钢结构计算题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《钢结构设计原理》
【练习1】两块钢板采用对接焊缝(直缝)连接。
钢板宽度L=250mm ,厚度t=10mm 。
钢材采用Q235,焊条E43系列,手工焊,无引弧板,焊缝采用三级检验质量标准,
2/185mm N f w t =。
试求连接所能承受的最大拉力?=N
解:无引弧板时,焊缝的计算长度w l 取实际长度减去2t ,即250-2*10mm 。
根据公式 w t w f t
l N
<⋅=
σ 移项得: kN N f t l N w t w 5.42542550018510)102250(==⨯⨯⨯-=⋅⋅< 【变化】若有引弧板,问?=N
解:上题中w l 取实际长度250,得kN N 5.462=
【练习2】两截面为450⨯14mm 的钢板,采用双盖板焊接连接,连接盖板宽300mm ,长度410mm(中间留空10mm),厚度8mm 。
钢材Q235,手工焊,焊条为E43,2
/160mm N f w f =,静态荷载,mm h f 6=。
求最
大承载力?=N
解:端焊缝所能承担的内力为:
N f l h N w f f w f 49190416022.130067.027.033=⨯⨯⨯⨯⨯=∑=β
侧焊缝所能承担的内力为:
N f l h N w f w f 521472160)6200(67.047.011=⨯-⨯⨯⨯=∑= 最大承载力kN N N 4.10131013376521472491904==+= 【变化】若取消端焊缝,问?=N
解:上题中令03=N ,622001⨯-=w l ,得kN N N 344.5051==
【练习3】钢材为Q235,手工焊,焊条为E43,2/160mm N f w f =,静态荷载。
双角钢2L125x8采用三面围焊和节点板连接,mm h f 6=,肢尖和肢背实际焊缝长度均为250mm 。
等边角钢的内力分配系数7.01=k ,3.02=k 。
求最大承载力?=N
解:
端焊缝所能承担的内力为:
N f l h N w f f w f 20496016022.112567.027.033=⨯⨯⨯⨯⨯=∑=β
肢背焊缝所能承担的内力为:
N f l h N w f w f 327936160)6250(67.027.011=⨯-⨯⨯⨯=∑=
根据2
3
11N N k N -= 得:kN N N N K N 88.614614880)2
204960327936(7.01)2(1311==+=+=
【变化】若取消端焊缝,问?=N
解:上题中令03=N ,622501⨯-=w l ,得kN N 96.456=
【练习4】钢材为Q235,手工焊,焊条为E43,2
/160mm N f w
f =,静态荷载。
已知kN F 120=,求焊脚尺寸?=f h (焊缝有绕角,焊缝长度可以不减去f h 2)
解:设焊脚尺寸为f h ,焊缝有效厚度为f
e h h 7.0=
将偏心力移到焊缝形心处,等效为剪力V =F 及弯矩M=Fe 在剪力作用下:
f
f w e V f
h h l h V 9
.3422507.02101203=
⨯⨯⨯=∑=τ )/(2mm N 在弯矩作用下:
f f f M f
h h W M 1234
2507.06
12150101202
3=
⨯⨯⨯⨯==σ
)/(2mm N 代入基本公式W f f f
f f ≤+22
)()(τβσ 得: 1601068
)9.342()22.11234(
22≤=+f f
f h h h
可以解得:mm h f 68.6≥,取mm h f 7=。
mm h h mm h f f f 4.14122.16.5145.1max min =⨯=<<==,可以。
【变化】上题条件如改为已知mm h f 8=,试求该连接能承受的最大荷载?=N 【练习5】钢材为Q235,手工焊,焊条为E43,2/160mm N f w f =,静态荷载。
已知mm h f 8=,求连接能承受的最大荷载?=N (焊缝无绕角)
解:偏心距mm e 751002
350
=-= 弯距:N M 75=
8
.3740)82350(87.02N
N l h N w e N f
=⨯-⨯⨯⨯=∑=σ
5
.2776)82350(87.061
2752
N
N
W M
f
M f =
⨯-⨯⨯⨯⨯==
σ
2.19516022.15
.27768.3740=⨯=≤+=+=w f f M
f
N f f N N βσσσ 可以解得:kN N N 08.311311082=≤
【变化】焊缝有绕角,焊缝长度可以不减去f h 2,求?=N
【练习6】钢板截面为310mm ⨯14mm ,盖板截面为310mm ⨯10mm ,钢材为Q235,
2/215mm N f =, C 级螺栓20M ,孔径21.5mm ,2/140mm N f b v =,2
/305mm N f b c =,求该连接的最大承载力?=N
解:
⑴一个螺栓的抗剪承载力设计值: kN f
d n N b v
V
b V
96.87101404
2014.324
32
2
=⨯⨯⨯⨯==-π
⑵一个螺栓的承压承载力设计值:
kN f t d N b c b c 4.851030514203
=⨯⨯⨯=⋅∑=-
(因为mm t mm t 201022141=⨯=<=,故公式中取14=∑t ) ⑶最大承载力
kN nN N b
2.6834.858min =⨯== ⑷净截面强度验算:
223
3/215/9.2173136
102.68314)5.214310(102.683mm N f mm N A N n =>=⨯=⨯⨯-⨯==σ
不满足要求。
最大承载力由净截面强度控制:
kN f A N n 24.67410
21531363
=⨯⨯==-
【变化】上题条件如改为已知N=600kN ,试验算该连接是否安全?
【练习7】钢板截面为310mm ⨯20mm ,盖板截面为310mm ⨯12mm ,钢材为Q235,
2/215mm N f =(16≤t ),2/2
05mm N f =(16>t )。
8.8级高强度螺栓摩擦型连接
20M ,孔径22mm ,接触面喷砂,μ=0.45,预拉力kN P 125=。
求该连接的最大承载
力?=N
解:
⑴一个高强度螺栓的抗剪承载力设计值:
kN P n N f b
V 25.10112545.029.09.0=⨯⨯⨯=⋅=μ ⑵最大承载力
kN nN N b
V 81025.1018=⨯==
⑶净截面强度验算:
2
23
1/205/8.13620
)224310(10810)845.01()5.01(mm N f mm N A N n n n =<=⨯⨯-⨯⨯-=-=σ⑷毛截面强度验算:
223
/205/6.13020
31010810mm N f mm N A N =<=⨯⨯==σ
【变化】上题条件如改为已知N=800kN ,试验算该连接是否安全?
【练习8】 拉力F 与4个螺栓轴线的夹角为450
,柱翼缘厚度为24mm ,连接钢板厚度
16mm 。
钢材为Q235,2
/215mm N f =(16≤t ),2/20
5mm N f =(16>t )。
8.8级高
强度螺栓摩擦型连接20M ,孔径22mm ,接触面喷砂,μ=0.45,预拉力kN P 125=。
求该连接的最大承载力?=F
解:
斜拉力F 的两个分力为:o
F N V 45sin ==,
每个螺栓同时承受的剪力和拉力为:
F F N N o t v 8
2
445sin ==
= 螺栓同时承受的剪力和拉力,用规范相关公式求解:
1≤+b t
t
b v v N N N N 一个高强度螺栓的抗剪承载力设计值:
kN
P n N f b v
625.5012545.019.09.0=⨯⨯⨯=⋅=μ
一个高强度螺栓的抗拉承载力设计值:
kN P N b
t 1001258.08.0=⨯==
代入规范公式:
1≤+b
t t b v v N N N N 即
110082625.5082≤⨯+⨯F
F 可以解得:kN N 13.190≤
【变化】上题条件如改为已知N=190kN ,试验算该连接是否安全?
【练习9】 钢材为Q235,2
/215mm N f =(16≤t )。
C 级螺栓22M ,有效直径为
mm d e 65.19=,孔径mm d 240=,2/140mm N f b v =,2/305mm N f b c =,2/170mm N f b t =,求该连接的最大承载力?=F
解:
斜拉力F 的两个分力为:o
F N V 45sin ==, 每个螺栓同时承受的剪力和拉力为:
F F N N o t v 8
2
445sin ===
螺栓同时承受剪力和拉力,应根据相关公式验算:
1)()(
2
2≤+b l
l b v v N N N N 及 b c v N N ≤ 一个螺栓的抗剪承载力设计值:
kN
f
d n N b v
V
b
V
2.53101404
2214.314
32
2
=⨯⨯⨯⨯==-π 一个螺栓的承压承载力设计值:
kN f t d N b c b c 36.1071030516223=⨯⨯⨯=⋅∑=-
一个螺栓的抗拉承载力设计值:
kN f d N b
t e b
t
6.51101704
65.1914.3432
2
=⨯⨯⨯==-π 代入公式得:
1)6.5182()2.5382()()(
2
222≤⨯+⨯=+F F N N N N b
l l b v v
可以解得:kN F 5.209≤
再验算:kN N kN N b c v 36.10703.378
5
.2092=<=⨯=
,可以。
【变化】上题条件如改为已知N=200kN ,试验算该连接是否安全?
【练习10】已知某轴心受压实腹柱AB , AB 长L=5m ,中点L/2处有侧向支撑。
采用三块钢板焊成的工字型柱截面,翼缘尺寸为300mm ×12mm ,腹板尺寸为200mm ×6mm 。
钢材为Q235 ,2
/215mm N f =。
求最大承载力?=N
解:
按题意得:m l ox 5=,m l oy 5.2=
⑴ 解题思路:轴心受压柱整体稳定的验算公式为:
f A
N ≤ϕ 式中ϕ要由x λ或y λ查出 上式中:x ox
x i l =
λ,y
oy y i l =λ,其中: A I i x x =,A
I i y y =,23
12a A bh I i x ∑+= A为柱的截面积(按实计算),x l 0、y l 0为柱在x 、y 方向的计算长度。
⑵ 验算时将上述过程倒过来即可。
为方便计算,单位采用cm 。
① 截面积: 2
846.0202.1302cm A =⨯+⨯⨯=
② 惯性距: 43
356.849812204.29124.2230cm I x =⨯-⨯=
43
540012302.12cm I y =⨯⨯
= ③ 回转半径: cm A I i x x 06.108456.8498=== cm A I i y
y 02.8845400
==
=
④ 长细比: []15070.4905
.10500
=<===λλx ox x i l
[]15017.3102
.8250
=<==
=
λλy oy
y
i l
⑤ 稳定系数:b 类截面,由最大长细比70.49=x λ查附表得:
8575.0)861.0856.0(49
5049
7.49861.0=---+
=x ϕ
⑥ 整体稳定验算:
kN N Af N 6.1548154864521510848575.02
==⨯⨯⨯==ϕ ⑦ 局部稳定验算: 腹板的高厚比:
85.49235
235)7.495.025(235)5.025(3.336.0200=⨯+=+<==y w f t h λ(可以) 翼缘的宽厚比:
97.14235
235)7.491.010(235)1.010(25.122.17.14=⨯+=+<==y f t b λ (可以)
【变化】已知柱承受轴心压力N=1500kN,试验算该柱。