第五章 多级放大电路

合集下载

第五章 放大电路的频率响应-new

第五章 放大电路的频率响应-new
放大电路中有电容,电感等电抗元件 放大电路中有电容 电感等电抗元件, 电感等电抗元件 阻抗随f 阻抗随 变化而变化
1 ZC = jωC
C1
& Ib I& c
& Ib
V&O
前面分析, 前面分析 隔直电容 处理为:直流开路 交流短路 处理为 直流开路,交流短路 直流开路
f 1Hz 10Hz 100Hz 1kHz 10kHz
60 40
带宽 20 0 2
2. 频率响应的分析任务
20 fL
2× 102
2× 103
2× 104 fH
f/Hz
(1)频率响应表达式 AV = AV (ω )∠ϕ (ω ) )频率响应表达式: & 下限频率f (2)带宽 )带宽BW、上限频率 f H、下限频率 L 、
继续
3. AV随 f 变化的原因
继续
(1)高通电路:频率响应 )高通电路:
fL
& Uo jωRC & = Au = & U i 1 + jωRC
1 & = j f fL 令f L = ,则Au 2 πRC 1 + j f fL
f>>fL时放大 倍数约为1 倍数约为
f fL & Au = 1 + ( f f L )2 ϕ = 90° − arctan( f f L )
由于放大电路中耦合电容、旁路电容、 由于放大电路中耦合电容、旁路电容、半导体器 耦合电容 极间电容的存在 使放大倍数为频率的函数。 的存在, 件极间电容的存在,使放大倍数为频率的函数。
继续
5.1 频率响应概述
频率响应——放大器的电压放大倍数 放大器的电压放大倍数 频率响应 与频率的关系

第五章 放大电路的频率响应

第五章 放大电路的频率响应

1 fH 2 RC
1 fL 2 RC
当信号频率等于上(下)限频率时,放大电路的 增益下降3dB,且产生±45°相移
近似分析时,可用折线化的波特图表示电路的频 率特性
一个电容对应的渐进线斜率为20dB/十倍频
简单 RC 电路的频率特性
Ui

R C
Uo

Ui

C R
Uo

RC 低通电路
RC 高通电路
Au
• |Au |
1 0.707
1 f 1 j fH
1 0.707
Au
1 fL 1 j f
|Au |
fL
f

O

fH f
f
O
O –45° –90°
90° 45° O
f
研究频率响应的方法 (1) 三个频段的划分 1) 中频区(段) 特点:Aus与f无关
与f无关
5.4 单管放大电路的频率响应
本节以单管共射电路为例,介绍频率响应的一般 分析方法。
5.4.1 单管共射放大电路的频率响应
1、画出全频段的微变等效电路
+VCC RB C1 + . Ui VT RL . Uo RC C2 + + . Ui _ RB rb′e
C1
rbb′ . gmUb'e Cπ′
C2 + RC . RL U o _
R
fL
L 1 1 下限截止频率 2 2 2 RC
Au பைடு நூலகம்
1
L 1 j

1 fL 1 jf

f j fL f 1 j fL
1、RC高通电路的频率响应

多级放大电路实验报告

多级放大电路实验报告

多级放大电路实验报告实验名称:多级放大电路实验实验目的:通过实验理解多级放大电路的工作原理,并掌握其参数的测量方法。

实验仪器和材料:1. 功率放大电路实验箱2. 信号发生器3. 示波器4. 电阻表5. 电压表6. 两个NPN型晶体管7. 电阻、电容等元件实验原理:多级放大电路由多个级联的放大器组成,每个放大器都是一个单独的放大器。

多级放大器可以实现对输入信号的放大,从而增加输出信号的幅度。

实验步骤:1. 搭建多级放大电路:根据实验电路图,按照电路连接指示搭建多级放大电路。

2. 测量输入和输出电压:使用信号发生器连接输入端,设置合适的频率和幅度。

使用示波器分别测量输入信号和输出信号的电压。

3. 测量增益:通过测量输入和输出电压,计算多级放大电路的增益。

增益的计算公式为输出电压与输入电压之比。

4. 测量频率响应:改变信号发生器的频率,同时测量输入和输出信号的电压,计算不同频率下的增益。

绘制增益与频率的图像。

实验数据记录与处理:1. 输入电压(Vin):输出电压(Vout):增益(Gain):0.2V 1.5V 7.50.4V 3.2V 8.00.6V 4.8V 8.00.8V 6.3V 7.91.0V 7.5V 7.52. 根据上述数据计算多级放大电路的平均增益:增益(Gain)= (7.5 + 8.0 + 8.0 + 7.9 + 7.5)/ 5 = 7.83. 绘制频率响应图像:频率(f)Hz 增益(Gain)100 8.0500 7.81000 7.65000 6.810000 5.9实验结果与分析:通过多级放大电路的实验,我们得到了输入电压与输出电压的关系,计算出多级放大电路的平均增益为7.8。

从频率响应图像可以看出,随着频率的增加,电路的增益逐渐降低。

这是因为电容和电感的影响,导致高频信号受到衰减。

结论:通过本次实验,我们深入了解了多级放大电路的原理和工作方式。

我们通过测量输入电压和输出电压,计算出了电路的增益,并绘制出了频率响应图像。

05第五章、功率放大电路

05第五章、功率放大电路



5.3 甲乙类互补对称功率放大电路
一、交越失真 由于三极管输入特性有门槛电压,特性开始部分非线性又比较 严重,在两管交替工作点前后,出现一段两管电流均为零因而负载电流和电压均 为零的时间,使输出波形出现了“交越失真”。 二、甲乙类双电源互补对称功率放大电路 1.电路组成及电路工作原理:在两管的基极之间产生一个合适的偏压,使它们处 于微导通状态,两管各有不大的静态电流,电路工作在甲乙类,由于iL=iC1-iC2 , 输出波形接近于正弦波,基本上可以实现线性放大。 2.性能指标计算及选管原则(同乙类功放) 三、甲乙类单电源互补对称功放:(OTL) 1.电路组成及分析: 它与OCL电路的根本区别在于输出端接有大电容C。就直流而言, 只要两管特性相同,K点的电位VK=Vcc/2,而大电容C 被充电 到VC=VK=Vcc/2 。就交流而言,只要时间常数;RLC比输入信号 的最大周期大得多,电容上电压可看作固定不变,而C对交流可 视为短路。这样,用单电源和C 就可代替OCL电路的双电源。T1 管上的电压是Vcc 与VK 之 差,等于Vcc/2 ,而T2 管的电源电压 就是0与VK 之差,等于Vcc/2 。OTL电路的工作情况与OCL电路 完全相同。但是在用公式估算性能指标时,要用Vcc/2代替 。 2.选管原则:(同双电源互补对称功放)原公式中Vcc用Vcc/2替代。 3.带自举的单电源互补对称电路
• 1. 2. 3. 4. • • •
• • • • • • • • •
2.直流电源供给的功率 直流电源供给的功率是指一个周期内的平均功率。直流电源供给的功率,一 部分转换为负载所需的交流功率,还有一部分被功率管消耗。 3.转换效率 η=Po/Pv=3.14×Vom/(4Vcc) 在理想情况下,当Vom=Vcc时,效率为78.5%。 4.管耗 PT=PT1 +PT2=PV -Po=2(VCC·Vom/π-Vom·Vom/4)/RL 四、功率放大电路放大管三种工作状态 甲类、乙类、甲乙类

第5章_共基电路与共集电路多级放大-郭

第5章_共基电路与共集电路多级放大-郭
只有电流放大作用,没有电压放大,有电压跟随作用。在三种组态中, 输入电阻最高,输出电阻最小,频率特性好。可用于输入级、输出级或缓冲 级。 共基极放大电路:
只有电压放大作用,没有电流放大,有电流跟随作用,输入电阻小,输 出电阻与集电极电阻有关。高频特性较好,常用于高频或宽频带低输入阻抗 的场合,模拟集成电路中亦兼有电位移动的功能。
24
(1)直接耦合
直接 连接
既是第一级的集电极电阻, 又是第二级的基极电阻
能够放大变化缓慢的信 号,便于集成化, Q点相互 影响,存在零点漂移现象。
第一级 Q1合适吗?
第二级
输入为零,输出 产生变化的现象 称为零点漂移
当输入信号为零时,前级由温度变化所引起的电流、电 位的变化会逐级放大。
求解Q点时应按各回路列多元一次方程,然后解方程组。
ii iRe ie iRe (1 β )ib iRe vi / Re ib vi / rbe
Ri vi / ii vi

Re
||
rbe 1 β

vi Re

(1

β)
vi rbe

小信号等效电路
③ 输出电阻 vs短接,可以推得vbe=0,即ib=0,则ib=0。 所以: Ro Rc
VCC
ICQ

IEQ
VEQ Re
VBQ
VBEQ Re
VCEQ VCC ICQRc IEQ Re
VCC ICQ(Rc Re )
IBQ

ICQ β
2020/3/3
SCHOOL OF PHYSICS AND TECHNOLOGY N. N. U.
12
2.动态指标

第五章 放大电路频率响应

第五章 放大电路频率响应

ωH 2π

1 2 ππ o C o
fH为RoC’o低通电路的上限频率。 那么
Au

1 j 1 ( f
f fH )
2
1 1 j ω ωH

1 1 j f fH

(2)频率特性
fH
①幅频特性分析
Au

1 1 ( f fH )
2
当f<<fH时(即中频及以下): A u 1; 当f=fH时:
R rbe //rbb ( Rs // Rb )
Ausm Uo rbe Ri gm Rc Rs Ri rbe Us
二、单管共源放大电路及其等效电路
单管共源放大电路及其等效电路
在中频段 C 开路,C短路,中频电压放大倍数为
gs

A um

Uo


gm U
gs
( R d // R L )
gs
g m RL
Ui
U
在高频段,C短路,考虑 C gs 的影响,Rg和 C 组成 低通电路,上限频率为:
其近似波特图自行画出。
四、高频段的频率特性
1.高频段交流通路
2.电路的输出电阻Ro与管子的结电容Ccb、Cbe以及输出电 路元件分布电容Co组成低通电路
C o 为Ccb、Cbe以及Co的等效电容。考虑
它们的影响后,uce中不同频率成分在 等效电容上的分压不同。利用相量分压 法讨论分压,进而得频率特性。
和低频段下降的主要原因分别是什么。
本章讨论的问题:
1.为什么要讨论频率响应?如何讨论一个RC网络的频 率响应?如何画出频率响应曲线?
2.晶体管与场效应管的h参数等效模型在高频下还适应吗? 为什么? 3.什么是放大电路的通频带?哪些因素影响通频带?如何 确定放大电路的通频带? 4.如果放大电路的频率响应窄,应该怎么办? 5.对于放大电路,通频带愈宽愈好吗? 6.为什么集成运放的通频带很窄?有办法展宽吗?

orcad多级放大电路课程设计

orcad多级放大电路课程设计

orcad多级放大电路课程设计一、课程目标知识目标:1. 理解多级放大电路的基本原理,掌握其组成部分及功能。

2. 学会使用Orcad软件绘制多级放大电路原理图,并进行电路仿真。

3. 掌握多级放大电路的主要性能指标,如增益、频率响应、输入输出阻抗等。

技能目标:1. 能够运用所学知识,设计符合要求的多级放大电路。

2. 熟练使用Orcad软件进行电路设计与仿真,分析电路性能。

3. 提高电路故障诊断与问题解决能力。

情感态度价值观目标:1. 培养学生对电子电路设计的兴趣,增强其学习动力。

2. 培养学生的团队协作意识,提高沟通与协作能力。

3. 引导学生认识到多级放大电路在实际应用中的重要性,激发其创新意识。

本课程针对电子专业高年级学生,结合学科特点,注重理论与实践相结合。

课程旨在通过Orcad多级放大电路的设计与仿真,使学生在掌握基本理论知识的基础上,提高实际操作能力。

教学要求强调学生主体地位,鼓励学生积极参与,培养其独立思考和解决问题的能力。

通过本课程的学习,期望学生能够达到以上设定的具体学习成果,为后续专业课程学习和实际工作打下坚实基础。

二、教学内容本章节教学内容主要包括以下三个方面:1. 多级放大电路原理- 理解多级放大电路的基本概念、工作原理和分类。

- 掌握多级放大电路的级联方式、耦合方式及其对电路性能的影响。

- 学习多级放大电路的性能指标,如增益、带宽、线性范围等。

参考教材章节:第三章第二节“多级放大电路”2. Orcad软件操作与电路设计- 学习Orcad软件的基本操作,如新建项目、绘制原理图、设置仿真参数等。

- 掌握使用Orcad软件进行多级放大电路原理图绘制和仿真分析。

- 熟悉常见元件库的使用,学会添加、修改和删除电路元件。

参考教材章节:第四章“电子电路CAD”3. 多级放大电路设计与仿真- 学习根据需求设计多级放大电路,并进行性能分析。

- 掌握利用Orcad软件对多级放大电路进行仿真,验证设计方案的正确性。

模拟电子技术课程习题-第五章--放大电路的频率响应

模拟电子技术课程习题-第五章--放大电路的频率响应

模拟电⼦技术课程习题-第五章--放⼤电路的频率响应第五章放⼤电路的频率响应5.1具有相同参数的两级放⼤电路在组成它的各个单管的截⽌频率处,幅值下降[ ]A. 3dBB. 6dBC. 10dBD. 20dB5.2在出现频率失真时,若u i 为正弦波,则u o 为 [ ] A. 正弦波 B. 三⾓波 C. 矩形波 D. ⽅波5.3 多级放⼤电路放⼤倍数的波特图是 [ ] A. 各级波特图的叠加 B. 各级波特图的乘积C. 各级波特图中通频带最窄者D. 各级波特图中通频带最宽者 5.4 当输⼊信号频率为f L 或f H 时,放⼤倍数的幅值约为中频时的 [ ]倍。

A.0.7 B.0.5 C.0.9D.0.15.5 在阻容耦合放⼤器中,下列哪种⽅法能够降低放⼤器的下限频率?[ ]A .增⼤耦合电容B .减⼩耦合电容C .选⽤极间电容⼩的晶体管D .选⽤极间电容⼤的晶体管 5.6 当我们将两个带宽均为BW 的放⼤器级联后,级联放⼤器的带宽 [ ] A ⼩于BW B 等于BW C ⼤于BW D 不能确定 5.7 填空:已知某放⼤电路电压放⼤倍数的频率特性为6100010(1)(1)1010u fjA f f j j =++ (式中f 单位:Hz )表明其下限频率为,上限频率为,中频电压增益为 dB ,输出电压与输⼊电压在中频段的相位差为。

5.8 选择正确的答案填空。

幅度失真和相位失真统称为失真(a.交越b.频率),它属于失真(a.线性b.⾮线性),在出现这类失真时,若u i为正弦波,则u o为波(a.正弦b.⾮正弦),若u i为⾮正弦波,则u o与u i的频率成分(a.相同b.不同)。

饱和失真、截⽌失真、交越失真都属于失真(a.线性b.⾮线性),在出现这类失真时,若u i为⾮正弦波,则u o为波(a.正弦b.⾮正弦),u o与u i的频率成分(a.相同b.不同)。

5.9 选择正确的答案填空。

晶体管主要频率参数之间的关系是。

模电课程设计题目

模电课程设计题目
-学生展示自己的设计成果,接受提问与建议
6.教学反馈:收集学生反馈,评估教学效果,调整教学方法
-通过问卷调查、个别谈话等方式了解学生的学习体验
-根据学生反馈调整教学内容和教学策略,以提高教学质量
本节教学内容通过知识梳理、案例研究、设计挑战、实验探究、技术研讨和教学反馈等环节,全方位提升学生对放大电路设计与分析的理解,培养学生在实际工程问题中的解决能力和团队协作能力。
-梳理三极管、场效应晶体管放大电路的设计步骤与关键参数
-强调频率响应、稳定性、线性度等性能指标的重要性
2.案例研究:分析典型放大电路在实际工程中的应用
-研究放大电路在音频、测量、通信等领域的应用案例
-探讨不同应用场景下放大电路设计的特殊要求与解决方案
3.设计挑战:开展小组合作,完成特定要求的放大电路设计任务
-根据给定的技术指标,设计并搭建放大电路
-解决设计过程中遇到的技术难题,优化电路性能
4.实验探究ห้องสมุดไป่ตู้进行放大电路的对比实验,分析不同设计方案的优劣
-对比不同类型放大电路的性能,如A类与AB类功率放大器
-实验观察负反馈对放大电路性能的具体影响
5.技术研讨:组织学生参与放大电路技术研讨会
-邀请行业专家分享放大电路设计经验和最新技术动态
2.技能训练:深入学习负反馈放大电路的设计技巧
-分析不同负反馈类型的优缺点及适用条件
-练习如何通过调整反馈网络来优化放大电路性能
3.实践提高:开展功率放大电路的综合性实验
-结合理论,设计具有过载保护功能的功率放大电路
-实验测试电路的输出功率、效率、失真等性能参数
4.创新思维:鼓励学生探索新型放大电路设计与优化
本节课将围绕以上内容展开,结合教材实例,使学生掌握放大电路的基本原理与分析方法,培养实际设计与应用能力。

多级放大电路的分析

多级放大电路的分析

多级放大电路
第五章 基本放大电路
RB
200kΩ
Rs C1+ + 100Ω +
RB1
20kΩ
T1 +C2
us
ui RE1

2kΩ

RB2
10kΩ
RC2
2kΩ
+ C3
T2 RL
RE2
+
2kΩ
CE2
+VCC
12V
+ 6kΩ uo

多级放大电路
rbe2
300
(1
)26 2 I E2
300 38.5 26 1.65
12V
+ 6kΩ uo

后级静态值为
VB2
RB2 RB1 RB2
VCC
4V
IC2
I E2
VB2 U BE2 RE2
1.65 mA
IB2
IC2
2
0.044 mA
UCE2 VCC - IC2(RC2 RE2 ) 1基本放大电路
RB
200kΩ
Rb
C
只要耦合电容足够大,电路交
T1
+
流信号损失小,增益高。
ui
缺点:

耦合电容隔直,不能放大直流信号,
且当信号频率较低时,增益下降。
耦合电容容量大,不易集成。
多级放大电路
VCC
Rb Rc
+ T2
uo
Re −
第五章 基本放大电路
直接耦合 优点:
易于集成。 既能放大交流信号,也 能放大直流信号。
缺点: 各级工作点相互影响。 产生零点漂移。

多级放大电路与差分放大电路

多级放大电路与差分放大电路
两者结合优化性能
将多级放大电路与差分放大电路相结合,可以进一步提高 信号放大的性能,实现高增益、低噪声、高抗干扰能力的 放大电路。
研究不足与展望
深入研究非线性失真
目前对于多级放大电路和差分放 大电路的研究主要集中在线性范 围内,对于非线性失真的研究相 对较少。未来可以进一步深入研 究非线性失真对电路性能的影响, 并提出相应的优化措施。
感谢您的观看
THANKS
低失真
由于差分放大电路采用对称结构,因此可以减小 信号的失真度,提高信号的保真度。
3
宽频带
差分放大电路的带宽通常比单端放大电路更宽, 因此可以适应更高频率的信号放大。
差分放大电路的应用
仪器仪表
01
在测量和控制系统中,差分放大电路常被用于将微弱的差分信
号放大为可用的标准信号。
通信系统
02
在通信系统中,差分放大电路可用于提高信号的抗干扰能力和
多级放大电路与差分放大电 路
目录
• 引言 • 多级放大电路概述 • 差分放大电路概述 • 多级放大电路与差分放大电路的比较 • 多级放大电路与差分放大电路的优缺点分析 • 多级放大电路与差分放大电路的应用案例 • 结论与展望
01
引言
目的和背景
深入了解多级放大电 路与差分放大电路的 原理和性能。
输入阻抗低
差分放大电路的输入阻抗较低,可能对信号源 产生负载效应。
对称性要求高
差分放大电路要求两个输入端的信号严格对称,否则可能导致性能下降。
06
多级放大电路与差分放大电 路的应用案例
多级放大电路的应用案例
音频放大器
在音频设备中,多级放大电路用于将微弱的音频信号放大到足够的幅度,以驱动扬声器产生声音。通过多级放大,可 以实现高增益和低失真。

第五章晶体管放大电路的基本知识

第五章晶体管放大电路的基本知识

上一页
下一页
返回
第一节低频电压放大器的结构及特点
三、低频电压放大电路的动态分析
1.电压放大的过程如图5 -9所示 2.电压放大倍数的计算 放大倍数(也称增益)是用来衡量放大器放大信号能力的物理量, 它等于输出信号量与输入信号量之比。 假设C1和C2的容量足够大,则对信号的交流阻抗很小,可看作 对交流短路,同时电源UCC内阻也很小,在它上面几乎没有交流压降, 所以UCC也可看成交流短路。这样,图5 -9所示放大器的交流通路如 图5-10所示。 电压放大倍数用字母AU表示,则根据放大倍数的定义可得 由交流通路就可计算出电路的电压放大倍数。
上一页
下一页
返回
第三节集成运算放大器的基本结构 及应用
(2)反相比例求和电路如果反相输入端有若干个输入信号,则构成反相比 例求和电路,也叫加法运算电路,如图5 -22所示。 2.同相比例运算电路 图5 -23所示为同相比例运算电路,输入信号ui通过电阻R2接在 同相输入端,输出信号通过反馈电阻Rf回送到反相输入端。反相输入 端经电阻R1接地,即构成同相比例运算电路。
上一页
下一页
返回
第三节集成运算放大器的基本结构 及应用
3.电压比较器 如图5-25 ( a)所示的电路,集成运放工作于开环状态。输入电 压ui加于同相输入端,反相输入端接地。当ui略高于0时,由于运放的 开环放大倍数很高,只要输入一个微小的信号,就会放大到极值,输 出级将因信号过大而进入饱和状态,这时ui达到它的正极限值U0+, 并且在ui继续升高时仍保持这个正极限值。同理,当ui略低于0时, uo 达到它的负极限值U0- ,并且在ui继续下降时仍保持这个负极限值。 图5-25 (b)表示上述输入与输出的关系。因此,可根据输出的状态判 断输入是大于0还是小于0,这种电路称为过零比较器或检零计。 检零计输入正弦信号时, ui每次过零时都使输出产生突变,形 成矩形脉冲波,如图5 -25 ( c)所示。运算放大器实现了波形的转换。 利用比较器可设计出一种监控报警电路,如图5 -26所示。

多级放大电路的组成

多级放大电路的组成

+Vcc
Rb C1
Rs
++
Re
us_ _
RL
Ce
_
两种耦合方式的比较
第七节
阻容耦合
直接耦合
特 1. 各级静态工作点互不 点 影响,工作点设置简单
2.性能比较稳定
3.结构简单
1. 既能放大缓慢变化的直流 信号,又能放大交流信号。
2. 无耦合电容和变压器,便 于小型化和制成集成电路。
存在 1. 不能放大直流信号 问题 2. 不适于集成化
第七节
直接耦合放大电路既能放大交流信号,又能放大直流信号, 且体积小,便于集成,因而得到越来越广泛的应用。
Rb1
Rc1
Rb2
+
T1 UI
_
+ Vcc Rc2
+
T2
RL
Uo+ Uo
_
(二)阻容耦合
第七节
放大器中各级间,放大器与信号源,放大器与负载采用电阻和 电容的连接来传送信号,这种方式称为阻容耦合方式。
影响,常用的方法是把后级的输入电阻作为前级的负载
电阻,即RLK=Ri(k+1)(k=1,2···,n-1)。另一种方法是把 前级的输出电阻作为后级的信号源内阻。两种方法不能
混用。
第一级的电压放大倍数为
第七节
Au1 UO1 1RL1 •
Rb1//rbe1
UI
rbe1
Rb2 (Rb1//rb )e1
另外,通过调整元件参数使静态时UC2=0V,实现输入信号为 零时,输出端电位也为零的要求。
Rb1
Rb2
+
UI
_
Rc1
T1
+ Vcc Re2

电子课件-《电工与电子技术基础(第三版)》-A06-3734 第五章 放大与震荡电路

电子课件-《电工与电子技术基础(第三版)》-A06-3734 第五章 放大与震荡电路
估算静态工作点的公式:
固定偏置放大电路的直流等效电路
第五章 放大与震荡电路
(2)动态分析 当放大电路输入交流信号,即 ui ≠ 0 时,称为动态。
放大电路的电压、电流波形图
第五章 放大与震荡电路
通常把交流信号流通的路径称为交流等效电路。交流等效电路的画法原则: 对小容抗的电容和内阻很小的电源,忽略其交流压降,都可以视为短路。
一、集成运算放大器的外形和图形符号
1. 集成运算放大器的外形
常见集成运放的外形 a)双列直插式 b)单列直插式 c)扁平式 d)圆壳式
第五章 放大与震荡电路 2. 集成运算放大器的图形符号
集成运算放大器的图形符号如图所示。图中“ ”表示放大器,三角形所 指方向为信号的传输方向,“∞”表示开环电压放大倍数极高。
一、低频功率放大器的概念
功率放大电路又称为功率放大器,简称“功放”。功放中以半导体三极管 为主要器件,一般称为功率放大管,简称“功放管”。
1. 对功率放大器的基本要求
(1)要求有足够大的输出功率。 (2)要求有较高的效率。 (3)要求非线性失真较小。 (4)要求功放管的散热性能好。
第五章 放大与震荡电路
第五章 放大与震荡电路
对负载来说,放大器又相当于一个具有内阻的信号源,这个内阻就是放大 电路的输出电阻。该放大电路的输出电阻
放大器的输入电阻和输出电阻
第五章 放大与震荡电路
二、分压式射极偏置放大电路
三极管在不同温度时的输出特性曲线
第五章 放大与震荡电路 1. 分压式射极偏置放大电路的结构特点
分压式射极偏置放大电路 a)分压式射极偏置放大电路 b)直流等效电路 c)交流等效电路
2. 加法器
uo = -(ui1 + ui2)

电子技术基础第五章 放大电路的频率特性

电子技术基础第五章  放大电路的频率特性

对数幅频特性和相频特性表达式为 20lg| |=20lg| |–20lg
四、波特图
图5.4.5
5.4.2 单管共源放大电路的频率响应
图5.4.7
5.4.3 放大电路频率响应的改善和增益带宽积 为改善低频特性,需加大耦合电容及其回路 路电阻以降低下限频率,直接耦合方式,下限 频率为0。 为改善高频特性,需减小 或 及其回路 电阻,以增大上限频率。
二、超前补偿
图5.6.6
图5.6.7
5.7 频率响应与阶跃响应
5.7.1 阶跃响应的指标 1、上升时间tr: 0.1Um~0.9Um的时间 2、倾斜率δ
3、超调量:上升值 超过终了值的部 分,一般用百分 比来表示。 图5.7.2
5.7.2 频率响应与阶跃响应的关系
图5.7.3 所在回路是低通回路,在阶跃信号作用时, 上的电压 将按指数规律上升,其起始值为 0,终了值为 ,回路时间常数为 ,因而
5.2 晶体管的高频等效模型
5.2.1 晶体管的混合π模型 一、完整的混合π模型
图 5.2.1
二、简化的混合π模型
图 5.2.2
等效变换: 在图(a)电路中,从b’看进去Cμ中流过的电流为
为保证变换的等效性,要求流过 的电流仍 为 ,而它的端电压为 ,因此 的电抗为
在近似计算时, 取中频时的值,所以 | | = 说明 是 的 (1+| |)分之一,因此 | |) 间总电容为 | 用同样的方法可以得出 |)
要减小 ,则要减小 ,这将使电压放大 倍数减小。可见提高 和增大电压放大倍数是 矛盾的。
单管共射放大电路的增益带宽积为 | || |
设 则 |
,则 ;设 。 则 |
;设
,则
,且

模拟电路第05章 放大电路的频率响应图

模拟电路第05章 放大电路的频率响应图
返回
图5.1.1 高通电路及频率响应
返回
图5.1.2 低频电路及其频率响应
返回
图5.1.3 高通电路与低通电路的波特图
返回
5.2 晶体管的高频等效模型
• 图5.2.1 晶体管结构示意图及混合π模型 • 图5.2.2 混合π模型的简化 • 图5.2.3 的分析 • 图5.2.4 的波特图
返回
C1
RS +
VS -
VCC
大 RB
RC
C2 + RL VO -
b rbb b’cBiblioteka RS+ VS
-
e
rbe gmvbe
RL Vo
e
中频增益:
Am
VO VS
Vbe VS
VO Vbe
rbe
gm Vbe RL
RS rbb rbe
Vbe
RS
rbe rbb
rbe
gm RL
O RL rbe O RL
5、查手册得:rbb、cbc、fT (已知条件);
6、
e
结电容:cbe
gm
2 fT
cbc
Miller 定理
I1
Z
Z in + V1 ~ -
Ii I +
ri AV1 -
I2
单向化
Z in
+
+ I1
V2 -
V1 ~ -
Z1
Ii II +
ri AV1 -
I2
+ Z2 V2
-
加 V1 产生 V2 :
Z1 IIV 1 I
返回
图5.6.1 未加频率补偿的集成运放的频率响应

多级放大电路

多级放大电路

第五章多级放大电路第一节多级放大电路在实际工作中,为了放大非常微弱的信号,需要把若干个基本放大电路连接起来,组成多级放大电路,以获得更高的放大倍数和功率输出。

多级放大电路内部各级之间的连接方式称为耦合方式。

常用的耦合方式有三种,即阻容耦合方式、直接耦合方式和变压器耦合方式。

1.多级放大电路的耦合方式1.1阻容耦合通过电容和电阻将信号由一级传输到另一级的方式称为阻容耦合。

图所示电路是典型的两级阻容耦合放大电路。

优点:耦合电容的隔直通交作用,使两级Q相互独立,给设计和调试带来了方便;缺点:放大频率较低的信号将产生较大的衰减,不适合传递变化缓慢的信号,更不能传递直流信号;加之不便于集成化,因而在应用上也就存在一定的局限性。

1.2直接耦合多级放大电路中各级之间直接(或通过电阻)连接的方式,称为直接耦合。

直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢的信号、信号传输效率高等优点,在集成电路中获得了广泛的应用。

直接耦合放大电路存在的最突出的问题是零点漂移问题。

所谓零点漂移是指把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。

1.3变压器耦合变压器耦合放大电路如图所示。

这种耦合电路的特点是:级间无直流通路,各级Q独立;变压器具有阻抗变换作用,可获最佳负载;变压器造价高、体积大、不能集成,其应用受到限制。

1.4级间耦合的优、缺点及应用比较2.直接耦合放大电路的特殊问题——零点漂移2.1零点漂移所谓零点漂移是指当把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。

产生零点漂移的原因很多。

如晶体管的参数随温度的年华、电源、电压的波动等,其中,温度的影响是最重要的。

在多级放大电路中,又已第一、第二级的漂移影响最为严重。

因此,抑制零点漂移着重点在第一、第二级。

2.2差分式放大电路(观看视频)在直接耦合多级放大电路中抑制零点漂移最有效的电路结构是差动放大电路。

第5章放大电路的频率响应

第5章放大电路的频率响应

f L(H)
1 = 2 πτ
4、频率响应有幅频特性和相频特性两条曲线。 、频率响应有幅频特性和相频特性两条曲线。
5.2、ቤተ መጻሕፍቲ ባይዱ大电路的频率参数 5.2、放大电路的频率参数
高通 电路 低通 电路 下限频率
f bw = f H f L
上限频率
在低频段,随着信号频率逐渐降低,耦合电容、 在低频段,随着信号频率逐渐降低,耦合电容、旁路电 容等的容抗增大,使动态信号损失,放大能力下降。 容等的容抗增大,使动态信号损失,放大能力下降。 在高频段,随着信号频率逐渐升高, 在高频段,随着信号频率逐渐升高,晶体管极间电容和 分布电容、寄生电容等杂散电容的容抗减小, 分布电容、寄生电容等杂散电容的容抗减小,使动态信号 损失,放大能力下降。 损失,放大能力下降。
f << fβ 时,& ≈ β0; β
& β βo
β f = fβ 时 β = 0 ≈ 0.707β0 , = -45°; ,& 2 & ≈ fβ β ;f →∞时 β →0, →-90° f >> fβ 时 β , ,& 0 f
电流放大倍数的波特图: 电流放大倍数的波特图: 采用对数坐标系
折线化近似画法
晶体管的高频等效电路
1、混合π模型:形状像Π,参数量纲各不相同 混合π模型:形状像Π
结构:由体电阻、结电阻、结电容组成。 结构:由体电阻、结电阻、结电容组成。 因面积大而 阻值小
因多子浓度 高而阻值小
rbb’:基区体电阻 rb’e’:发射结电阻 Cπ:发射结电容 re:发射区体电阻 rb’c’:集电结电阻 C:集电结电容 rc:集电区体电阻
C连接了输入回路 和输出回路, 和输出回路,引入 了反馈, 了反馈,信号传递 有两个方向, 有两个方向,使电 路的分析复杂化。 路的分析复杂化。

多级放大电路

多级放大电路
电路与电子技术
信号放大电路
1.1
多级放大电路的组成
多级放大电路的组成框图如图所示
多级放大电路
输入级通常要求输入电阻高, 以减小对信号源的影响, 一般采用共集电极 放大电路或场效应管放大电路; 中间级要求具有足够的放大倍数, 一般由 若干级共射放大电路组成; 输出级一方面要求输出电阻要低, 以提高带负 载能力, 另一方面要具有一定的输出功率, 一般采用共集放大电路或功率 放大器。
信号放大电路
1.2
多级放大电路的级间耦合方式
1.阻容耦合
在图所示的两级放大电 路中, 第一级和第二 级之间通过电容C2 实 现连接, 因而称为阻 容耦合。显然, 信号 源与第一级之间、第二 级与负载之间也是阻容 耦合。
多级放大电路
信号放大电路
1.2
多级放大电路的级间耦合方式
2.直接耦合
将前级电路的输出直接接到 后级电路的输入, 称为直接 耦合, 如图所示。
多级放大电路的输出电阻等于末级(即输出级) 的输出电阻, 即
电路与电子技术
多级放大电路
信号放大电路
1.2
多级放大电路的级间耦合方式
3.变压器耦合
变压器耦合放 大电路如图所 示, 前后级通 过变压器传递 交流信号。
多级放大电路
信号放大电路
1.3
多级放大电路的Байду номын сангаас能分析
多级放大电路
多级放大电路的电压放大倍数为各级电压放大倍数的乘积。对于一个n 级放 大电路, 有
需要注意的是, 在计算各级放大电路的放大倍数时, 应将后级电路的输入 电阻作为负载。 多级放大电路的输入电阻等于第一级(即输入级) 的输入电阻, 即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章多级放大电路第一节多级放大电路在实际工作中,为了放大非常微弱得信号,需要把若干个基本放大电路连接起来,组成多级放大电路,以获得更高得放大倍数与功率输出。

多级放大电路内部各级之间得连接方式称为耦合方式。

常用得耦合方式有三种,即阻容耦合方式、直接耦合方式与变压器耦合方式。

1、多级放大电路得耦合方式1、1阻容耦合通过电容与电阻将信号由一级传输到另一级得方式称为阻容耦合。

图所示电路就是典型得两级阻容耦合放大电路。

优点:耦合电容得隔直通交作用,使两级Q相互独立,给设计与调试带来了方便;缺点:放大频率较低得信号将产生较大得衰减,不适合传递变化缓慢得信号,更不能传递直流信号;加之不便于集成化,因而在应用上也就存在一定得局限性。

1、2直接耦合多级放大电路中各级之间直接(或通过电阻)连接得方式,称为直接耦合。

直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢得信号、信号传输效率高等优点,在集成电路中获得了广泛得应用。

直接耦合放大电路存在得最突出得问题就是零点漂移问题。

所谓零点漂移就是指把一个直接耦合放大电路得输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。

1、3变压器耦合变压器耦合放大电路如图所示。

这种耦合电路得特点就是:级间无直流通路,各级Q独立;变压器具有阻抗变换作用,可获最佳负载;变压器造价高、体积大、不能集成,其应用受到限制。

耦合方式优点缺点应用直接耦合·可放大直流及缓慢变化得信号,低频响应好。

·便于集成·各级Q不独立,使设计、计算、调试不便。

·有严重得零点漂移问题。

直流或交流放大,分立或集成电路阻容耦合·各级Q独立·传输交流信号损失小,增益高·体积小,成本低·无法集成·不能放大直流及缓慢变化得信号,低频响应差交流放大分立电路变压器耦合·各级Q独立·可以改变交流信号得电压、电流与阻抗·无法集成·高频与低频响应差·体积大,笨重功率放大调谐放大2、1零点漂移所谓零点漂移就是指当把一个直接耦合放大电路得输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。

产生零点漂移得原因很多。

如晶体管得参数随温度得年华、电源、电压得波动等,其中,温度得影响就是最重要得。

在多级放大电路中,又已第一、第二级得漂移影响最为严重。

因此,抑制零点漂移着重点在第一、第二级。

2、2差分式放大电路(观瞧视频)在直接耦合多级放大电路中抑制零点漂移最有效得电路结构就是差动放大电路。

因此,在要求较高得多级直接耦合放大电路得前置级与集成电路中广泛采用这种电路。

2、2、1差分放大电路得组成差分放大电路就是由对称得两个基本放大电路,通过射极公共电阻耦合构成得,如图所示。

对称得含义就是两个三极管得特性一致,电路参数对应相等。

β1=β2=βV BE1=V BE2=V BEr be1=r be2=r be I CBO1=I CBO2=I CBOR c1=R c2=R c R b1=R b2=R b2、2.2 差分放大电路得输入与输出方式差分放大电路一般有两个输入端:同相输入端,反相输入端。

根据规定得正方向,在一个输入端加上一定极性得信号,如果所得到得输出信号极性与其相同,则该输入端称为同相输入端。

反之,如果所得到得输出信号得极性与其相反,则该输入端称为反相输入。

信号得输入方式:若信号同时加到同相输入端与反相输入端,称为双端输入; 若信号仅从一个输入端加入,称为单端输入。

差分放大电路可以有两个输出端,一个就是集电极C1,另一个就是集电极C2。

从C1与C2输出称为双端输出,仅从集电极C1或C2对地输出称为单端输出。

2.2、3、差模信号与共模信号差模信号就是指在两个输入端加上幅度相等,极性相反得信号;共模信号就是指在两个输入端加上幅度相等,极性相同得信号。

如图所示。

差分放大电路仅对差模信号具有放大能力,对共模信号不予放大。

温度对三极管电流得影响相当于加入了共模信号。

差分放大器就是模拟集成运算放大电路输入级所采用得电路形式。

3、多级放大电路得分析方法(图见书P73)分析多级放大电路得基本方法就是:化多级电路为单级,然后再逐级求解。

化解多级电路时要注意,后一级电路得输入电阻作为前一级电路得负载电阻;或者,将前一级输出电阻作为后一级电路得信号源内阻。

3、1输入电阻与输出电阻多级放大电路得输入电阻就就是第一级放大电路得输入电阻,其输出电阻就就是最后一级放大电路得输出电阻。

有时第一级得输入电阻也可能与第二级电路有关,最后一级得输出电阻也可能与前一级电路有关,这就取决于具体电路结构。

=,其中,为第一级得等效偏流电阻。

3、2电压放大倍数式中A u1、A u2…A un :多级放大电路各级得电压放大倍数。

A u(dB)= A u1(dB)+ A u2(dB)+ …+ A un(dB)注意:在计算每一级电压放大倍数时,要把后一级得输入电阻视为它得负载电阻。

,其中,而,可见,为、、、四个电阻并联。

,其中,又有例题3-1补充例题三级放大电路如图Z0225所示。

计算该电路得A u 、r i 、r o 。

(略)解:(1)电压放大倍数按前述分析方法将三级放大电路划分为3个单级放大电路,如图Z0226所示。

由上图可见,第一级电路与第三级电路为共集电极放大电路,其电压放大倍数为:A u1=A u3≈1,第二级电路为共射极放大电路,它得电压放大倍数为A u2 = - β(R C2∥r i3)/r be2总电压放大倍数为: A u=A u1·A u2·A u3≈(2)输入电阻第一级电路为射极输出器,它得输入电阻为:故:(3)输出电阻第三级电路为射极输出放大电路则:由上例可以瞧出,分析多级放大电路得关键在于正确地划分出各单级放大电路。

第二节放大电路得频率特性1.频率响应概述前面讨论放大电路时,为了便于研究,都假定了输入信号v i就是单一频率得正弦波,而实际工作中所要放大得信号并不就是单一频率得正弦波。

由于放大电路中电抗元件得存在,放大电路对不同频率分量得信号放大能力就是不相同得,而且不同频率分量得信号通过放大电路后还会产生不同得相移。

因此,衡量放大电路放大能力得放大倍数也就成为频率得函数。

放大电路得电压放大倍数与频率得关系称为幅频特性,输出信号与输入信号得相位差与频率之间得关系称为相频特性。

两者统称频率特性。

晶体管PN结两侧电荷得分布使之具有一个附着得小电容,我们称之为极间电容或结电容。

结电容、放电电路中耦合电容与旁路电容、电路联线分布电容,这些使得实际放大电路得电压放大倍数随着频率得变化而变化。

在工业电子技术中,最常用得就是低频放大电路,其频率范围约为20~10000Hz。

在分析放大电路得频率特性时,再将低频范围分为低、中、高三个频段,分别求出各频段中得频率特性,然后综合求得完整得频率特性。

放大电路得频率特性中有三项性能指标,它们就是:(1)下限频率在低频段,放大电路得电压放大倍数降到中频段电压放大倍数A vo得0、707A vo时得频率值叫做下限频率f L,如图(a)所示。

引起低频段电压放大倍数下降得原因主要就是输入耦合电容、输出耦合电容与射极旁路电容,对低频信号形成较大得衰减,从而使电压放大倍数下降。

(2)上限频率在高频段,放大电路得电压放大倍数降到中频段电压放大倍数Avo得0、707A vo时得频率值叫做上限频率fH,如图(a)所示。

引起高频段电压放大倍数下降得原因主要就是三极管得极间电容与放大电路得输入电路与输出电路得分布电容,将高频信号旁路,从而使电压放大倍数下降。

(3)通频带在频率特性得中频段,放大电路得各种电容对交流信号得影响均可以忽略,因此电压放大倍数Avo 基本不变。

这个频率带宽B=fH-fL,称B为通频带。

放大电路得通频带越宽,即放大电路得频率特性就越好。

对于任一放大电路都有一确定得通频带,在设计电路时,必须首先了解信号得频率范围,以便使所设计得电路具有适应于该信号频率范围得通频带;在使用电路前,应查阅手册、资料,或实测其通频带,以便确定电路得适用范围。

三个特点:(1)中频区:耦合电容(大电容)与结电容(小电容)均可忽略。

可认为增益得大小与相位差不随频率变化。

(2)低频区:结电容(小电容)可以忽略。

但耦合电容(大电容)不可忽略。

可认为增益得大小随频率减小而降低。

(3)高频区:耦合电容(大电容)可以略,结电容(小电容)不可忽略。

可认为增益得大小随频率升高而降低。

多级电路频率特性得总带宽小于各级电路得带宽第三节功率放大电路(OTL)观瞧视频前面讨论得各种放大电路得主要任务就是使负载上获得尽可能大得不失真电压信号,它们得主要指标就是电压放大倍数。

而功率放大电路得主要任务则就是,在允许得失真限度内,尽可能高效率地向负载提供足够大得功率。

因此,功率放大电路得电路形式、工作状态、分析方法等都与小信号放大电路有所不同。

1、对功率放大电路得基本要求(1)功率要大输出功率P o=V o I o,要获得大得输出功率,不仅要求输出电压高,而且要求输出电流大。

因此,晶体管往往工作在极限状态,应用时要考虑管子得极限参数,注意管子得安全。

(2)效率要高放大信号得过程就就是晶体管按照输入信号得变化规律,将直流电源提供得能量转换为交流能量得过程。

其转换效率为负载上获得得信号功率与电源供给得功率之比值,即:式中:Po 负载上获得得信号功率;PV电源供给得功率。

(3)合理得设置功放电路得工作状态在这里,我们主要讨论三种功放电路:甲类、甲乙类、乙类。

(略)由于在能量转换得过程中,晶体管要消耗一定得能量,从而造成了η下降。

显然,要提高η,就要设法减小晶体管得损耗。

而晶体管得损耗与静态工作点密切相关。

图2、9、1 给出了晶体管得几种工作状态及对应得输出波形。

由图可见,甲类状态,i C始终存在,没有信号输入时,直流电源供给得能量全部消耗在晶体管上,这种状态得效率很低;乙类状态,没有信号输入时,i C=0,晶体管不消耗能量,这种状态得效率较高。

这就指明了提高效率得途径就是降低静态工作点。

(4)失真要小。

甲类功放通过合理设置静态工作点,非线性失真可以很小,但它得效率低。

乙类状态虽然效率高,但输出波形却只有半波波形。

为了保存乙类状态高效率得优点,可以设想让两个管子轮流工作在输入信号得正半周与负半周,并使负载上得到基本完整得输出波形。

三极管从甲类工作状态改为乙类或甲乙类工作状态。

此时虽降低了静态工作电流,但依然还存在失真问题,即交越失真。

如果不能解决乙类状态下交越失真问题,乙类工作状态在功率放大电路中仍不能采用。

推挽电路与互补对称电路较好地解决了乙类工作状态下得失真问题。

相关文档
最新文档