质量管理第三章spc控制图优秀课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPC的特点:
1 SPC是全系统的,全过程的,要求全员参加。 2 SPC强调用科学方法。 3 SPC不仅用于生产过程,而且可用于服务过 程和一切管理过程
二、统计过程控制的发展
SPC:统计过程控制; SPD:统计过程诊断; SPA:统计过程调整。
SPC
三者间的关系:
SPD
SPA
第二节 常规控制图(休哈特控制图)原理
常规控制图的形成
μ+3σ
UCL
μ
CL
μ-3σ
LCL
(二)控制图原理的第一种解释
点出界就判异
小概率事件原理:小概率事件在一次试验中几乎不 可能发生,若发生即判断异常。
μ+3σ
UCL
μ
CL
μ-3σ
LCL
(三) 控制图原理的第二种解释
1.概念
偶然因素(偶因random cause):也称随机因素 (stochastic cause),是过程固有的,始终存在,对质量 的影响微小,但难以除去。
一、常规控制图的构造
控制图是对过程质量特性值进行测定、记录、评估和监
察过程是否处于统计控制状态的一种用统计方法设计的图。
控制图示例
UCL



CL




LCL
时间或样本号
二、SPC的理论基础——产品的统计观点 产品质量的统计观点是现代质量管理的基
本观点之一。 (一) 产品的质量具有变异性 (二) 产品质量的变异具有统计规律性
异常因素(异因,可查明因素assignable cause,或系统因 素systematic cause):非过程固有,有时存在,有时不存 在,对质量影响大,但不难除去。
偶然波动:偶因引起质量的波动 ,简称偶波; 异常波动:异因引起质量的 波动,简称异波。
2.控制图的第二种解释
假定现在异波均已消除,只剩下偶波,则此偶波的波动将是 最小波动,即正常波动。根据这正常波动,应用统计学原理 设计出控制图相应的控制界限,当异常波动发生时,点子就 会落在界外。因此点子频频出界就表明异波存在。
控制图上的控制界限就是区分偶波与异波的科学界限。
四、控制图的作用 ——及时告警
20字方针“查出异因,采取措施,加以消除,不再出 现,纳入标准”
UCL
CL
控制图点子形成倾向
LCL
控制图显示异常
贯彻 二十字
Biblioteka Baidu
调整控制 界限
有无异

常因素
统计控制图 状态(稳态)

图2-13 达到统计控制状态的循环
五、统计控制状态
实际情况
假设检验结论
拒绝H0
接受H0
H0为真
第Ⅰ类错误(α) 弃真错误
推断正确(1- α) 可信度
H0不真
推断正确(1- β)
第Ⅱ类错误(β) 存伪错误
注意:拒绝H0,只可能犯Ⅰ型错误; 接受H0,只可能犯Ⅱ型错误错误。
当样本含量n一定时, α越小,β越大;若 想同时减少α和β, 只有增大样本含量。
式中μ、σ为统计量的总体参数。 加以应用时需要经过下列两个步骤: (1)具体化。 (2)对总体参数进行估计。
控制图的判断准则
一、分析用控制图与控制用控制图
一道工序开始应用控制图时,总要将非稳态的过 程调整到稳态的过程,此乃分析用控制图的阶段。
等到过程调整到稳态后,才能延长控制图的控制 线作为控制用控制图,所谓控制用控制图的阶段。
(1) 统计控制状态(state in statistical control),也称 稳态(stable state),即过程中只有偶因而无异因产生 的变异的状态。 在统计控制状态下,有下列好处: ①对产品的质量有完全的把握(合格率) ②生产也是最经济的 (不合格率) ③在统计控制状态下,过程的变异最小。
质量管理第三章spc控制图优秀课 件
统计过程控制(SPC)
一、SPC(Statistical Process Control)的基本概念
统计过程控制,是为了贯彻预防原则,应用统
计方法对过程中的各个阶段进行评估和监控,建立 并保持过程处于可接受的并且稳定的水平,从而保 证产品与服务符合规定要求的一种技术。主要工具: 控制图
②解决方法是:根据两种错误所造成的总损失最小来确定最优间距, 经验证明休哈特所提出的3σ方式较好。
注:80年代,出现了经济质量控制EQC学派(学术带头人:德国 乌尔茨堡大学冯·考拉尼教授)以使两种错误所造成的总损失最 小为出发点来设计控制图与抽样方案。
七、3σ方式
3σ方式的公式: UCL=μ+3σ CL=μ LCL=μ-3σ
两类错误的概率的关系
两类错误是互相关联的, 当样本容量固定时, 一类错误概率的减少导致另一类错误概率的增加.
要同时降低两类错误的概率 α, β 或者 要在 α不变的条件下降低 β, 需要增加样本
容量.
如何减少两种错误所造成的损失?
①控制图共有三根线,一般,正态分布的CL居中不动,而且UCL 与LCL互相平行,故只能改动UCL与LCL二者之间的间隔距离。
据使用的目的不同,控制图分为:分析用与控 制用控制图。
(一)分析用控制图 主要分析以下两点: (1)所分析的过程是否为统计稳态? (2)其过程能力指数是否满足要求?
统计稳态与技术稳态分类表
技术稳态 YES
技术稳态 NO
统计稳态 YES
状态I (最理想)
统计稳态NO 状态II
状态III
状态IV(最不理想) 状态IV达到I的途径: ► IVIII ► IVIIII 调整过程即质量不断 改进过程
► 经过一个阶段的使用后,可能又出现异常, 这时按“20字方针”去做,恢复所确定的状态。
► 从数学的角度看 分析用控制图的阶段就是过程参数未知的阶段; 控制用控制图的阶段则是过程参数已知的阶段。
在控制状态下(异因 消除,只有偶因)
时间
下公差限
大小
上公差限
(偶因的变异 减少)
时间
在控制状态下,但工程 能力不足 (偶因的变异太大)
(二)控制用控制图 ► 当过程达到了我们所确定的状态后,才能将分
析用控制图的控制线延长作为控制用控制图,应有正 式交接手续。
► 判异准则 判稳准则 ► 进入日常管理后,关键是保持所确定的状态。
六、控制图的两种错误
从数理统计的观点,存在可能的两能错误: (1) 第一种错误(type I error):虚发警报(false alarm)。
(2)第二种错误(type II error):漏发警报(alarm missing)。
控制图的两种错误
α
UCL β
CL
LCL
假设检验的两类错误(概率)
相关文档
最新文档