交流异步电动机变频调速系统设计
起重机交流异步电动机变频调速系统的设计
优 点 ,笔 者 使 用 J 5 3 N 1 9模 块 进行 Zg e 技 术 的开 i e B
~ … …
…
21 ̄ 3 01 月 总口 , 分 别 是 J A v p v nH n l , J A vtc Z _ A p E e t a de r Z — Sak
E e t Z _ P r hrl vn ,J A A K p0 jc, vn,J A v e p ea E e t Z — f v be t i b
机 械 工 业 出 版 社 ,0 3 2 0 ( 任 编辑 责 李 洋 )
系统 中采 用 了转 速徽 分 负 反馈 技 术 ,而这 一 功
能 仍 利 用 A R 来 完 成 。 带 d /t 反 馈 的 A R 电 S nd 负 S
( 文 部 分 下转 第 9 英 2页 ) 科撞 创葡与生产力 {
图 2 交 直 交 变 频 器 电 路
核 心 的单 片机 应 用 系统 。笔者 通过 软 硬 件相 结 合 实 现 起重 机异 步 电动 机 S WM 变频 调 速 ,不 仅使 硬件 P 简 单 降低 了产 品成本 ,而且 软 件代 码 较 少 ,从 而大 大 缩短 了开 发 时 间。
参考文献 :
图 3 ASR 电 路 图
路 ,改 变 微分 反 馈 环 节 参 数 C x d便 可 按 要 求 抑 dR
制 突 加给 定启 动 时转 速 的超 调 量 .经 调试 微 分 时 间
常 数取 值 = . 01 S 2.
S WM 调 制波 的 载波 比越 高 。所 含 的低 次 谐 波 P 的 分 量越 小 、5 z 波 所 占的 份 额越 大 .逆 变 器 0H 基 的效 率 就提 高 、同时 逆变 器 所需 的滤 波器 的尺 寸也
异步电动机的变频调速系统的设计与仿真word
异步电动机变频调速系统的设计与仿真异步电机数学模型异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。
基于稳态数学模型的异步电机调速系统虽然能够在一定范围内实现平滑调速,要实现高动态性能的系统,必须首先认真研究异步电机的动态数学模型。
假设条件:(1)忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。
这时,异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。
电压方程将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /d tA A A sB B B sC C C s a a a r b b b r c c c r 000000000000000000000000000u i R u i R u i R p u i R u i R u i R ψψψψψψ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦可改写为: u Ri ψ=+p 磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为:⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡=⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡C B A Cc Cb Ca CC CBCA Bc Bb Ba BC BB BA Ac Ab Aa AC AB AA C B A i i i i L L L L L L L L L L L L L L L L L L L L L L L L ψψψψ ABCu A u Bu Cω1ωu au b u ca bcθ可改写为: Li ψ=由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为:Lms Lmr =对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为转子各相自感为可得完整的磁链方程:sssr s s rsrr r r LL i L L i ψψ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 转矩方程根据机电能量转换原理,在多绕组电机中,在线性电感的条件下,磁场的储能和磁共能为:'m m 1122T T W W i i L ψ===而电磁转矩等于机械角位移变化时磁共能的变化率 (电流约束为常值),且机械角位移 θm = θ / n p ,于是:''rssr mme pp r s s r mconst.const.12T T i i L L W W T n n i i i i θθθθ==∂∂∂∂⎡⎤===⋅+⋅⎢⎥∂∂∂∂⎣⎦异步电机数学模型的过程中可以看出,这个数学模型之所以复杂,关键是因为有一个复杂的 6⨯6 电感矩阵,它体现了影响磁链和受磁链影响的复杂关系。
(完整版)异步电动机变频调速系统..
《自动控制元件及线路》课程实习报告异步电动机变频调速系统1.4.1 系统原理框图及各部分简介本文设计的交直交变频器由以下几部分组成,如图1.1所示。
图1.1 系统原理框图系统各组成部分简介:供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。
因为本设计中采用中等容量的电动机,所以采用三相380V电源。
整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。
在本设计中采用三相不可控整流。
它可以使电网的功率因数接近1。
滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。
逆变电路:逆变部分将直流电逆变成我们需要的交流电。
在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。
电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。
控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。
这些信号经过光电隔离后去驱动开关管的关断。
1.4.2 变频器主电路方案的选定变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。
随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。
静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。
1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。
由于中间不经过直流环节,不需换流,故效率很高。
因而多用于低速大功率系统中,如回转窑、轧钢机等。
但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。
2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。
交流异步电动机变频调速系统设计报告
交流异步电动机变频调速系统设计报告一、引言异步电动机在工业生产中具有广泛的应用,通过变频调速系统可以实现对异步电动机的精确控制,提高生产效率和控制精度。
本文将详细介绍异步电动机变频调速系统设计的原理和过程。
二、系统设计原理异步电动机通过变频器驱动,实现调速功能。
变频器将交流电源转换为直流电源,通过PWM技术将直流电转换为交流电,进而控制电机的转速。
变频器的主要组成部分包括整流器、中间环节直流母线、逆变器和控制电路。
整流器将交流电源转换为直流电源,并通过滤波电路削波,保持直流电的稳定性。
中间环节直流母线存储电能,为逆变器提供稳定的电源。
逆变器将直流电源转换为交流电源,并通过PWM调制技术调整交流电的频率和幅值,从而控制电机的转速。
控制电路通过传感器采集电机的运行状态,并通过对逆变器的控制信号实现控制目标。
三、系统设计步骤1.确定系统需求:根据应用场景和任务要求,确定对异步电动机的调速要求,包括速度范围、控制精度等。
2.选择电机和变频器:根据系统需求,选择适合的异步电动机和变频器,确保其参数和性能满足需求。
3.设计电路连接:根据电机和变频器的技术规格,设计电机与变频器的连线方式和电路连接,确保信号传输畅通。
4.设计控制系统:根据系统需求,设计控制系统包括传感器、控制电路和控制算法等,确保对电机的精确控制。
5.实施系统调试:将设计好的电路和控制系统进行组装和调试,确保系统能够正常工作。
6.测试系统性能:对系统进行性能测试,包括速度响应、负载变化等测试,验证系统的设计目标是否达到。
7.优化系统性能:根据测试结果,对系统进行调整和优化,提高系统的性能和稳定性。
8.编写设计报告:整理系统设计过程、实施步骤和测试结果,撰写设计报告。
四、系统设计考虑因素1.变频器和电机的匹配性:选择变频器时需要考虑其输出能力是否足够满足电机的需求,包括最大输出功率、额定电流等。
2.控制系统的精确性:设计控制系统时需要考虑传感器的精度、控制器的计算性能等因素,确保控制系统能够精确控制电机的转速。
交流异步电动机变压变频调速系统设计与仿真
交流异步电动机变压变频调速系统设计与仿真异步电动机变压变频调速系统是一种常见的电动机调速系统,可以实现电动机转速的精确控制和调节。
本文将介绍异步电动机变压变频调速系统的设计和仿真。
首先,异步电动机的调速原理简要介绍。
异步电动机是一种常用的交流电动机,其转速通常由额定电压和频率决定。
通过改变电动机的电压和频率,可以实现对电动机的调速。
变压变频调速系统通过调节电压和频率的大小,改变电动机的转速。
在设计异步电动机变压变频调速系统之前,首先要确定电动机的参数。
电动机的参数包括额定功率、额定电压、额定电流等,这些参数可以从电动机的标牌上获取。
另外,还需要确定变压变频器的参数,包括额定电压范围、频率范围等。
这些参数将决定整个系统的性能。
设计异步电动机变压变频调速系统的关键是选取合适的变压变频器。
变压变频器是将电网的交流电转换为可调频率和可调电压的交流电的装置。
根据电动机的额定电压和变压变频器的额定电压范围,选取合适的变压变频器,以满足调速系统的要求。
设计异步电动机变压变频调速系统的下一步是进行系统的电路设计。
电路设计包括电动机的接线和变压变频器的接线。
电动机的接线要根据电动机的型号和相数来进行,确保电机的正常运行。
变压变频器的接线要根据变压变频器的接线图进行,确保变压变频器与电动机的连接正确。
完成电路设计后,还需要进行系统的控制设计。
控制设计包括电机的启动和停止控制、电机的转速控制等。
启动和停止控制一般采用按钮控制或者遥控控制,可以通过按钮或者遥控装置来启动和停止电动机。
转速控制一般采用PID控制器进行,通过调节变压变频器的输出电压和频率,来实现对电动机转速的控制和调节。
完成设计后,可以使用仿真软件进行系统的仿真。
常用的仿真软件有MATLAB/Simulink、PSIM等。
通过仿真可以验证系统的设计是否正确,并进行性能评估。
仿真结果可以用来优化系统的设计,提高系统的性能。
综上所述,异步电动机变压变频调速系统的设计和仿真是一个系统工程,需要从确定电动机和变压变频器的参数开始,进行电路设计和控制设计,最后进行仿真验证。
交流异步电动机变频调速设计
交流异步电动机变频调速设计异步电动机是工业生产过程中广泛使用的一种电机,widely used in industrial production. 它的运转速度受到电源的频率和极数的影响,因此在一些应用场合需要采取变频调速技术,以满足不同负载下的运转需求。
本文将介绍异步电动机变频调速设计的基本原理和具体实现方法。
一、异步电动机变频调速的原理异步电动机通过电源提供的交流电源驱动,其转速 n与电网频率 f 和定子极数 P 相关,公式为:n=60f/P 。
如图1所示,当电网频率为50Hz、极数为4极时,异步电动机的转速为1500 rpm。
当需要在同一台异步电动机下实现不同转速时,可以采用变频调速技术。
变频调速的原理是通过变频器改变电网电源的频率和电压,从而改变异步电动机的转速。
变频器通过将电源中的直流信号转换成相应的交流信号进行调节,例如通过将电源中的50Hz的电信号转换为30~50Hz的交流信号,使得异步电动机的转速得到调节。
二、异步电动机变频调速的实现方法1.输入电源与三相异步电动机连接。
2.将电源中的交流信号转换为直流信号,通过功率恒定的逆变器将直流信号转换为变频输出的交流信号。
3.通过多种控制方法调节电压频率,从而实现异步电动机转速的控制。
通常采用矢量控制和定速控制两种控制方式。
3.1 矢量控制矢量控制是一种高精度、高性能的控制方法,可以使异步电动机在不同的负载下达到相同的速度和扭矩。
矢量控制适用于较高的调速要求,可以在满足较高控制精度的同时,实现更好的动态性能。
3.2 定速控制定速控制是一种简单、常用的变频控制方法。
该方法通过设定电机的运行速度来调节输出频率和电压,使得异步电动机具有稳定的转速和扭矩。
三、结论本文通过介绍异步电动机变频调速的原理和实现方法,可以实现异步电动机在不同负载条件下达到相同的转速和扭矩,提高了运行效率和能源利用率。
异步电动机变频调速技术的应用将得到更加广泛的推广和应用。
「异步电动机变频调速系统的设计与仿真」
「异步电动机变频调速系统的设计与仿真」异步电动机变频调速系统是一种常见的电力传动系统,具有调速范围广、动态响应好、控制精度高等优点。
本文将介绍异步电动机变频调速系统的设计与仿真,包括系统的结构、控制方案以及仿真结果评估。
首先,异步电动机变频调速系统由变频器、电机、传动装置以及控制系统组成。
变频器作为系统的核心,通过改变输入电压的频率和幅值,控制电机的转速。
电机是系统的执行器,通过转动输出机械功。
传动装置用于将电机的转动传递到负载物体上。
控制系统则根据系统的反馈信号来调节变频器的输出,实现对电机转速的精确控制。
在控制方案的设计中,可以采用电流矢量控制算法。
该算法通过测量电机的转子电流和转速,根据电机的模型推算出合适的电压矢量,以实现对电机转速的控制。
具体的控制步骤包括电机速度测量、电机参数辨识、电机模型预测、电压矢量计算和电压输出等。
为了评估异步电动机变频调速系统的性能,需要进行仿真实验。
仿真实验可以通过模拟各种状态和故障条件,得到系统的输出结果,并评估控制方案的有效性和性能。
在进行仿真实验时,可以设定电机的负载变化、输入电压变化等参数,并根据实际应用需求设定系统的性能指标。
通过对系统的输出结果进行分析和比较,可以评估系统的控制性能和稳定性,并进行相应的调整和优化。
总之,异步电动机变频调速系统的设计与仿真是一个复杂的过程,需要考虑到电机的特性、负载情况以及控制系统的性能指标。
通过合理的设计和仿真实验,可以得到一个性能优越的调速系统,满足实际应用需求。
4章 交流异步电动机变频调速系统
为交流异步电动机转矩系数,其中Nr为转子绕组有效匝数;
φr为转子功率因数角。
可见,转矩控制的困难体现在以下几点: T T ① m 是由定子电流is iA , iB , iC 和转子电流 ir ia , ib , ic 共同产生的,它的
空间位置相对于定子和转子都是运动的。 ② m 与 I r 是两个相互耦合的变量,且 I 对于一般的鼠笼形异步电机是无法 r ③ r 是与转速相关的时变量(与转差s有关), 且当电机运行时转子电阻 Rr 随温度变化而变化, Te 也随之变化。除此以外,式中的 Te 只是平均转矩的概念, 对平均转矩的控制已十分困难了,更何况瞬时转矩。对转速的控制实质上就是 对转矩的控制,转矩控制的困难是实现交流电机高性能调速的主要障碍,也是 过去限制交流调速系统获得广泛应用的主要原因。 2)调速装置中器件发展的限制:调速装置中两大组成部件是主电路和控制电路。 主电路中的主要器件—电力电子功率器件在近五十年来更新换代了五代之多,以 适应变频调速(PWM脉宽调制)的需要。控制电路中的主要器件—微处理器在 近二十年中运算速度提高了数倍,以适应高性能变频调速复杂算法的需要。交流 调速系统的发展依赖于新型电力电子器件的应用、微电子技术的发展。
直流调速系统中各部分分别为5%,40%和55%,而交流调速系统中各部分分别 为10%,60%和30%。特别是当功率大于500 kW,交流调速系统的成本比直流 调速系统的成本明显降低。 4.1.2交流电动机的调速方法及其主要应用领域 1.交流电动机的调速方法 由电机学可知,交流电动机的同步转速表达式为 60 f s (4.6) ns np ns 为同步转速。 式(4.6)中,np为电机极对数;fs为电机定子供电频率; (1) 同步电动机的调速方法 可见,均匀地改变同步电动机的定子供电频率fs,就可以平滑地调节电动机
完整版《三相异步电动机变频调速系统设计》
完整版《三相异步电动机变频调速系统设计》
一、异步电动机变频调速系统简介
异步电动机变频调速系统是一种基于变频器技术完成频率控制的调速系统,其结构组成主要包括:异步电动机、变频器、控制器和传动机构等组成。
本系统可以实现对电动机的输出功率、转速和负载的关系,从而提高机器的能源利用率,减少电机输出的能耗。
二、异步电动机变频调速系统组成
1.异步电动机:异步电动机是一种由能量变换设备的机械部分,它通过电能激励的电磁作用而可发生转动,其结构由定子、转子及密封装置等组成。
该部件能够接受输入的直流电压,完成外界功率转换。
2.变频器:变频器是由变频技术控制异步电动机输出电压和频率的装置,其特性是能够将低电压变高,将低频率调整到高频率,使输出电压与频率可以随着被控制设备的运行状况而灵活变化,能有效节省电源能耗,减少设备故障。
3.控制器:控制器是负责控制变频器给异步电动机提供指令的,它的功能有:对异步电动机的转矩与频率进行控制;实现变频器与异步电动机的细微调整;实现较快速度的反应。
三相的异步电动机变频调速系统设计的及仿真
三相的异步电动机变频调速系统设计的及仿真引言:在现代工业生产中,电动机作为一种重要的动力设备,广泛应用于各种机器和设备中。
为了满足不同工艺和运行要求,需要调节电动机的运行速度。
传统的方法是通过改变电源的频率来达到调速的目的。
然而,这种方法存在一定的局限性,无法实现精确的调速效果。
因此,引入变频调速系统成为了提高电机调速性能的有效手段。
本文将对三相异步电动机变频调速系统的设计及仿真进行详细介绍。
一、系统设计:1.变频器设计:变频器是变频调速系统的核心部分,用于将输入电源的频率和电压变换成适合电动机工作的频率和电压。
变频器由整流器、滤波器和逆变器组成。
整流器将输入的交流电变换成直流电,滤波器用于平滑输出电压,逆变器将直流电转换成可控的交流电输出。
变频器还包括控制模块,用于实现调速功能。
2.控制系统设计:控制系统包括速度传感器、PID控制器和功率放大器。
速度传感器用于实时测量电机转速,PID控制器根据设定转速和实际转速之间的差异,调节变频器的输出频率和电压,以实现电机的准确调速。
二、系统仿真:为了验证设计的可行性和调速性能,可以使用MATLAB/Simulink进行系统仿真。
具体的仿真流程如下:1. 搭建电机模型:根据电机的参数和等效电路,搭建电机的MATLAB/Simulink模型,包括电机的输入端口、输出端口和机械负载。
2. 设计控制系统:在Simulink中添加速度传感器、PID控制器和功率放大器,并与电机模型连接起来。
3.设定仿真参数:设置电机的参数、控制系统的参数和仿真时间等参数。
4.进行仿真实验:根据实际需求,设置不同的转速设定值,观察电机的响应情况,如稳态误差和调速时间等。
5.优化系统性能:根据仿真结果,调整参数和控制策略,优化系统的调速性能,如减小稳态误差和调速时间。
三、结论:三相异步电动机变频调速系统是一种能够实现精确调速的调速方案。
通过合理设计和仿真验证,可以得到一个性能稳定、调速精度高的变频调速系统。
三相异步电机交流变频调速系统设计实验
三相异步电机交流变频调速系统设计实验指导书仇国庆编写重庆邮电大学自动化学院测控技术实验中心2010/11/2三相异步电机交流变频调速系统设计实验指导书一、实验目的:1. 了解三相异步电机调速的方法;2. 熟悉交流变频器的使用;3. 掌握三相异步电机交流变频调速系统设计。
4. 交流异步电动机机械特性及变频调速特性测试二、控制系统设计要求系统设计要求能够实现三相异步电动机的如下状态的控制:正转;反转;停止;点动;加速;减速。
图1 控制系统硬件结构图三、基本知识:1.异步电动机调速系统种类很多,常见的有:(1)降电压调速;(2)电磁转差离合器调速(3)绕线转子异步电机转子串电阻调速(4)绕线转子异步电机串级调速(5)变极对数调速(6)变频调速等等。
2.三相交流异步电动机2.1 异步电动机旋转原理异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。
n转速顺时针旋转,转子绕组切割磁力线,产生转子电流⑴磁场以⑵通电的转子绕组相对磁场运动,产生电磁力⑶ 电磁力使转子绕组以转速n 旋转,方向与磁场旋转方向相同2.2 旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。
这三个交变磁场应满足:⑴ 空间位置上互差rad 3/2π电度角。
由定子三相绕组的布置来保证⑵ 在时间上互差rad 3/2π相位角(或1/3周期)。
由通入的三相交变电流来保证。
2.3 电动机转速产生转子电流的必要条件:是转子绕组切割定子磁场的磁力线。
因此,转子的转速n 必须低于定子磁场的转速0n 。
两者之差称为转差:n n n -=∆0转差与定子磁场转速(常称为同步转速)之比,称为转差率:0/n n s ∆=同步转速0n 由下式决定:p f n /600=上式中,f 为输入电流的频率,p 为旋转磁场的极对数。
由此可得转子的转速:p s f n /)1(60-=3.异步电动机调速由转速p s f n /)1(60-=可知异步电动机调速有以下几方法:(1) 改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。
完整版《三相异步电动机变频调速系统设计》
完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统是一种应用广泛的电机控制系统,通过对电机的供电频率和电压进行调整,实现电机的调速功能。
本文将对三相异步电动机变频调速系统进行详细的设计。
1.系统结构三相异步电动机变频调速系统主要由电机、变频器和控制系统三部分组成。
电机作为执行元件,接受变频器输出的电压和频率进行运行;变频器则负责将输入的电网电压和频率转换为适合电机运行的电压和频率;控制系统则完成对变频器的控制和监测,实现对电机的精确调速。
2.硬件设计在硬件设计方面,需要选择适合电机的变频器和控制器,并完成相应的接线和连接。
变频器通常需要选择带有电压和频率调节功能的型号,以满足不同工作条件下的电机要求。
控制器则需要选择具备快速响应和稳定性能的型号,以确保系统的准确调速。
3.变频器参数设置变频器的参数设置对于电机的工作性能影响较大。
在设置参数时,首先需要根据电机的额定功率和工作特性确定变频器的额定输出功率。
同时,还需要根据电机的额定电压和额定转速设置变频器的额定输出电压和额定输出频率。
此外,还需要根据电机的负载特性设置变频器的过载保护和反馈调节参数。
4.控制系统设计控制系统的设计主要包括速度信号检测、计算和反馈控制三个步骤。
速度信号检测可以通过安装编码器或霍尔传感器等装置实现。
根据检测到的速度信号,控制系统可以计算出电机的当前转速,并与设定的目标转速进行比较,得到误差信号。
通过对误差信号进行PID控制,控制系统可以调整变频器的输出频率和电压,以实现对电机转速的控制。
5.保护措施设计三相异步电动机变频调速系统在运行过程中需要考虑到一些保护措施,以防止电机过载、短路等故障。
常见的保护措施包括过载保护、过流保护、过热保护和失速保护等。
通过在控制系统中添加相应的保护逻辑和监测装置,可以及时发现并处理电机故障,保证系统的安全运行。
总之,三相异步电动机变频调速系统设计涉及到硬件设计、变频器参数设置、控制系统设计和保护措施设计等方面。
交流异步电动机变压变频调速系统设计与仿真
在 变 频 调 速 时 要 保 证 线 负 荷 A基 本 不 变 , 如果 考虑 电动 机 的
效 率 和 功 率 因 数 基 本 变 化 不 大 , 为 力 能 指 标 ( x oO) 认 " cs 也基 q
本不变 , 样 , 公式 ()() 这 把 1 、3 代入 公 式 ( ) 可 得 : 2 ,
P / Ke 2= f -
的公式 :
() 4
运 行 可 靠 . 许 多 电力 拖 动 系统 中 , 流 电动 机 变 频 调 速 逐 在 交
步 取 代直 流 电 动机 , 为 电力 拖 动 系统 的发 展 方 向 。 成
调 速方 式 。 速 的机 械 特 性 不 如 直 流 电 动 机 。 在 上 个 世 纪 中 调 期 以 前 , 流 电动 机 调 速 得 到 较 广 泛 的 应 用 , 交 流 电 力 拖 直 而 动 主要 用 于恒 定 转 速 系 统 。 但 是 直 流 电 动 机 结 构 复 杂 , 在 存
磁 通 基 本 也 不 变 , 据 公 式 ( ) 知 , 流 异 步 电 动 机 的输 根 2可 交
入 电压 要 随 着 频 率 大 小 而 同 步对 应 调 整 。
流 电 动机 变 极 调 速 或 变 频 调 速 等 , 比 采用 机 械 传 动 结 构 进 要 行 变 速 的效 率 高 。交 流 异 步 电动 机 采 用 变 极 调 速属 于有 级 的
关 键 词 异 步 电动机 : 变压 变频调 速 ; 真 仿
0 引言
在 以往 许 多 电 力 拖 动 的 机 械 系 统 中 , 要 变 速 运 行 。采 需
第六章交流异步电动机变频调速系统PPT课件
电动势值较高时,可以忽略定子绕组的漏磁阻
抗压降,而认为定子相电压 Us ≈ Eg,
8
则得 U s 常值
这是恒压频f1 比的控制方式。
(6-3)
但是,在低频时 Us 和 Eg 都较小,定子阻 抗压降所占的份量就比较显著,不再能忽略。
这时,需要人为地把电压 Us 抬高一些,以便 近似地补偿定子压降。
3
第一节 变频调速的基本控制方式和机械特性 通过改变定子供电频率来改变同步转速实现
对异步电动机的调速,在调速过程中从高速到 低速都可以保持有限的转差率,因而具有高效 率、宽范围和高精度的调速性能。可以认为, 变频调速是异步电动机的一种比较合理和理想 的调速方法 。
原理:利用电动机的同步转速随频率变化的特 性,通过改变电动机的供电频率进行调速。保
带定子压降补偿的恒压频比控制特性示于下
图中的 b 线,无补偿的控制特性则为a 线。
2. 基频以上调速
在基频以上调速时,频率应该从f1N向上升高,
但定子电压Us 却不可能超过额定电压
9
UsN ,最多只能保持Us = UsN ,这将迫使磁通
与频率成反比地降低,相当于直流电机弱磁升 速的情况。
Us UsN
11
Us Φm
恒转矩调速
UsN ΦmN
Us
恒功率调速
Φm
O
f1N
f1
图6-2 异步电机变压变频调速的控制特性
异步电动机的变压变频调速是进行分段控制的:
基频以下,采取恒磁恒压频比控制方式;
基频以上,采取恒压弱磁升速控制方式。
12
U Te
P
N
UN
Te
U
P
O
变电压调速
交流异步电动机变频调速设计
交流异步电动机变频调速设计异步电动机是目前工业中最常用的一种电动机,广泛应用于各个领域。
异步电动机的调速是为了满足不同工况下的要求,提高电机的效率和运行稳定性。
变频调速是目前常用的一种调速方法,可以灵活调节电机的转速和负载。
异步电动机变频调速的基本原理是通过改变电机的供电频率和电压来实现调速。
传统的调速方法是通过改变电源电压来实现调速,但是这种方法的调速范围有限,效果也不好。
而变频调速可以通过改变电源的频率来实现调速,调速范围广,效果好。
异步电机的变频调速系统主要由变频器、电机和控制系统组成。
变频器是用来改变电源的频率和电压的设备,可以根据实际需要灵活调节电机的转速和负载。
控制系统是用来控制变频器的工作状态和参数的,可以根据实际需要设置电机的转速和负载要求。
在异步电机的变频调速设计中,需要考虑以下几个方面:1.变频器的选择:变频器是异步电机变频调速的关键设备,需要选择合适的变频器。
在选择变频器时,需要考虑电机的功率、转速范围和负载要求等因素,以确定变频器的额定功率和频率范围。
2.变频器参数的设置:根据实际需要设置变频器的工作参数,如频率、电压、转速等。
这些参数的设置要根据电机的特性和负载要求来确定,以保证电机的运行稳定性和效率。
3.电机的选型:根据实际需要选择合适的异步电机。
在选择电机时,需要考虑电机的功率、转速范围和负载要求等因素,以确定电机的额定功率和转速范围。
4.控制系统的设计:控制系统是异步电机变频调速的核心部分,用于控制变频器的工作状态和参数。
控制系统需要根据实际需要设计合适的控制算法和参数,以实现电机的准确控制和调速要求。
5.系统的稳定性和安全性:异步电机变频调速系统需要保证系统的稳定性和安全性。
在设计过程中,需要考虑各种故障情况的处理和保护措施,以确保系统的可靠性和安全性。
通过以上几个方面的设计,可以实现异步电动机的变频调速,提高电机的效率和运行稳定性。
异步电动机变频调速在工业领域有着广泛的应用前景,可以适应不同工况下的要求,提高生产效率和降低能耗。
交流异步电动机变频调速系统的设计任务书
WuHan Polytechnic University&Commercial College本科毕业论文(设计)任务书题目:交流异步电动机变频调速系统的设计系部:信息工程系专业年级: 2008级电气工程及自动化专业姓名:夏龙宇学号: 0830********指导老师:晏永红职称:讲师二○一一年十一月日一、课题主要研究(设计)内容异步电动机参数如下:线电压380V,额定频率50HZ,定子内阻0.087Ω,定子漏感0.8mH,转子内阻0.228Ω,转子漏感0.8mH,定、转子漏感34.7,极对数为4。
运用直接转矩控制的原理构建异步电动机的直接转矩控制的数学模型,并分模块对各部分进行调试并进行整体性能测试,得出仿真结果。
二、设计目标:1.通运用直接转矩控制的矢量控制原理设计变频调速系统2.将计算机仿真技术运用到系统的调试、运行中3.能根据仿真结果分析系统的性能4.设计出总体系统框图三、工作进度要求(分阶段提出具体时间要求):1.选题阶段(2011-2012学年第一学期,第6-8周)2.开题阶段(2011-2012学年第一学期,第9-13周)3.初步设计阶段(2011-2012学年第一学期,第14-17周)4.独立设计阶段(2011-2012学年第一学期第18周--第二学期第7周)5.设计完成阶段(2011-2012学年第二学期,第8-12周)6.毕业设计(论文)答辩与总结(2011-2012学年第二学期,第13-14周)四、应查阅的主要参考文献:西门子参数相关手册PLC可编程控制相关教材和参考资料需要归档的资料包括:1、毕业设计任务书2、毕业设计(论文)(一份有修改痕迹的初稿,和最后的定稿,共两份)3、开题报告4、毕业设计中期自查表5、附图及源代码6、电子文档指导教师:晏永红系主任:年月日年月日。
基于matlab的交流异步电机变频调速运行设计
基于matlab的交流异步电机变频调速运行设计
交流异步电机是一种常见的电动机,它可以通过变频调速运行来实现转速控制。
在MATLAB中,我们可以使用Simulink来
进行交流异步电机的变频调速运行设计。
以下是一个基于MATLAB的交流异步电机变频调速运行设计
的简单步骤:
1. 创建模型:在MATLAB/Simulink中创建一个新的模型。
2. 添加组件:通过拖拽、双击等方式添加交流异步电机模型、PID控制器、变频器等组件到模型中。
3. 连接组件:使用连线工具将组件连接起来,包括将PID控
制器的输出连接到变频器的输入,将变频器的输出连接到交流异步电机模型的输入等。
4. 参数设置:根据实际需求,设置各个组件的参数,包括PID
控制器的比例、积分、微分系数,变频器的输出频率等。
5. 仿真运行:在Simulink中点击运行按钮,进行仿真运行。
通过观察仿真结果,可以评估交流异步电机的转速控制性能。
6. 优化调试:根据仿真结果,对PID控制器参数、变频器输
出频率等进行优化调试,以达到所需的转速控制效果。
需要注意的是,具体的设计步骤和方法可能因实际情况而有所不同。
在实际应用中,还需要考虑电机的额定功率、转矩特性、电压、电流等因素,并结合电机的特性曲线进行调试和优化设计。
三相异步电动机变频调速控制系统设计
三相异步电动机变频调速控制系统设计一、引言三相异步电动机广泛应用于工业生产中,以其结构简单、制造成本低、容量大、耐用等优点而受到青睐。
然而,传统的电动机调速方式并没有很好地满足各种应用场景的需求。
变频调速系统是一种能够根据不同需求实现高效调速的解决方案。
本文将介绍三相异步电动机变频调速控制系统的设计方案,包括系统的原理、硬件设计、软件设计及性能测试等内容。
二、系统原理系统主要由以下几个部分组成:1.变频器:负责将输入的电源交流电转换为可调的电压和频率,供给电动机使用。
变频器通常包括整流器、逆变器和滤波器等电路。
2.控制电路:包括信号输入、测量电路、调速逻辑电路等。
其中,信号输入模块负责接收用户的控制信号;测量电路负责测量电动机的转速和电流等参数;调速逻辑电路负责根据用户控制信号和测量参数计算出变频器的控制信号。
3.电机驱动:负责将变频器输出的电压和频率传送给电动机,驱动电动机工作。
三、硬件设计硬件设计包括电路的选型和布局。
其中,变频器的选型需要考虑电源电压和频率、电机额定参数、控制精度等因素。
控制电路的设计需要选择合适的传感器和控制芯片,保证调速系统的稳定性和性能。
硬件布局上,需要合理布置各个电路模块,使得信号传输和功率传输互不干扰。
同时,还需考虑防护措施,确保系统的安全性。
四、软件设计软件设计主要包括控制算法和用户界面设计。
控制算法根据用户的设定值和实际测量值,计算出变频器的控制信号。
控制算法一般采用闭环控制方法,包括PID控制、模糊控制等。
用户界面设计可采用上位机软件,通过图形界面实现对调速系统的设置和监控。
五、性能测试为了验证系统设计的可行性和性能,需要进行性能测试。
性能测试包括静态特性测试和动态特性测试。
静态特性测试主要是测量系统的静态输出特性,如电机的转速、电流和功率等。
动态特性测试则是模拟实际工况下的负载变化情况,测试系统的动态响应和稳定性。
六、总结三相异步电动机变频调速控制系统的设计方案包括系统原理、硬件设计、软件设计和性能测试四个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南大学《工程训练》——设计报告设计题目:异步电机的变频调速指导老师:黎群辉设计人:冯露学号:0909092117专业班级:自动化0906班设计日期:2012年9月交流异步电动机变频调速系统设计摘要近年来,交流电机变频调速及其相关技术的研究己成为现代电气传动领域的一个重要课题,并且随着新的电力电子器件和微处理器的推出以及交流电机控制理论的发展,交流变频调速技术还将会取得巨大进步。
本文对变频调速理论,逆变技术,SPWM 产生原理进行了研究,在此基础上设计了一种新型数字化三相SPWM 变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT 作为主功率器件,同时采用EXB840构成IGBT 的驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控的功率环节,电路结构比较简单。
本文在控制上采用恒f V 控制,同时,软件程序使得参数的输入和变频器运行方式的改变极为方便,新型集成元件的采用也使得它的开发周期短。
另外,本文对SA4828三相SPWM 波发生器的使用和编程进行了详细介绍,完成了整个系统控制部分的软硬件设计。
关键字:变频调速,正弦脉宽调制,f V 控制,SA4828波形发生器目录摘要.................................................................................................................... i i 1.1 研究的目的与意义.. (1)1.2本次设计方案简介 (2)1.2.1 变频器主电路方案的选定 (2)1.2.2 系统原理框图及各部分简介 (3)1.2.3 选用电动机原始参数 (4)2交流异步电动机变频调速原理及方法 (5)2.1 异步电机变频调速原理 (5)2.2 变频调速的控制方式及选定 (6)V比恒定控制 (6)2.2.1f2.2.2 其它控制方式 (10)3变频器主电路设计 (13)3.1 主电路的工作原理 (13)3.2 主电路各部分的设计 (13)3.3. 采用EXB840的IGBT驱动电路 (15)4控制回路设计 (16)4.1 驱动电路设计 (16)4.2 保护电路 (15)4.2.1 过、欠压保护电路设计 (15)4.2.2 过流保护设计 (17)4.3 控制系统的实现 (19)5变频器软件设计 (21)5.1 流程图 (22)5.2 程序设计 (23)总结 (33)参考文献 (34)所谓变频就是利用电力电子器件(如功率晶体管GTR、绝缘栅双极型晶体管IGBT)将50Hz的市电变换为用户所要求的交流电或其他电源。
它分为直接变频(又称交-交变频),即把市电直接变成比它频率低的交流电,大量用在大功率的交流调速中;间接变频(又称交-直-交变频),即先将市电整流成直流,再变换为要求频率的交流。
它又分为谐振变频和方波变频。
前者主要用于中频加热,方波变频又分为等幅等宽和SPWM变频。
常用的方法有正弦波(调制波)与三角波(载波)比较的SPWM法、磁场跟踪式SPWM法和等面积SPWM法等。
本设计所设计的题目属于间接变频调速技术。
它主要包括整流部分、逆变部分、控制部分及保护部分等。
逆变环节为三相SPWM逆变方式。
1.1 研究的目的与意义在工业发展的初级阶段,人们主要使用集中传动。
作为动力的鼠笼电动机,是不需要调速的。
它只需要满足各种生产条件对它提出的起动和稳速运行的要求就可以,调速的任务是由皮带和齿轮来完成。
随着生产规模的不断扩大,对生产的连续性和流程化的要求愈来愈高,发展电机的调速技术已经是势在必行了。
直流调速系统,由于其良好的调速性能,很长的时期内在调速领域内占据首位。
但是由于直流电动机本身有机械换向器,给直流调速系统造成一些固有的、难于解决的问题。
随着交流传动电动机调速的理论问题的突破和调速装置(主要指变频器)性能的完善,交流电动机调速系统的性能差的缺点已经得到了克服,目前,交流调速系统的性能已经可以和直流系统相媲美,甚至可以超过直流系统。
由于交流调速不断显示其本身的优越性和巨大的社会效益,使变频器具有越来越旺盛的生命力。
各种性能优越的新型电力半导体器件的出现,如既能控制导通又能控制关断的门极可关断晶闸管GTO;具有良好功率转换效率和适于在高频大功率情况下工作的MOSFET;既有MOS管栅极驱动电压功率小和驱动线路简单,又有双极性功率晶体管导通饱和压降小优点的绝缘栅双极性大功率管IGBT;以及内部既有大功率开关器件,又有各种驱动电路和过压、过流等保护电路的智能型功率模块IPM等器件的应用,不仅使交流调速系统控制装置体积小,效率高,而且还更容易实现各种功能复杂但在结构上简单的控制方案,更加充实和推动了变频器理论的进一步发展。
能完成各种复杂信号和信息处理的集成芯片的出现,如能产生脉宽调制信号的专用集成电路以及各种单片机和计算机系统用的微处理器和接口芯片的大量问世,为高质量的控制创造了良好的条件。
建立在电机统一理论和机电一体化理论基础上的各种先进控制方案,通过快速检测电流实现PWM控制的变频技术,通过直接控制转矩来快速控制转速的转速自调整技术,以及具有很强抗干扰能力的变结构控制系统等等,都极大地丰富了电机调速领域的内容。
总之,交流电机调速技术的发展,特别是变频器传动本身固有的优势,必将使之应用于社会生产的各个领域,以体现出不同的功能,达到不同的目的,收到相应的效益。
因此,本论文通过对变频器的研究,对于交流变频调速系统理论的应用,有着实际的意义和一定的应用价值。
1.2 本次设计方案简介1.2.1 变频器主电路方案的选定变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。
随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。
静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。
1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。
由于中间不经过直流环节,不需换流,故效率很高。
因而多用于低速大功率系统中,如回转窑、轧钢机等。
但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。
2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。
它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。
(2)电压型变频器电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。
由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是运行几乎不受负载的功率因数或换流的影响,它主要适用于中、小容量的交流传动系统。
与之相比,电流型变频器施加于负载上的电流值稳定不变,其特性类似于电流源,它主要应用在大容量的电机传动系统以及大容量风机、泵类节能调速中。
由于交-直-交型变频器是目前广泛应用的通用变频器,所以本次设计中选用此种间接变频器,在交-直-交变频器的设计中,虽然电流型变频器可以弥补电压型变频器在再生制动时必须加入附加电阻的缺点,并有着无须附加任何设备即可以实现负载的四象限运行的优点,但是考虑到电压型变频器的通用性及其优点,在本次设计中采用电压型变频器。
1.2.2 系统原理框图及各部分简介本文设计的交直交变频器由以下几部分组成,如图1.1所示。
图1.1 系统原理框图系统各组成部分简介:供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。
因为本设计中采用中等容量的电动机,所以采用三相380V电源。
整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。
在本设计中采用三相不可控整流。
它可以使电网的功率因数接近1。
滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。
逆变电路:逆变部分将直流电逆变成我们需要的交流电。
在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。
电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。
控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。
这些信号经过光电隔离后去驱动开关管的关断。
1.2.3 选用电动机原始参数在这次设计中,采用中等容量的电动机,具体数据如下:额定功率P e=3KW,额定电压U e=380V;额定电流I e=6.1A,转速n e=2880/min;Y接法,f e=50H z.2交流异步电动机变频调速原理及方法2.1 异步电机变频调速原理交流异步电动机是电气传动中使用最为广泛的电动机类型。
根据统计,我国异步电动机的使用容量约占拖动总容量的八成以上,因此了解异步电动机的调速原理十分重要。
交流异步电动机是电气传动中使用最为广泛的电动机类型。
根据统计,我国异步电动机的使用容量约占拖动总容量的八成以上,因此了解异步电动机的调速原理十分重要。
交流调速是通过改变电定子绕组的供电的频率来达到调速的目的的,但定子绕组上接入三相交流电时,定子与转子之间的空气隙内产生一个旋转的磁场,它与转子绕组产生感应电动势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩。
使电动机转起来。
电机磁场转速称为同步转速,用0n 表示:p fn 600= (2-7)式中:f 为三相交流电源频率,一般是50Hz ;p 为磁极对数。
当p =1是,0n =3000r /min ;p =2时,0n =1500r /min 。
由上式可知磁极对数p 越多,转速0n 就越慢,转子的实际转速n 比磁场的同步转速0n 要慢一点,所以称为异步电动机,这个差别用转差率s 表示:%10000⨯-=n n n s (2-8)在加上电源转子尚未转动瞬间,n =0,这时s =1;启动后的极端情况n =0n ,则s =0,即s 在0~1之间变化,一般异步电动机在额定负载下的 s =1%~6%。
综合(2-7)和(2-8)式可以得出: 060(1)(1)f s n n s p -=-= (2-9)由式(2-9)可以看出,对于成品电机,其极对数p 已经确定,转差率s 的变化不大,则电机的转速n 与电源频率f 成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到异步电机调速的目的。