第六章 近独立粒子的最概然分布(2014)

合集下载

第六章近独立粒子的最概然分布习题课

第六章近独立粒子的最概然分布习题课

第六章-近独立粒子的最概然分布(习题课)第六章 近独立粒子的最概然分布(习题课)本章题型一、基本概念:1、粒子相空间、自由度;广义坐标、广义动量;粒子微观状态、系统微观状态;经典相格与粒子微观状态;系统宏观态与系统微观态。

2、等概率原理(统计物理学的基本假设):平衡态孤立系统的各个微观态出现的概率相等。

最概然分布作为平衡态下的分布近似。

3、近独立粒子孤立系统的粒子分布和与一个分布相对应的系统的微观状态数及各分布出现的几率、最概然分布。

,,,,21l τττ∆∆∆,,,,21l εεε}{l a,,,,21l ωωω,,,,21l a a a与分布}{l a 对应的微观状态数为()l a Ω分布{}l a 要满足的条件是:N al l=∑ E =∑lll a ε系统总的微观状态数()()lm man a l a a lΩΩ=Ω∑~总系统某时刻的微观状态只是其中的一个。

在宏观短,微观长时间内(一瞬间)系统经历了所有的微观状态()()lm man a l a a lΩΩ∑~----各态历经假说。

且各微观态出现的概率相等()()lm man a l a a lΩ≈Ω=∑11ρ()le a a l lm l βεαωδ--=⇒=Ω0ln ---玻耳慈曼分布。

此分布(宏观态)的概率为()()()()()()1=ΩΩ≈ΩΩ=Ω=∑lmman lm man a l lm man lm man lm a a a a a a p lρ 即:最概然分布几乎就是孤立系统的平衡态分布。

4、热力学第一定律的统计解释:Q d W d dU +=l ll l ll l l da d a dU a U ∑∑∑+=⇒=εεε比较可知:l ll d a W d ε∑=l ll da Q d ∑=ε即:从统计热力学观点看,做功:通过改变粒子能级引起内能变化; 传热:通过改变粒子分布引起内能变化。

二、相关公式 1、分布与微观状态数①、 ()la l lll l B M a a ω∏=Ω∏!N!..②、 ()∏--+=Ωll l l lE B a a a )!1(!)!1(..ωω ③、 ()∏-=Ωll l l l D F a a a )!(!!..ωω ④、 ()la r l l ll l cl h a N a ) ( ! !ω∆∏∏=Ω2、最概然分布玻耳兹曼分布le a l l βεαω--=玻色-爱因斯坦分布1-=+l e allβεαω费米-狄拉克分布1+=+l e allβεαω本章题型※、第一类是求粒子运动状态在μ空间的相轨迹:关键是由已知条件写出广义坐标q 和广义动量p 满足的函数关系()0,=p q f 。

热力学与统计物理学第六章(应用)_近独立粒子的最概然分布

热力学与统计物理学第六章(应用)_近独立粒子的最概然分布

al ln N E ln l al 0 l l al ln l 0 l 1,2,
l
al l e
l
或者
al
e
l
l
玻耳兹曼系统的最概然分布:麦克斯韦-玻耳兹曼分布(M.B) 拉氏乘子由下式确定:
不是独立变量
al 0
需满足条件:
N al 0
l
E l al 0
l
引入拉格朗日乘子 和
,建立辅助函数:
W (a1 , a2 , , al , ) ln N E
其全微分:
al ln N E ln l al 0 l l 26
l l
N ln N al ln al al ln l
当 al 有 al 的变化时,应有 ln 0
l l
ln ln al 1al ln lal
l l
25
的结论,因为
al ln ln l l

l
l
1
(经典极限条件或 所有的l 非简并性条件)
la
F . D.
l ! l l 1 l al 1 al ! ! l l a l ! l a l

l
M . B. al ! N!
l
l a
M . B. al ! N!
确定第 i 个粒子的力 学运动状态。
确定系统的微观运动状态需要
2 Nr
个变量。
qi1 ,, qir ; pi1 ,, pir i 1,2,, N

第六章近独立粒子的最概然分布

第六章近独立粒子的最概然分布

近独立粒子的最概然分布热力学和统计物理的关系:热力学是热运动的宏观理论,以实验总结的定律触发,经过严密的逻辑推理得到物体宏观热性质间的联系,宏观过程进行的方向和限度,从而结实热现象的有关规律。

而统计物理是热运动的微观理论,基本观点是认为宏观物质系统由大量微观粒子组成,宏观性质是大量微观粒子的集体表现,宏观热力学量则是相应微观力学量的统计平均值。

热力学验证统计物理,而统计物理揭示了热力学的本质。

μ空间:设粒子的自由度为r 。

经典力学中,粒子在任意时刻的力学运动状态由粒子的r 个广义坐标12r q ,q ,q 和与之共轭的r 个广义动量12r p ,p ,p 在该时刻的数值确定。

粒子的能量ε是其广义坐标和广义动量的函数:1r 1r (q ,q ;p ,p )ε=ε用1r 1r q ,q ;p ,p 共2r 个变量为直角坐标构成一个2r 维空间,称为μ空间。

粒子运动状态的经典描述和量子描述:① 一维谐振子在经典力学中,任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为p mx ∙=,它的能量是其动量和势能之和:222p 1m x 2m 2ε=+ω 在量子力学中,圆频率为ω的线性谐振子,能量的可能值为:n 1(n )2ε=ω+ ② 转子在经典力学中,用球极坐标(r,,)θϕ描述质点的位置: x rsin cos ,y rsin sin ,z rcos =θϕ=θϕ=ϕ.与坐标共轭的动量为222p mr ,p mr sin ∙∙θϕ=θ=θϕ质点的能量可以表示为22211(p p )2I sin θϕε=+θ在量子力学中,转子的能量是:2M 2Iε= 其中,2M 只能取分立值22M l(l 1),l 0,1,2,=+=③ 自由粒子在经典力学中,在三维空间中运动,在任意时刻的位置可由坐标(x,y,z)确定,与之共轭的动量为:x y z p mx,p my,p mz ∙∙∙=== 自由粒子的能量就是它的动能:222x y z 1(p p p )2mε=++. 在量子力学中,设粒子处在边长为的立方容器内,粒子三个动量分量的可能值为x x x 2p n ,n 0,1,2,L π==±± y y y 2p n ,n 0,1,2,L π==±± z z z 2p n ,n 0,1,2,Lπ==±± x y z n ,n ,n 就是表征三维自由粒子运动状态的量子数,三维自由粒子能量的可能取值为22222x y z 222x y z 2n n n 12(p p p )2m m L++πε=++=态密度:在体积V 内,动量大小在p 到p+dp 的范围内,自由粒子可能状态数为234V p dp h π,根据公式,算出,在体积V 内,在到的能量范围内,自由粒子可能的状态数为312232V D()d (2m)d hπεε=εε D()ε表示单位能量间隔内的可能状态数,称为态密度。

近独立粒子的最概然分布

近独立粒子的最概然分布

空间:2维
px2
2m
0 x L
px
当粒子以一定的动量 px 在容器
中运动时,粒子运动状态代表 点在µ空间的轨道是平行于x轴 的一条直线。
空间的体积元:d dxdpx
MUSIC
2.三维自由运动粒子
r 3 x, y, z px, py , pz
px mx py my pz mz
(角动量=转动惯量X角速度)L=Iω
p , p 是转子角动量的两个分量


1 m(r2 2 r2 sin2 2)
2
I mr2

21I(p2

1 sin2

p2)
转子的总角动量: L r p 守恒(无外力)
选 Z 平行 L
=2,p
0

p2 L2
1 2m
px2

p
2 y

pz2
空间:6维
3个2维的子空间
空间的体积元:d dxdydzdpxdpydpz
MUSIC
(二)线性谐振子 质量m F Ax (谐振子受力方程)
F Ax mx
x A x 0 ( A)
m
m
r=1 x px 二维空间
对单粒子: 量子数的数目=粒子的自由度 数
MUSIC
二、举例
(一)线性谐振子
,
n
(n 1)
2
n 0,1,2……
n(振动量子数):运动状态和能量的量子数.
1个量子数(n)
自由度
0

1 2
r=1
0——零点效应
能级间隔: =n+1 n (常数)

第六章:近独立粒子的最概然分布 热力学统计物理汪志诚

第六章:近独立粒子的最概然分布  热力学统计物理汪志诚

新课:§6.1 粒子运动状态的经典描述
1-d线性谐振子 自由度: 1 相空间维数:2 位置:x
动量:p mx
p2 1 m 2 x 2 能量: 2m 2
半长轴
a 2m
能量椭圆:
p2 x2 1 2 2m m 2
能量曲面包围的相体积:
( ) ab 2
例二、线性谐振子
自由度: 1 空间维数:2
位置:x
动量:p mx
p2 1 2 2 m x 能量: 2m 2
能量椭圆
p2 x2 1 2 2m m 2
p
x
新课:§6.1 粒子运动状态的经典描述小结
例三、转子 自由度:2
空间维数:4
z
, 位置:
p r 2 动量: p r 2 sin 2
新课:§6.1 粒子运动状态的经典描述
能量ε包围的相体积:
0 x L px
2 px px 2m 2m


V , 0
2 px
dxdpx dx
0
L
2 m
2 m
dpx 2 2m L
2m
新课:§6.1 粒子运动状态的经典描述
无外力矩时,转子的总角动 量守恒量
M rp r M 2 p mr p 0 z // M 选 则 2
1 1 1 1 2 2 2 ( p p ) ( p ) 2 2 2I sin 2 I sin
(2)三维自由粒子: 分解 自由度:r 3, r 6 位置:x y z 投影
动量:p x mx p y my
三个2-d子相空间

热力学与统计物理教案:第六章 近独立粒子的最概然分布

热力学与统计物理教案:第六章 近独立粒子的最概然分布

为随机事件 A 出现可能性的客观量度,称为事件 A 发生的概率 PA :
lim PA
N
NA N
PA 0 , A 不可能发生; PA 1, A 肯定发生
显然 0 PA 1 。事实上,试验的次数不可能无限多,但是,只要试验次数足够多,我们就可
以用 NA 来表示事件发生的概率。如掷一质量均匀的硬币,若只掷少数几次,正面向上和背 N
统计物理中讨论的系统是由大量微观粒子组成的,大约有1023 数量级。描述大量粒子组
成的系统的宏观性质的物理量称为宏观量,描述单个粒子性质的物理量称为微观量。 粒子(指微观粒子)的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动
规律,对粒子运动状态的描述称为经典描述。如果粒子遵从量子力学规律,对粒子运动状态 的描述称为量子描述。当然,从本质上讲,微观粒子遵从量子力学规律,不过在一定极限条 件下,经典理论还是有意义的。 粒子运动状态的经典描述
相体积。 统计物理中的几个例子
(1)自由粒子
当自由粒子在三维空间中运动时,其自由度 3 ,所以相空间是 6 维的,粒子在任一时刻 的位置由坐标 x, y, z 确定,共轭的动量分别为 px mx , py my , pz mz ,
相空间坐标分别为 x, y, z, px , py , pz 。
微观粒子服从量子力学规律。
波粒二象性: 粒子 波
, p k
, p 粒子量,
,
k
波量
普朗克常量 h 1.0551034 J S , 2
量纲: T E L P M
海森堡不确定关系 qp ~ h
经典:粒子沿轨道运动。
量子:无轨道, x, p 不能同时确定。
量子态——量子力学中微观粒子的运动状态。 量子态数的计算,量子态的描述

第六章 近独立粒子的最概然分布教案资料

第六章 近独立粒子的最概然分布教案资料

第六章近独立粒子的最概然分布教案资料第六章近独立粒子的最概然分布教案资料热力学与统计物理课程教案热力学与统计数据物理课程教案授课内容(教学章节):第六章近独立粒子的最概然分布主讲教师:教材分析:从本章开始着重阐述物质微观运动状态的描述以及微观运动的规律,玻耳兹曼系统和玻色系统费米系统等,即统计物理学部分。

内容难度、深度均超出了前四章。

用到了较多的数学知识、原子物理学和统计物理学的概念。

因此,在本章教学中紧密结合先前知识对难点加以分解,同时引导学生用新的思维方式研究物质的微观运动。

教学目标:知道微观粒子运动状态的经典描述和量子描述,掌握系统微观运动状态的描述,理解分布和微观状态的概念及其关系,掌握玻耳兹曼系统、玻色系统和费米系统的区别和联系,理解与之对应的三种分布并会推导。

知道等概率原理,经典极限条件等。

培养学生用统计学和数学建模等方法探讨物理问题。

教学重点与教学难点:教学重点:系统微观运动状态的描述、分布与微观状态的概念、玻耳兹曼系统、玻色系统和费米系统及其分布。

教学难点:玻耳兹曼系统、玻色系统和费米系统及其三种分布的推导和物理意义。

教学内容6.1粒子运动状态的经典描述6.2粒子运动状态的量子描述6.3系统微观运动状态的描述6.4等概率原理6.5分布和微观状态6.6玻耳兹曼分布6.7玻色分布和费米分布6.8三种分布的关系教学方法与手段以讲授为主,结合多媒体教学,三种分布及其关系采用讨论法展开教学。

课后作业6.16.26.36.46.5小论文1、在量子力学中全同粒子既然不能分辨,那么如何来描述系统的微观运动状态?2、满足经典极限条件时玻色分布和费米分布在形式上都过渡到玻耳兹曼分布的形式,其物理意义是否相同?教材与参考资料教材:热力学与统计物理汪志诚高等教育出版社主讲教师:1授课地点授课班级热力学与统计物理课程教案第六章近独立粒子的最概然分布6.1粒子运动状态的经典描述首先了解如何叙述粒子的运动状态。

热力学统计物理第六章近独立粒子及其最概然分布22P课件

热力学统计物理第六章近独立粒子及其最概然分布22P课件
因为 p (r)归一化为 函数,故采用周期性边 界条件:
L nx ,
nx 0,1,2,
又 :k x
2
kx
2
L
nx , nx
0,1,2,
代入德布罗意关系式:px kx
px
2
L
nx
因此,一维自由粒子的量子数:1 nx
nx
px2 2m
2 22
m
nx2 L
nx 0,1,2,
b.三维
2
px L nx
N
E i
i 1
二.经典物理中微观运动状态的描述
1)可分辨 (可跟踪的经典轨道运动)
2)描述方式: 相空间中N个点。
三.量子物理中微观运动状态的描述
1)不可分辨 (物质波的非轨道几率运动)
2)描述方式: a.对于某一个粒子的各个量子态 b.对应于每一个量子态的粒子数
3).玻色子与费米子 a)费米子:自旋量子数为半整数的基本粒子或复合粒子。 如:电子、质子、中子等。
py
2
L
ny
pz
2
L
nz
nx 0,1,2,
量子数:3个
nx , ny , nz
n
p2 2m
p
2 x
p
2 y
2m
pz2
2 22
m
nx2
n
2 y
nz2
L3
简并度:6
.量子状态数与态密度
例五、求V=L3内在Px到Px+dPx, Py到Py+dPy, Pz到Pz+dPz间的自由粒子的量子态数与态密度。
b)玻色子:自旋量子数为整数的基本粒子或复合粒子。 如:光子、Л介子等。
c)泡利不相容原理:对于含有多个全同近独立的费米子 的系统中,一个个体量子态最多能容纳一个费米子。

第章--近独立粒子的最概然分布PPT课件

第章--近独立粒子的最概然分布PPT课件

.
3
二. 几个例子 1. 自由粒子 自由度:r=3
μ空间维数:6
广义坐标:q1 x, q2 y, q3 z
广义动量: p1 px mx, p2 py my, p3 pz mz,
动能:
1 2m
( px2
p
2 y
pz2 )
相迹:以一维为例
px
(6.1.3)
.
x
4
Lx
2. 一维线性谐振子 one dimension linear harmonic oscillator
(6.2.4)
能级非简并
What about 3D?
3. 转子
Degenerate !
量子理论要求角动量平方和角动量z分量是量子化的
M 2 l(l 1)2 ,
l 0,1,2
M z m,
m l,l 1,,l 1,l
自由度为2,等于量子数个数:l, m
转子能量:
E M 2 l(l 1)2
2I
质量: m
电荷: e
自旋角动量量子数:1/2
自旋磁矩:
自旋角动量:S
e
Sm
沿z方向加外磁场B,角动量S在z方向上有两个独立分量
Sz ms
自旋磁矩和势能为
z
e m
ms
e 2m
B
ms
1 2
E
eB m
ms
e 2m
B
描述自旋状态只要一个量子数 ms .
12
2. 线性谐振子
n
(n
1 ), 2
n 0,1,2
代表点的轨道是如下椭圆:
p2 2m
x2 2
1
.
m2
5

第六章近独立粒子的最概然分布

第六章近独立粒子的最概然分布

它可表述为:
n 对一种随机现象做 次独立试验,每次试验只计指定的事件发生与否. 已知在每次试验时发生指定事件的概率为 p ,求在 n 次试验中有 μ 次
发生指定事件的概率。
2009-4-16
12
物理与电子工程系
热力学·统计物理
Thermodynamics and Statistical Physics
个基本事件之和,则发生事件 A 的概率为
p ( A) = nA
N
这种说法叫做概率的古典定义。
2009-4-16
7
物理与电子工程系
热力学·统计物理
Thermodynamics and Statistical Physics
例:在容器中有 N 个理想气体分子,设想把容器划分为等容积的两部分,
n 求有且仅有 个分子出现在左边的概率.
解: p(r, B) = 2 × 3 = 6 5 5 25
1. 5 独立试验序列问题
“独立试验序列问题”是一种有普遍意义的问题的模型。 下面通过一个例子,说明和谓“独立试验序列问题”。
2009-4-16
11
物理与电子工程系
热力学·统计物理
Thermodynamics and Statistical Physics
验中,第
i
种结果出现
ni
次。 比值 ni n
反映了这一结果
出现的机会或可能性
若在实验观测的次数增大时, ni n
趋于稳定: 值 pi
物理与电子工程系
热力学·统计物理
Thermodynamics and Statistical Physics
lim ni n→∞ n

pi
pi 就叫做第 i 种结果出现的概率。概率也叫或然率或几率。 是否能由上式得 ni = npi ?

第六章近独立粒子的最概然分布

第六章近独立粒子的最概然分布
讨论热力学第二定律与几率的关系中,他证明熵与几率W 的对数 成正比。后来普朗克把这个关系写成
S=klnW 并且称k 为玻尔兹曼常数。
§6.1 粒子运动状态的经典描述
1.粒子的运动状态
粒子:指组成宏观物质系统的基本单元。
例如:气体中的分子; 金属中的离子和电子; 辐射场中的光子。
粒子的运动状态是指它的力学运动状态。

pz2 )
等能面:px2 py2 pz2 2m
等能面是动量空间半径为 2m 的球面。
相空间体积(能量小于或等于ε):


dxdydz dpxdpydpz

4 V (2m )3/2
3
③线性谐振子
质量为m的粒子在弹性力 f = -kx 作用下,将在原点附近作圆频率 ω= ������/������ 的简谐振动,称为线性谐振子。

在麦氏速度分布律的基础上,第一次考虑
尔 兹
了重力对分子运动的影响,建立了更全面的玻

尔兹曼分布律,建立了玻尔兹曼熵公式。
dN

n0
(
m
2kT
3
)2
e
(
K

P
)
/
kT dv
x
dv
y dv
z
dxdydz
1877 年玻尔兹曼进一步研究了热力学第二定律的统计解释,
玻尔兹曼写道:“(热力学)第二定律是关于几率的定律,”在
气体中双原子分子的振动,晶体中的原子或离子在平衡位置附 近的振动均可看作是简谐运动。
自由度:1 μ空间维数:2
广义坐标 : q x,
广义动量: p px mx
能量: p2 1 m2x2

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

第六章 近独立粒子的最概然分布6.1试证明,在体积V 内,在ε到ε+d ε的能量范围内,三维自由粒子的量子态数为D(ε) d ε =()εεπd m hV2123322证明:由式子(6-2-13),在体积V=L 3内,在P X 到P X +dP X ,P Y 到P Y +dP Y ,P Z 到P Z +dP Z ,的动量范围内,自由粒子可能的量子态数为Z Y X dP dP dP h V3-----------------(1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,的得在体积V 内,动量大小在P 到P+dP 范围内,三维自由粒子可能的量子态数为dP P hV 234π-------------(2) 上式可以理解为将相空间(μ空间)体积元4πVP 2dP (体积V ,动量球壳4πP 2dP )除以相格大小h 3而得到的状态数。

自由粒子的能量动量关系为mP 22=ε因此 εm P 2=, εmd PdP =将上式代入(2)式,即得到在体积V 内,在ε到ε+d ε的能量范围内,三维自由粒子的量子态数为 D(ε) d ε =()εεπd m hV2123322------------(3)6.2试证明,对于一维自由粒子,在长度L 内,在ε到ε+d ε的能量范围内,量子态数为D(ε) d ε =εεd m h L 2122⎪⎭⎫⎝⎛证明:对于一维自由粒子,有n Lhn L p ==π2 dn Lhdp =∴由于p 的取值有正、负两种可能,故动量绝对值在范围内的量子态数p d p p +→ p d hLd 2n = 再由 εεm mp 2p 22==得 所以 ()εεεεεd m h L m d h L dn 212222 d D ⎪⎭⎫⎝⎛===, 证毕6.3试证明,对于二维自由粒子,在面积L 2内,在ε到ε+d ε的能量范围内,量子态数为D(ε) d ε =επm d hL 222证明:对于二维自由粒子,有y y x x n Lh p n L h p ==, y y x x dn Lhdp dn L h dp ==∴,所以,在面积L 2内,在y y y x x x dp p p dp p p +→+→,内的量子态数为y x y x dp dp dn dn 22hL =换为极坐标,则动量大小在dp p p +→内的量子态数为ϕϕd dp hL pdpd h L dn 222222==对φ从0至2π积分,并利用mp 22=ε则可得在ε到ε+d ε的能量范围内,量子态数为D(ε) d ε =επm d hL 222,证毕6.4在极端相对论情形下,粒子的能量动量关系为ε=CP ,试求在体积V 内,ε到ε+d ε的能量范围内,三维自由粒子的量子态数为 D(ε) d ε =εεπd ch V 23)(4 证明:在体积V=L 3内,在P X 到P X +dP X ,P Y 到P Y +dP Y ,P Z 到P Z +dP Z ,的动量范围内,自由粒子可能的量子态数为Z Y X dP dP dP h V3-----------------(1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,的得在体积V 内,动量大小在P 到P+dP 范围内,三维自由粒子可能的量子态数为dP P hV 234π-------------(2) 在极端相对论情形下,粒子的能量动量关系为ε=CP ,代入,可得在体积V 内,ε到ε+d ε的能量范围内,三维自由粒子的量子态数为 D(ε) d ε =εεπd ch V 23)(4-------------------(3) 6.6同6.5题,如果粒子是玻色子或费米子,结果如何? 解:两种粒子的分布{}{}'l l a a 和必须满足:∑=llN a, ∑=llN a'',∑∑=+llllll E aa ''εε,其中E 为系统总能量。

第六章 近独立粒子的最概然分布(复习要点)

第六章  近独立粒子的最概然分布(复习要点)

第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。

②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。

这里0h 由测量精度决定的一个常数。

经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。

空间自由度和一个自旋自由度)个量子确定。

并且微观粒子能量值和动量值的分离性很显著。

③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。

若粒子的自由度为r ,一个量子态占据的相体积为rh 。

在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。

热力学与物理统计第六章03讲述

热力学与物理统计第六章03讲述
微观粒子的运动不是轨道运动。
第六章 近独立粒子的最概然分布
经典力学中,粒子同时具有确定的动量和坐标,因 此可以用某一时刻粒子的动量和坐标描述粒子的运 动状态。
量子力学中,粒子不可能同时具有确定的动量和坐 标,那么,该如何描述粒子的运动状态?
在量子力学中,微观粒子的运动状态称为量子态。 量子态是用一组量子数表征,且这组量子数的数目 等于粒子的自由度数。
S 2 s(s 1) 2
其中s称为自旋量子数,可以是整数或半整数。 例如电子的自旋量子数为1/2 对自旋状态的描述还需要知道自旋角动量在其 本征方向(z轴)上的投影Sz。
共2s+1个可能的值。对于电子,有2个可能值。
第六章 近独立粒子的最概然分布
自旋角动量与自旋磁矩 质量为 m ,电荷为 - e 的电子,
在py到py+dpy可能的py有dny个
在pz到pz+dpz可能的pz有dnz个
第六章 近独立粒子的最概然分布
体积V=L3内,在px到px+dpx,py到py+dpy,pz到 pz+dpz的动量范围内自由粒子的量子态数
p
由于不确定关系,xp h 。
p p
即在体积元 h 内的各运动状态,
p
它们的差别都在测量误差之内,
其自旋磁矩 μ 与自旋角动量 S 大小的比值为:
e
S
m
当存在外磁场时,自旋角动量的本征方向沿外
磁场方向。以z表示外磁场方向,B为磁感应强
度。电子自旋角动量在z投影为
第六章 近独立粒子的最概然分布
自旋磁矩在z投影为
电子在外磁场中能量为
第六章 近独立粒子的最概然分布
三、系统微观运动状态的描述
系统的微观运动状态就是指它的力学运动状态。这 里讨论由全同和近独立粒子组成的系统

高教热统答案第六章

高教热统答案第六章

第六章 近独立粒子的最概然分布习题6.2 试证明,对子一维自由粒子,再长度L 内,在ε到εεd +的能量范围内,量 子态数为:εεεεd m h L d D 2122)(⎪⎭⎫ ⎝⎛=证:一维自由粒子,x P 附近的量子态为x dP h L dn =;x x x x x dP m dP m m m dP P d m P εεεε21222+=⋅+==⇒=于是。

()εεεεd mh L d D 2+= 而 ±P x 对应同一能量ε,于是:()m h L m h L D εεε2222=⎪⎪⎭⎫ ⎝⎛⨯=习题6.3试证明,对于二维自由粒子,在长度L 2内,在ε到εεd +的能量范围内, 量子态数为()επεεmd hL d D 222=证:二维;在P x ,P y 附近dP x dP y 区间上内的粒子数。

ϕPdPd hSdP dP h S dn y x 22== (s -面积)因m P 22=ε只与P 有关(P >0),故对ϕ积分可得:()⎪⎪⎭⎫⎝⎛==m P h S PdP h S d D 222222ππεε,επd h mS m 22= ()22hmS D πε=⇒ (s=L 2) 习题6.4在极端相对论情形下,粒子的能量动量关系为cp =ε。

试求在体积V 内,在ε到εεd +的能量范围内能量范围内三维粒子的量子态数。

解:φθθd dpd p hVdp dp dp h V dn z y x sin 233==由于cp =ε只与p 有关,与θ、φ无关,于是⎰⎰===ππεππφθθεε200322323)(44sin )(hc V dp p h V d dpd p h V d D 以上已经代入了 c d p d cp =⇒=εε于是, 32)(4)(hc V D επε=习题6.5 设系统含有两种粒子,其粒子数分别为N 和N ’.粒子间的相互作用很弱,可看作是近独立的。

假设粒子可分辨,处在一个个体量子态的粒子数不受限制。

热力学统计物理第六章近独立粒子的最概然分布

热力学统计物理第六章近独立粒子的最概然分布
自由度 r =1(曲线上运动) : x 和 px 描述其状态; r = 3(3D空间中运动): x, y, z 和 px , py , pz 描述状态。
若粒子有内部运动, 则 r 更大。如双原子分子, φ, p , pφ
一般地,设粒子的自由度为 r , 其力学运动状态由粒子 的 r 个广义坐标 q1、q2、…qr 和相应的 r 个广义动量 p1、 p2、… pr 共 2r 个量的值确定。粒子能量ε: ε=ε( q1、q2、…qr ,p1、p2、…pr ) 。 总之,微观粒子运动状态的经典描述是采用粒子的坐 标和动量共同描述的方法。
热统
而 S z (自旋方向取向量子化) 2 e e B e B B ms 所以 z 2m 2m m 即外场中的电子自旋状态只需要一个量子数 m s
2

13
2 自由粒子 (1)一维自由粒子: 自由运动的粒子被限制在边长为L的一维容器中。波函数 要满足一定的边界条件,采用周期性条件,即
能级为
2
1 , n 2

px
x
n 0, 1, 2,
热统 21
相邻两个状态之间所夹的面积为

2 1 1 n 1 n ( n 1 ) ( n ) h 2 2 推广之:粒子的一个状态在 空间中占有的体积为相格 hr
② 3D自由粒子:r = 3 , 设粒子处于体积 V 中。状态由 x、 y、z、px、py、pz 确定,μ空间是 6 维的。 粒子能量 ε= ( px2 + py2 + pz2 ) / 2m 动量子空间的半径 p p 2 p 2 p 2 2m x y z
热统

热力学与统计物理课后习题答案第六章完整版

热力学与统计物理课后习题答案第六章完整版

热力学与统计物理课后习题答案第六章HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第六章 近独立粒子的最概然分布试根据式()证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为解: 式()给出,在体积3V L =内,在x p 到d ,x x y p p p +到d ,y y x p p p +到d x x p p +的动量范围内,自由粒子可能的量子态数为3d d d .x y z Vp p p h(1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的量子态数为234πd .V p p h (2) 上式可以理解为将μ空间体积元24d Vp p π(体积V ,动量球壳24πd p p )除以相格大小3h 而得到的状态数. 自由粒子的能量动量关系为 因此将上式代入式(2),即得在体积V 内,在ε到d εε+的能量范围内,三维自由粒子的量子态数为()132232π()d 2d .VD m hεεεε= (3)试证明,对于一维自由粒子,在长度L 内,在ε到d εε+的能量范围内,量子态数为解: 根据式(),一维自由粒子在μ空间体积元d d x x p 内可能的量子态数为在长度L 内,动量大小在p 到d p p +范围内(注意动量可以有正负两个可能的方向)的量子态数为2d .Lp h(1) 将能量动量关系 代入,即得()122d d .2L m D h εεεε⎛⎫=⎪⎝⎭(2) 试证明,对于二维的自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为解: 根据式(),二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为21d d d d .x y x y p p h (1) 用二维动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为 用极坐标描述时,二维动量空间的体积元为在面积2L 内,动量大小在p 到d p p +范围内,动量方向在θ到d θθ+范围内,二维自由粒子可能的状态数为22d d .L p p h θ(2) 对d θ积分,从0积分到2π,有可得在面积2L 内,动量大小在p 到d p p +范围内(动量方向任意),二维自由粒子可能的状态数为222πd .L p p h (3) 将能量动量关系 代入,即有()222πd d .L D m hεεε= (4)在极端相对论情形下,粒子的能量动量关系为 试求在体积V 内,在ε到的能量范围内三维粒子的量子态数.解:式()已给出在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的状态数为234d .V p p hπ (1) 将极端相对论粒子的能量动量关系代入,可得在体积V 内,在ε到d εε+的能量范围内,极端相对论粒子的量子态数为()()234πd d .VD ch εεεε=(2) 设系统含有两种粒子,其粒子数分别为N 和N '. 粒子间的相互作用很弱,可以看作是近独立的. 假设粒子可以分辨,处在一个个体量子态的粒子数不受限制. 试证明,在平衡状态下两种粒子的最概然分布分别为 和其中l ε和l ε'是两种粒子的能级,l ω和l ω'是能级的简并度.解: 当系统含有两种粒子,其粒子数分别为N 和N ',总能量为E ,体积为V 时,两种粒子的分布{}l a 和{}l a '必须满足条件,,lll l l lllllaN a N a a Eεε''==''+=∑∑∑∑ (1)才有可能实现.在粒子可以分辨,且处在一个个体量子态的粒子数不受限制的情形下,两种粒子分别处在分布{}l a 和{}l a '时各自的微观状态数为!,!!.!l l a l ll la l ll lN Ωa N Ωa ωω'='''='∏∏∏∏ (2)系统的微观状态数()0Ω为()0.ΩΩΩ'=⋅ (3)平衡状态下系统的最概然分布是在满足式(1)的条件下使()0Ω或()0In Ω为极大的分布. 利用斯特令公式,由式(3)可得为求使()0ln Ω为极大的分布,令l a 和l a '各有l a δ和l a δ'的变化,()0ln Ω将因而有()0δln Ω的变化. 使()0ln Ω为极大的分布{}l a 和{}l a '必使 即但这些δl a 和δl a '不完全是独立的,它们必须满足条件用拉氏乘子,αα'和β分别乘这三个式子并从()0δln Ω中减去,得 根据拉氏乘子法原理,每个δl a 和δl a '的系数都等于零,所以得 即.l l l l l l a e a eαβεαβεωω--''--=''= (4)拉氏乘子,αα'和β由条件(1)确定. 式(4)表明,两种粒子各自遵从玻耳兹曼分布. 两个分布的α和α'可以不同,但有共同的β. 原因在于我们开始就假设两种粒子的粒子数,N N '和能量E 具有确定值,这意味着在相互作用中两种粒子可以交换能量,但不会相互转化. 从上述结果还可以看出,由两个弱相互作用的子系统构成的系统达到平衡时,两个子系统有相同的β.同上题,如果粒子是玻色子或费米子,结果如何?解: 当系统含有N 个玻色子,N '个费米子,总能量为E ,体积为V 时,粒子的分布{}l a 和{}l a '必须满足条件l l l l lla a E εε''+=∑∑ (1)才有可能实现.玻色子处在分布{}l a ,费米子处在分布{}l a '时,其微观状态数分别为 系统的微观状态数()0Ω为()0.ΩΩΩ'=⋅ (3)平衡状态下系统的最概然分布是在满足式(1)条件下使()0Ω或()0ln Ω为极大的分布. 将式(2)和式(3)取对数,利用斯特令公式可得 令各l a 和l a '有δl a 和δl a '的变化,()0ln Ω将因而有()0δln Ω的变化,使用权()0ln Ω为极大的分布{}l a 和{}l a '必使即但这此致δl a 和δl a '不完全是独立的,它们必须满足条件 用拉氏乘子,αα'和β分别乘这三个式子并从()0δln Ω中减去,得 根据拉氏乘子法原理,每个δl a 和δl a '的系数都等于零,所以得 即,1.1ll ll ll a ea e αβεαβεωω--''--=-''=+ (4) 拉氏乘子,αα'和β由条件(1)确定. 式(4)表明,两种粒子分别遵从玻色分布和费米分布,其中α和α'不同,但β相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能量的可能值:
nx 0,1,2,
n y 0,1,2,
2 pz nz , L
nz 0,1,2,
1 2 2 2 2 2 2 2 px p y pz nx n y nz 2 2m mL


2 2


26
粒子的运动状态由三个量子数表征:
质点
1 2 2 2 y z ) m( x 2
采用球极坐标表示:
m
z
o x
r
在直角坐标系中:
A

y
x r sin cos z r cos y r sin sin 1 2 2 2 2 2 2 r r sin ) m( r 2
750
x x
3
假如存在一个物理量B是x的函数,那么同样的道理:
B x f x B f x
或者:
Bx f x dx B f x dx
B Bx x dx
B Bx x
统计物理的关键是寻找分布函数或者概率分布函数
f x
x
xf x f x
0 0 750
750
x
假如把X看成是连续的: 假如令: x 那么:
x x x dx

f x 或者: x f x dx f x
或者: x
f x
x
750
0 0
xf x dx f x dx
34
海森伯不确定性原理
波粒二象性的直接结果之一是微观粒子不可能同时具有确 定的动量和确定的坐标。
量子力学允许的最精确的描述: 电子衍射实验:
qp h
a sin k
大部分电子都落在一阶暗条纹之内
sin

a


电子坐标的不确定度
x x a
18
电子X方向动量的不确定度
nx , n y , nz
在微观大小范围内运动,动量值和能量值分立显 著( L 较小):
2 2 2 2 nx n y nz 2 mL
2 2


2 y
2 能级差 2 mL
2 x 2 y 2 z
2 2

2
1
0
能级由 n n n 决定。
n n n 2
2 x 2 z
0 0 0 0 1 1
简并度: 6
2 2 2 2 mL
2 2
2 2 nx ny nz2 2
简并度: 12
28
在宏观大小的容器内运动,动量值和能量值近似连续。

L很大,级差很小。
因此可以对下式取微分:
0
在 L
2 px nx , L L dnx dp x 2
2
S z ms
e ms B m
ms
自旋角动量量子数
ms 取两个分立的值 1 2
21
基本粒子中,自旋量子数为半整数的有:
电子 、 质子 、中子 等。
自旋量子数为整数的有: 光子、
介子 等
22
二、线形谐振子
圆频率:

n2
n3

1 能量为: n n 2 描叙线型谐振子状 n 0,1,2,
N1
N
电子源
1, 2N N1 2
双缝
接收屏
N2
一个电子是否确定从某一个缝通过?或者同时从两个缝通过? 观察的干扰——干涉图的消失
20
一、自旋
电子质量

m,电荷 e
z
Sz
自旋磁矩与自旋角动量之比为:
Sz μ z

e S m
μz
自旋角动量在外磁场的投影有两个可能值: S z 因此描叙粒子的自旋状态只要一个量子数
2
l (l 1) 能级 l 2I 的量子态数: 2l 1
简并度:
z
2l 1
24
描述转子的运动状态需要两个量子数: l、m
四、自由粒子
一维自由粒子,采用周期性边界条件,可能的 德布罗意波波长的整数倍等于容器的长度 :
L nx ,
2 kx nx , L
nx 0,1,2,
考虑一个处于 维 空间的粒子的量子态,根据不确定关 系,它不应该是一个点,而是一个范围——相格:
2
qp h
在空间体积Ldp内粒 子可能的量子态数:
p
dp
o
h
L q
Ldp h
μ空间某体积内可能的量子态数等于该μ空间体积除以相格大小
相格:一个量子态的所占相体积大小
31
三维自由粒子在 6 维μ空间一个量子态所占体积(相格):
Px
Px sin P x
xPx P h
微观粒子的量子态根据不确定关系在酉空间中不可能是一 个点,而是一个范围。
量子态
量子力学中,微观粒子的状态称为量子态。由一组量 子数表征。这组量子数的数目等于粒子的自由度数。
19
德布罗意波是概率波——不确定性与概率
电子的双缝干 涉
第六章 近独立粒子的最概然分布
近独立粒子:粒子之间相互作用微弱 最概然:最可几,或者说最为可能 粒子分布:粒子按照各种可能的力学运动状态的分布 统计物理学: 物质的宏观特性是大量微观粒子行为的集体表现, 宏观物理量是相应微观物理量的统计平均值。
为什么要把统计的方法引入物理学?
1
分布与统计
2
如何求平均成绩? 假如把X看成是一系 列分裂的值:
px
在坐标空间体积V 动量空间厚度为dp的球壳
4p dp
2
内的相空间范围内可能的状态数:
4V 2 p dp 3 h
34
2V 32 12 上式化为: 2m d 3 h 在体积 V 内,在 到 d 的能量范围内,自
由粒子可能的状态数为:
p 2m p d dp m m dp d 2m
32
采用球极坐标:
pz


dp
p x p sin cos p y p sin sin p z p cos
动量空间体积元:
p
pd
py
p sin d
p sin dpdd
2
px
体积 动量大小 动量方向
V
p p dp d d
r
2r 个变量建立正交坐标系 构成一个 2 r 维空间,称为 空间 粒子的能量 q , , q ;p , , p 1 r 1 r

7
粒子在某一时刻的力学运动状态可用该空间的一点表示
(q1 ,..., qr ; p1 ,..., pr )
当粒子的运动状态随时间发生改变时相应地在 空间描画出一条轨道。
xpx yp y zpz h
三维自由粒子在μ空间体积
3
Vdpx dp y dp内的量子态数: z
dnx dn y dnz
Vdpx dp y dp z h
3
自由度r的粒子在2r维的空间的相格大小:
q1 qr p1 pr h
r维自由粒子的量子态数:
r
r
L dp1dp2 ...dpr dn1dn2 ...dnr r h

z
pz
y
x
广义坐标空间
px
广义动量空间
py
8
一、自由粒子
自由粒子:不受外力作用,作自由运动的粒子。
(一)一维自由粒子:
p
px
x px
为直角坐标
二维的 经典力学:

空间
o
x
px
L x
粒子坐标 粒子动量
9
px
(二)三维自由粒子: 粒子的自由度为3 广义坐标: 相应的动量:
内自由粒子可能的状态数:
Vp sin dpdd 3 h
2
33
体积
动量大小
V
p p dp 2 4V 2 Vp dp 2 p dp d sin d 3 3 0 0 h h
pz
另一种算法: 动量空间球体积
内自由粒子可能的状态数:
dp
py
4 3 p 3
取微分即为动量空间球壳体积
4
分布函数可能具有更为复杂的形式:
5
§6.1 粒子运动状态的经典描述
粒子的运动状态(力学运动状态)的描述:
经典描述:粒子运动遵从经典力学 量子描述:粒子运动遵从量子力学 经典理论在一定的极限条件下适用
6
空间
设粒子的自由度为 个广义坐标 q1 , q2 , qr r 其力学运动状态由 描述 r 个广义动量 p1, p2 , pr
13
对于转子:
r 不变,自由度 2
1 2 2 2 2 2 ) m(r r sin 2 广义坐标: , 构成四维 2 p mr
广义动量: (角动量)

p mr sin
2 2

空间
1 1 2 2 ( p 2 p ) 2I sin
nx 0,1,2,
2 nx , 一维自由粒子: p x L
L x
nx 0,1,2, nx 0,1,2,
25
p 2 n nx , 2m m L
2 x 2 2 2 x 2
三维自由粒子(在边长为 L 的立方体内):
2 px nx , L 2 py ny , L
态只要一个量子数: 分裂的能级结构,相 邻两能级的能量差:
q
n 1 n0
相关文档
最新文档