相交 B.a⊥b,且a与b不相交C.a⊥b D.a与b不一定垂直3.a,b,c表示不同直线,M表示平面,给出四个命题:①若a∥M,b∥M,则a∥b或a,b相交或a,b异面;②若b⊂M,a∥b,则a∥M;③a⊥c,b⊥c,则a∥b;④a⊥M,b⊥M,则a∥b.其中为真命题的是( )A.①② B.②③ C.③④ D.①④4.设α,β,γ为平面,m,n为直线,则m⊥β的一个充分条件是( )A.α⊥β,α∩β=n,m⊥nB.α∩γ=m,α⊥γ,β⊥γC.α⊥β,m⊥αD.n⊥α,n⊥β,m⊥α5.已知m,n,l是不同的直线,α,β,γ是不同的平面,给出下列命题:①若m∥n,n⊂α,则m∥α;②若m⊥l,n⊥l,则m∥n;③若m⊥n,m∥α,n∥β,则α⊥β;④若α⊥γ,β⊥γ,则α∥β.其中真命题有( )A.0个 B.1个C.2个 D.3个提升训练6.已知α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线l,l⊂α,l∥βB.存在一个平面γ,γ⊥α,γ⊥βC.存在一条直线l,l⊥α,l⊥βD.存在一个平面γ,γ⊥α,γ∥β7.设l为直线,α,β是两个不同的平面,下列命题中为真的是( )A.若l∥α,l∥β,则α∥β B.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥β D.若α⊥β,l∥α,则l⊥β8.在正方体中,二面角A1BDA的正切值是( )A. 2 B.22C. 2 D.129.已知α,β是两个不同的平面,m ,n 是两条不同的直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③如果m ⊂α,n ⊄α,m ,n 是异面直线,那么n 与α相交;④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β.其中为真命题的是 ( )A .①②B .②③C . ③④D .①④10.如图131所示,正方体ABCD A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等图13211.如图132所示,已知三个平面α,β,γ互相平行,a ,b 是异面直线,a 与α,β,γ分别交于A ,B ,C 三点,b 与α,β,γ分别交于D ,E ,F 三点,连接AF 交平面β于点G ,连接CD 交平面β于点H ,则四边形BGEH 必为________.12. 在三棱锥C ABD 中(如图133所示),△ABD 与△CBD 是全等的等腰直角三角形,O 为斜边BD 的中点,AB =4,二面角A BD C 的大小为60°,并给出下面结论:①AC ⊥BD ;②AD ⊥CO ;③△AOC 为正三角形;④ cos ∠ADC =34;⑤四面体ABCD 的外接球的表面积为 32π.其中正确的是________.13. 已知四棱锥P ABCD 的底面ABCD 是边长为2的正方形,且俯视图如图134所示.关于该四棱锥的下列说法中:①该四棱锥中至少有两组侧面互相垂直;②该四棱锥的侧面中可能存在三个直角三角形;③该四棱锥中不可能存在四组互相垂直的侧面;④该四棱锥的四个侧面不可能都是等腰三角形.其中,所有正确说法的序号是________________.14.如图135所示,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB =2,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BD F.15.如图136所示,平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中点,G是AE,的交点.(1)求证:GH∥平面CDE;(2)求证:BD⊥平面CDE.16.已知在梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,CD=3,点E是线段AB的中点,G为CD的中点,现沿ED将△AED折起到△PED位置,使PE⊥EB.(1)求证:平面PEG⊥平面PCD;(2)求点A到平面PDC的距离.专题限时集训(十四)[第14讲 空间向量与立体几何](时间:5分钟+40分钟)基础演练1. 直线l 1的方向向量s 1=(1,0,-2),直线l 2的方向向量s 2=(-1,2,2),则直线l 1,l 2所成角的余弦值是( )A .53B .-53C . 23D .-232.平面α,β的法向量分别是 n 1=(1,1,1),n 2=(-1,0,-1),则平面α,β所成锐二面角的余弦值是( )A .33B .-33C . 63D .-633.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的单位法向量是( )A .±(1,1,1)B .±⎝ ⎛⎭⎪⎫22,22,22C .±⎝⎛⎭⎪⎫33,33,33 D .±⎝ ⎛⎭⎪⎫33,-33,33 4.已知a ,b 是两个非零的向量,α,β是两个平面,下列命题中正确的是( )A .a ∥b 的必要条件是a ,b 是共面向量B .a ,b 是共面向量,则a ∥bC .a ∥α,b ∥β,则α∥βD .a ∥α,b ∥β,则a ,b 不是共面向量5.若a ⊥b ,a ⊥c ,l =αb +β c (α,β∈R ),m ∥a ,则m 与l 一定( ) A .共线 B .相交 C . 垂直 D .不共面提升训练6. 如图141所示,三棱锥A BCD 的棱长全相等,E 为AD 的中点,则直线CE 与BD 所成角的余弦值为( )A .36B .32C . 336D .127. 在正方体ABCD A 1B 1C 1D 1中,E 是C 1D 1的中点,则异面直线DE 与AC 所成角的余弦值为( )A .120B .1010C . -1010D .-1208. 对于空间任意一点O 和不共线的三点A ,B ,C ,有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则x =2,y =-3,z =2是P ,A ,B ,C 四点共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件9.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →=________.10.在底面是直角梯形的四棱锥S ABCD 中,∠ABC =90°,SA ⊥平面ABCD ,SA =AB=BC =1,AD =12,则平面SCD 与平面SBA 夹角的余弦值是_________.11.平行四边形ABCD 中,AB =1,AD =2,且∠BAD =45°,以BD 为折线,把△ABD 折起到△A 1BD 的位置,使平面A 1BD ⊥平面BCD ,连接A 1C .(1)求证:A 1B ⊥DC ;(2)求二面角B A 1C D 的大小.图1412.如图143所示,四棱锥P ABCD 中,底面ABCD 为平行四边形,AB =2AD =4,BD =23,PD ⊥底面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若二面角P BC D 的大小为 π4,求AP 与平面PBC 所成角的正弦值.。
2021年高考数学一轮复习 排列组合限时训练
![2021年高考数学一轮复习 排列组合限时训练](https://img.taocdn.com/s3/m/df7756cbff00bed5b8f31d78.png)
2021年高考数学一轮复习 排列组合限时训练一、选择题(共19小题)1、有四个不同的球全部放入4个不同的盒子内,恰有两个盒子不放球的不同放法是( )A 、60B 、72C 、120D 、842、A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(A ,B 可以不相邻),那么不同的排法共有( )A 、24种B 、60种C 、90种D 、120种3、从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有( )A 、C 102A 84种B 、C 91A 95种 C 、C 81A 95种D 、C 81A 85种4、从﹣3,﹣2,﹣1,0,1,2,3,4这8个数中任选3个不同的数组成二次函数y=ax 2+bx+c 的系数a ,b ,c ,则可确定坐标原点在抛物线内部的抛物线有( )A 、72条B 、96条C 、128条D 、144条5、某高三学生希望报名参加某6所高校中的3所学校的自主招生考试,由于其中两所学校的考试时间相同,因此该学生不能同时报考这两所学校,则该学生不同的报考方法种数是( )A 、16B 、24C 、36D 、486、5个人站成一排,若甲乙两人之间恰有1人,则不同站法有( )A 、18种B 、24种C 、36种D 、48种7、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A、A33B、4A33 C、A55﹣A32A33D、A22A33+A21A31A338、从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人.要求这3位教师中男、女教师都要有,则不同的选派方案共有()A、210种B、186种C、180种D、90种9、A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法共有()A、60种B、48种C、36种D、24种10、某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A、12B、16C、24D、3211、毕业之际,2名教师与4名学生站成一排合影留念,则2名教师之间恰好站有2名学生的不同站法种数为()A、48B、72C、144D、28812、某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为()A、360B、520C、600D、72013、甲、乙、丙3人承担6项新产品的设计任务,甲承担其中1项,乙承担其中2项,丙承担其中3项.则不同的承担方式的种数共有()A、C61C52C33B、C61+C52+C33 C、A61A52A33D、A61+A52+A3314、某人上10级台阶.他一步可能跨1级台阶,称为一阶步;也可能跨2级台阶,称为二阶步;最多能跨3级台阶,称为三阶步.若他总共跨了6步,而且任何相邻两步均不同阶,则此人所有可能的不同过程的种数为()A、6B、8C、10D、1215、用4种不同的颜色为一个固定位置的正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法数是()A、24B、48C、72D、9616、将4个不同的小球放入编号为1,2,3,4的四个盒子中,恰好有一个空盒的方法数为()A、96B、144C、244D、57617、某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四位同学分别给出下列四个结果:①C62;②C63+2C64+C65+C66;③26﹣7;④A62.其中正确的结论是()A、仅有①B、仅有②C、②和③D、仅有③18、A,B,C,D,E五人并排站成一排,A,B两人都不能站在两端的排法有()A、6种B、24种C、36种D、120种19、从编号为,1,2,3,4,5,6,的六的小球中任取4个,放在标号为A,B,C,D的四个盒子里,每盒一球,且2号球不能放在B盒中,4号球不能放在D号盒中,则不同的放法种()A、96B、180C、252D、280二、填空题(共11小题)20、将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有_________ 种(用数字作答).21、用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有_________ 个(用数字作答)22、有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有_________ 种(用数字作答).23、某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_________ 种.(用数字作答).24、10个相同的小球分给3个人,每人至少2个,有_________ 种分法.25、要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为_________ .(以数字作答)26、某校安排6个班到3个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有_________ 种.27、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有_________ 种.28、5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有_________ 种.(以数作答)29、从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有_________ 种.30、xx年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有_________ 种.(用数字作答)答案:DBCDA CCCDC CCAAD BCCC90;324;432;96;15;288;540;1320;48;100;2431551 7B3F 笿38249 9569 镩20473 4FF9 俹 ?29319 7287 犇 S23 )F26809 68B9 梹28872 70C8 烈。
高考数学客观题限时训练习题及参考答案(十一套)
![高考数学客观题限时训练习题及参考答案(十一套)](https://img.taocdn.com/s3/m/80a6787b3d1ec5da50e2524de518964bcf84d288.png)
高考数学客观题限时训练习题(十一套)高考数学客观题限时训练一班级 姓名 学号 记分1、已知集合{}{}|12,|35A x a x a B x x =-≤≤+=<<,则能使A B ⊇成立的实数a 的取值范围是( )A .{}|34a a <≤B .{}|34a a <<C .{}|34a a ≤≤D .∅ 2、等比数列{}n a 中,0n a >且21431,9a a a a =-=-,则45a a +等于( ) A .16 B .27 C .36 D .27- 3、不等式2103x x -≤的解集为( )A .{|2x x ≤≤ B .{}|25x x -≤≤ C .{}|25x x ≤≤ D .{}5x x ≤ 4、曲线24y x =关于直线2x =对称的曲线方程是( )A .2164y x =-B .284y x =-C .248y x =-D .2416y x =-5、已知()321233y x bx b x =++++是R 上的单调增函数,则b 的范围( )A .1b <-或2b >B .1b ≤-或2b ≥C .12b -<<D .12b -≤≤6、直线l 是双曲线()222210,0x y a b a b-=>>的右准线,以原点为圆心且过双曲线的焦点的圆被直线l 分成弧长为21∶的两段圆弧,则该双曲线的离心率是( )A B C D7、空间四点A B C D 、、、,若直线,,AB CD AC BD AD BC ⊥⊥⊥同时成立,则A B C D 、、、四点的位置关系是( )A .一定共面B .一定不共面C .不一定共面D .这样的四点不存在8、()f x 是定义在R 上的奇函数,它的最小正周期为T ,则2T f ⎛⎫- ⎪⎝⎭的值为( )A .0B .2TC .TD .2T-9、已知实数x y 、满足22326x y +=,则2x y +的最大值为( ) A .4 BC. D10、函数222x y e -=的图象大致是( )选择题答案栏11、直线20x y m ++=按向量()1,2a =--平移后与圆22:240C x y x y ++-=相切,则实数m 的值为____________.12、在()()10211x x x ++-的展开式中,4x 项的系数是_______________.13、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有____________14、函数()f x =是奇函数的充要条件是____________ABCD15、260100x y x x y +-≤⎧⎪+≥⎨⎪-≤⎩,z mx y =+取得最大值的最优解有无数个,则m 等于16、在下列四个命题中,①函数2cos sin y x x =+的最小值是1-。
打卡第二天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版
![打卡第二天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版](https://img.taocdn.com/s3/m/6fe846c90342a8956bec0975f46527d3240ca6a7.png)
【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)新高考真题限时训练打卡第二天Ⅰ 真题知识点分析 Ⅰ 真题限时训练 Ⅰ 自查自纠表题号 题型 对应知识点1 单选题 交集;2 单选题 复数的基本概念;3 单选题 向量加法的法则;向量减法的法则;4 单选题 推理案例赏析;5 单选题 对数型复合函数的单调性;6 单选题 求双曲线的离心率或离心率的取值范围;7 多选题 根据折线统计图解决实际问题;8 多选题 由图象确定正(余)弦型函数解析式;9 填空题 函数奇偶性的应用; 10 填空题 组合体的切接问题; 11 解答题 求等比数列前n 项和;12 解答题 抛物线的焦半径公式;根据韦达定理求参数; 13 解答题累加法求数列通项;由递推关系证明等比数列;写出简单离散型随机变量分布列;Ⅰ 真题限时训练新高考真题限时训练打卡第二天难度:较易 建议用时:60分钟一、单选题(本题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一项符合题目要求) 1.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<2.(2020·山东·统考高考真题)2i12i-=+( ) A .1 B .−1 C .i D .−i 3.(2020·海南·高考真题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +4.(2019·全国·高考真题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cmB .175 cmC .185 cmD .190cm5.(2020·海南·高考真题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞6.(2019·全国·高考真题)设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A .2 B .3 C .2D .5二、多选题(本题共2小题,每小题5分,共10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学小题限时训练一
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.函数y =2x +1的图象是 ( )
2.△ABC 中,cos A =
135,sin B =53,则cos C 的值为 ( ) A.6556 B.-6556 C.-6516 D. 65
16 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )
A.1
B.2
C.3
D.多于3
4.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )
A.f (x ·y )=f (x )·f (y )
B.f (x ·y )=f (x )+f (y )
C.f (x +y )=f (x )·f (y )
D.f (x +y )=f (x )+f (y )
5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )
A.b ∥α,c ∥β
B.b ∥α,c ⊥β
C.b ⊥α,c ⊥β
D.b ⊥α,c ∥β
6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )
A.14
B.16
C.18
D.20
7.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )
A.8种
B.10种
C.12种
D.32种
8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真
命题的为( )
A.l 与a 、b 分别相交
B.l 与a 、b 都
不相交
C.l 至多与a 、b 中的一条相交
D.l 至少与a 、b 中的一条相交
9.设F 1,F 2是双曲线4
2
x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1|·|2PF |的值等于( )
A.2
B.22
C.4
D.8
10.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )
A.31
B.40
C.31或40
D.71或80
11.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )
A.小
B.大
C.相等
D.大小不能确定
12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、
BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的
采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的
重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,
使四个采煤点的煤运到中转站的费用最少,则地点应选在( )
A.P 点
B.Q 点
C.R 点
D.S 点
二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)
13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.
14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.
15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.
16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该
根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________.
答案:
一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B
二、13.(
21,1) 14.6 15. 21。