时间序列分析模型实例

合集下载

eviews残差分析

eviews残差分析

Eviews时间序列分析实例时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。

通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。

本节的主要内容是说明如何使用Eviews软件进行分析。

一、指数平滑法实例所谓指数平滑实际就是对历史数据的加权平均。

它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。

由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。

(-)一次指数平滑一次指数平滑又称单指数平滑。

它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。

一次指数平滑的特点是:能够跟踪数据变化。

这一特点所有指数都具有。

预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。

这样,预测值总是反映最新的数据结构。

一次指数平滑有局限性。

第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。

指数平滑预测是否理想,很大程度上取决于平滑系数。

Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。

选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。

如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。

出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。

平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。

若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。

〔例1〕某企业食盐销售量预测。

现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。

时间序列分析(3)

时间序列分析(3)

二、传递函数模型
• (2) 1阶过程的互相关函数 • 由Ezt=Eεt=0,有Eyt=0,使用Yule-Walker方程,得: γyz(0)=Eytzt=E[cd(zt-d+a1zt-d-1+…)zt+ztεt/(1-a1L)]=0 γyz(1)=Eytzt-1=E[cd(zt-d+a1zt-d-1+…)zt-1+zt-1εt/(1-a1L)]=0 ……… γyz(d)=Eytzt-d =E[cd(zt-d+a1zt-d-1+…)zt-d+zt-dεt/(1-a1L)]=cdσz2 γyz(d+1)=Eytzt-d-1 =E[cd(zt-d+a1zt-d-1+…)zt-d-1+zt-d-1εt/(1-a1L)]=cda1σz2 γyz(d+2)=Eytzt-d-2 =E[cd(zt-d+a1zt-d-1+…)zt-d-2+zt-d-2εt/(1-a1L)]=cda12σz2
一、干预分析
• (1) 一个简单的干预分析模型 • 将Enders等的劫机事件干预分析模型变换,得: (1-a1L)yt=a0+c0zt+εt 即: yt=a0/(1-a1)+c0Σa1izt-i+Σa1iεt , |a1|<1. 由此可进行脉冲响应分析: yt/zt=c0 yt+1/zt+1+yt+1/zt=c0+c0a1=c0(1+a1) yt+2/zt+2+yt+2/zt+1+yt+2/zt=c0(1+a1+a12) yt+j/zt+j+yt+j/zt+j-1+…+yt+j/zt=c0(1+a1+a12+…a1j)

多元时间序列模型实例

多元时间序列模型实例

多元时间序列模型实例1. 引言1.1 背景介绍多元时间序列模型是现代经济学中重要的分析工具,它能够有效地捕捉多个经济变量之间的互动关系和动态演变规律。

在实际应用中,多元时间序列模型被广泛运用于宏观经济预测、货币政策制定、金融风险管理等领域。

随着经济全球化和金融市场的不断发展,经济变量之间的关联性不断增强,传统的单变量时间序列模型已无法满足复杂的分析需求。

多元时间序列模型的研究和应用变得尤为重要。

本文将重点讨论VAR模型和VECM模型两种典型的多元时间序列模型,分析它们的原理、优缺点以及应用范围。

通过实例分析,我们将探讨这两种模型在实际经济数据中的应用效果和结果。

并对研究过程中的局限性进行分析,为未来研究提出展望。

通过深入探讨和研究多元时间序列模型,我们可以更好地理解经济变量之间的内在联系,为经济政策制定和风险管理提供更为准确和可靠的参考依据。

1.2 研究意义多元时间序列模型在经济学、金融学、环境科学等领域具有重要的应用价值。

通过对多元时间序列数据的建模分析,可以帮助研究者更好地理解变量之间的关系和内在规律,预测未来的发展走势,制定有效的政策和决策,促进经济社会的可持续发展。

多元时间序列模型可以用来分析经济系统中不同变量之间的相互影响和作用机制。

通过构建VAR模型和VECM模型,可以揭示变量之间的联动关系,帮助研究者更好地理解经济系统内部的运行机制,从而为制定政策提供科学依据。

多元时间序列模型还可以用来预测未来的发展趋势。

基于对历史数据的建模分析,可以得出一定的预测结果,为政府、企业和个人提供决策参考,减少不确定性因素的影响,提高决策的准确性和效益。

多元时间序列模型的研究具有重要的实践意义和理论意义,对于推动经济社会的发展和提高决策的科学性都具有重要的意义。

本文将通过实例分析,探讨多元时间序列模型在实际中的应用效果和局限性,为相关研究提供参考和借鉴。

1.3 研究对象研究对象是指在本研究中所关注和研究的主体或对象。

长期趋势预测法

长期趋势预测法

(二)特点
1.调整预测值旳能力 2.预测值中包括旳信息量比一次移动平均法预测值 中丰富得多。
3.加权特点
平滑系数a旳选择需要考虑以下几种方面:
(1) a值越小,对序列旳平滑作用越强,对时 间序列旳变化反映越慢,因而序列中随机波动较 大时,为了消除随机波动旳影响,可选择较小旳 a,使序列较少受随机波动旳影响; a值越大, 对序列旳平滑作用越弱,对时间序列旳变化反映 越快,因而为了反映出序列旳变动状况,可选择 较大旳a,使数据旳变化不久反映出来。
三、参数旳求解措施
最小平措施: 用高等数学求偏导数措 施,得到下列联立方程组:
y Na b t
ty a t b t 2
为使计算以便,可设t:
奇数项:, 3, 2, 1, 0, 1, 2, 3, 偶数项:, 5, 3, 1, 1, 3, 5,
这么使
t
y 0,即上述方程组可简化为:
指以预测对象近来一组历史数据(实际值)旳平均值直接 或间接地作为预测值旳措施。
一、一次移动平均法旳概念、特点和模型 1.概念:是直接以本期(t期)移动旳平均值作为下期
(t+1)预测值旳措施。 2.特点: 1)预测值是离预测期近来旳一组历史数据(实际值)
平均旳成果。 2)参加平均旳历史数据旳个数(即跨越期数)是固
3、是移动平均法旳高级形式,能克服一次移动法 旳不足,提升预测效果。
四、二次移动平均法旳模型及其应用
(二)二次移动平均法旳应用
例:我国Y1~Y23年出口某商品到德巴 伐利亚州旳销售量为下表(2)栏所示,试 用二次移动平均法(n取3)计算Y6~ Y23年销量旳理论预测值,并预测Y23年 旳销量。
比较一下表中第(8)栏旳预测值与第 (2)栏实际值旳差别,Y6~Y23年5年 旳均方误差仅为7.48,这阐明对于斜坡型 历史数据,用二次移动平均法进行预测远 比一次移动平均法精确。

时间序列分析报告——VAR模型实验

时间序列分析报告——VAR模型实验

基于VAR模型的我国房地产市场与汇率波动的因果关系————VAR模型实验第一部分实验分析目的及方法现选取人民币对美元汇率以及商品房房价作为变量构建VAR模型。

对于不满足单位根检验的序列采取对数化或差分处理,使其成为平稳序列再进行模型的拟合。

对于商品房房价这一变量,由于全国各省市差异较大,故此处采用全国房地产开发业综合景气指数这一变量。

此外,为了消除春节假期不固定因素带来的影响,增强数据的可比性,按照国家统计制度,从2012年起,不单独对1月份统计数据进行调查,1-2月份数据一起调查,一起发布。

所以国房景气指数p这一序列缺少每年一月份的相关数据,属于非随机、不可忽略缺失,在此采用平均值填充的方法,补足数据。

第二部分实验样本2.1数据来源数据来源于中经网统计数据库。

具体数据见附录表。

2.2所选数据变量由于我国于2005年7月实行第二次汇改,此次汇改以市场供求为基础、参考一篮子货币进行调节、有管理的浮动汇率制度取代了过去人民币汇率长达10年的紧盯美元的固定汇率体制。

故本实验拟选取2005年07月到2014年10月我国以月为单位的数据。

,用以上两个变量来构建VAR模型,并利用该模型进行分析预测。

第四部分模型构建4.1判断序列的平稳性4.1.1汇率E序列首先绘制出E的折线图,结果如下图:图4.1 汇率E的曲线图从图中可以看出,汇率E序列较强的趋势性,由此可以初步判断该序列是非平稳的。

为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下:图4.2 lm的曲线图对数化后的趋势性减弱,但仍存在一定的趋势性,下面对lm进行一阶差分处理,去除趋势性,得到新变量dlm,观察dlm的曲线图。

图4.3 DLE的曲线图从图中可以看出,dle序列的趋势性基本已经消除,且新变量dle基本围绕0上下波动,因此选择形式为y t=y t-1+u t进行单位根检验:表4.1 单位根输出结果Null Hypothesis: DLE has a unit rootExogenous: ConstantLag Length: 2 (Automatic - based on SIC, maxlag=12)t-Statistic Prob.*Augmented Dickey-Fuller test statistic -3.031673 0.0351Test critical values: 1% level -3.4919285% level -2.88841110% level -2.581176*MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable: D(DLE)Method: Least SquaresDate: 11/15/14 Time: 20:20Sample (adjusted): 2005M11 2014M10Included observations: 108 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.DLE(-1) -0.353005 0.116439 -3.031673 0.0031 D(DLE(-1)) -0.502730 0.115417 -4.355768 0.0000 D(DLE(-2)) -0.311531 0.093265 -3.340258 0.0012C -0.000888 0.000470 -1.887592 0.0619R-squared 0.450240 Mean dependent var 1.15E-05 Adjusted R-squared 0.434382 S.D. dependent var 0.005058S.E. of regression 0.003804 Akaike infocriterion -8.269046 Sum squared resid 0.001505 Schwarz criterion -8.169708Log likelihood 450.5285 Hannan-Quinncriter. -8.228768F-statistic 28.39119 Durbin-Watson stat 2.061613Prob(F-statistic) 0.000000单位根统计量ADF=-3.031673小于临界值,且P为0.0351,因此该序列不是单位根过程,即该序列是平稳序列。

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型
• 假设序列如下
xt 0 1t at
• 考察一阶差分后序列和二阶差分序列 的平稳性与方差
比较
• 一阶差分
– 平稳
xt xt xt1
1 at at1 – 方差小
• 二阶差分(过差分)
– 平稳
2 xt xt xt1 at 2at1 at2
– 方差大
Var(xt ) Var(at at1)
• 参数估计
(1 0.44746 B 0.28132 B4 )(1 B)(1 B4 )xt t
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
2统 计量
P值
待估 t 统
参数 计量
P值
6
2.09 0.7191 1
12 10.99 0.3584 4
5.48 <0.0001 -3.41 <0.0001
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
ARIMA模型
• ARIMA模型结构 • ARIMA模型性质 • ARIMA模型建模 • ARIMA模型预测 • 疏系数模型 • 季节模型
ARIMA模型结构
• 使用场合
– 差分平稳序列拟合
• 模型结构
( B) d
E( t )
Tt 0 1 xtm l xtlm
• 简单/复杂季节模型 • X-11 • etc
• AR • MA • ARMA • WN • etc
3.考虑残差
获 得 观 察 值 序
Y
Y
平稳性 检验
白噪声 检验
分 析

N
束 N

差分 运算
拟合
ARMA 模型

时间序列分析

时间序列分析

时间序列分析xx年xx月xx日CATALOGUE目录•时间序列分析简介•时间序列数据的预处理•时间序列模型的构建•时间序列模型的评估与优化•时间序列分析的应用场景与实例•时间序列分析的未来发展与挑战01时间序列分析简介时间序列分析是一种统计学方法,用于研究具有时间顺序的数据,以揭示其内在的规律性和预测未来的趋势。

时间序列数据通常表现为历史数据序列,可以用于预测未来,从而帮助决策者做出更好的决策。

定义与概念1时间序列分析的用途与重要性23通过分析时间序列数据,可以预测未来的趋势和变化,从而提前做好准备和规划。

预测未来趋势时间序列分析可以识别出异常情况或突发事件,从而及时采取措施应对。

识别异常情况通过预测未来需求,时间序列分析可以帮助决策者优化资源配置,提高效率和降低成本。

优化资源配置数据收集和处理收集和处理时间序列数据,包括数据清洗、缺失值填充等预处理工作。

通过图表等方式将数据呈现出来,以便更好地观察和分析数据。

根据数据的特点和需求选择合适的模型,并建立模型以拟合数据。

对模型进行评估和优化,以提高模型的预测能力和准确性。

利用训练好的模型对未来进行预测,并给出预测结果和建议。

时间序列分析的基本步骤数据可视化模型评估与优化预测未来趋势模型选择与建立02时间序列数据的预处理03数据格式转换根据分析需求,将数据转换为合适的格式,如将日期转换为时间戳或将多个变量合并为一个数据集。

数据清洗与整理01缺失值处理对于缺失的数据,需要选择合适的处理方法,如插值、删除或忽略。

02异常值处理异常值可能会对分析结果产生不良影响,应进行识别和处理,如平滑处理或直接删除。

季节性调整通过去除时间序列数据中的季节性因素,以揭示趋势和循环成分。

趋势分析对时间序列数据的长期变化进行分析,以识别增长或下降的趋势。

季节性调整与趋势分析数据转换为改善数据的质量和稳定性,可对数据进行转换,如对数转换或平方根转换。

平滑处理为减少数据中的随机波动和噪声,可采用平滑技术,如移动平均法或低通滤波器。

金融时间序列分析-ARIMA模型建模实验报告

金融时间序列分析-ARIMA模型建模实验报告

(1)判断原序列平稳性观察时序图,该序列在不同的阶段有不同的均值,表现出一定的周期性,初步判断不平稳。

继续观察自相关图,由图可以清晰看到,序列自相关函数下降趋势缓慢,没有快速衰减至0,判断其不平稳。

该序列三种模型的分别为0.9104、0.6981、0.4589,均大于0.05,不能拒绝有单位根的原假设,因此是非平稳序列。

需要进行处理后再进行建模。

(2)差分序列平稳性检验对原序列进行一次差分,再对其进行平稳性检验。

观察其时序图,该序列的时序图都表现出围绕其水平均值不断波动的过程,没有明显的趋势或周期性,粗略估计是平稳时间序列。

再观察其自相关函数图。

自相关系数快速衰减到0,在虚线范围内波动,没有明显的波动、发散,判断为平稳序列。

模型3与模型2的伴随概率为0,拒绝有单位根的原假设,说明序列是平稳的。

但模型3的时间趋势项的伴随概率为0.1789,常数项的伴随概率0.3504,在显著性水平0.05情况下不显著,故不选用。

而模型2的常数项的伴随概率为0.6608,也不显著,不选用。

因此模型1是最合适的模型,不含有常数项和时间趋势项。

(3)模型的参数估计及模型的诊断检验观察自相关图最后两列可以看到,Q检验的伴随概率均小于0.05,拒绝没有自相关性的原假设,因此该序列不是白噪声序列,没有把信息都提取出来。

接下来将尝试使用AR(1)、AR(2)、AR(3)、MA(1)、ARMA(1,1)、ARMA(2,1)模型进行拟合。

(1)AR(1):该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,拒绝没有自相关性的原假设,不是白噪声序列,不选用。

(2)AR(2):。

该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,接受没有自相关性的原假设,是白噪声序列,可以选用。

(3)AR(3):该模型各项不显著,不选用。

(4)MA(1):该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,接受没有自相关性的原假设,是白噪声序列,可以选用。

用R语言实现奶牛月产奶量的时间序列分析

用R语言实现奶牛月产奶量的时间序列分析

⽤R语⾔实现奶⽜⽉产奶量的时间序列分析奶⽜⽉产奶量的时间序列分析本⽂应⽤R软件对奶⽜⽉产奶量建⽴时间序列模型并进⾏预测。

⽂章主要从以下⼏个⽅⾯进⾏:1.描述性统计2.模型识别3.参数估计4.模型诊断5.预测6.其他建模⽅法及效果对⽐7.结论最终通过多⽅⾯对⽐,我们选择了ARIMA(0,1,1)×(0,1,1)12模型⽤于以后数据的预测。

⼀、描述性统计1.1数据的选取本⽂引⽤的是Data Market中的时间序列数据“Monthly milk production: pounds per cow. Jan 62 –Dec 75”,包括从1962年1⽉到1975年12⽉共168个⽉度数据,单位为pounds/month。

数据如下:从中我们将62-74年,共156条数据作为训练集,75年的12个⽉数据作为测试集,⽤于最后评价模型预测效果的参考。

1.2数据的描述性统计变量统计表1-1数据类型最⼩值下四分数中位数均值上四分数最⼤值数值型数据553.0 677.8 761.0 754.7 824.5 969.0时间序列的分布图和时间序列的分解如下:时间序列分解图1-1由图可以看出,时间序列含有明显的季节性和上升趋势,且没有波动集群现象,可以考虑季节模型,最常⽤的是ARIMA模型。

1.3乘法季节模型乘法季节模型是随机季节模型与 ARIMA 模型的结合。

统计学上纯 RIMA (p,d, q )模型记作:ΦΘ。

其中 t 代表时间,Xt 表⽰响应序列,B是后移算⼦, R=1-B,p、 d、 q 分别表⽰⾃回归阶数、差分阶数和移动平均阶数;Φ(B)表⽰⾃回归算⼦;Θ(B)表⽰滑动平均算⼦。

⼀个阶数为(P,d, q )×(P, D, Q ) s 的乘积季节模型可表为:ΦΘ代表独⽴⼲扰项或随机误差项, s 的值是⼀个季节循环中观测的个数,atΦ表⽰同⼀周期内不同周期点的相关关系,则描述了不同周期中对应时点上的相关关系,⼆者结合起来便同时刻画了 2 个因数的作⽤。

时间序列模型案例分析

时间序列模型案例分析

时间序列模型案例分析时间序列模型案例分析: 新冠疫情趋势预测背景:新冠疫情自2020年开始全球流行,给世界各国的医疗体系和经济造成了巨大冲击。

为了有效应对疫情,政府和医疗机构需要准确预测疫情未来的趋势,并做出相应的决策和应对措施。

数据:本案例使用了每天的新增确诊病例数作为时间序列数据。

数据包括了从疫情开始到某一时间点的每天新增病例数,以及历史病例数、疫情防控政策等其他相关因素。

目标:利用时间序列模型预测未来疫情的趋势,帮助政府和医疗机构制定合理的防控策略。

方法:我们采用了ARIMA模型(自回归移动平均模型)进行疫情趋势预测。

ARIMA模型是一种广泛应用于时间序列分析的经典模型,可对时间序列数据进行模拟和预测。

步骤:1. 数据预处理: 首先,我们进行了数据清洗和转换,确保数据的准确性和一致性。

我们还对数据进行了平稳性检验,如果数据不平稳,则需要进行差分操作。

2. 模型选择: 然后,我们选择了合适的ARIMA模型。

模型选择的关键是要找到合适的参数p、d和q,它们分别代表了自回归阶数、差分阶数和移动平均阶数。

3. 参数估计和模型拟合: 我们使用最大似然估计方法来估计模型的参数,并对模型进行拟合。

拟合后,我们对模型进行残差分析,以检验模型的拟合效果。

4. 模型评估和预测: 接下来,我们使用已有的数据来评估模型的预测效果。

我们将模型的预测结果与实际数据进行比较,并计算误差指标,如均方根误差(RMSE)和平均绝对误差(MAE)。

最后,我们使用拟合好的模型来进行未来疫情的趋势预测。

结果与讨论:经过模型拟合和评估,我们得到了一个较为准确的ARIMA模型来预测未来疫情的趋势。

根据模型的预测结果,政府和医疗机构可以制定对应的防控策略,以应对疫情的发展。

结论:时间序列模型在新冠疫情趋势预测中发挥了重要作用。

通过对历史疫情数据的分析和建模,我们可以预测未来疫情的走势,并相应地采取措施。

然而,需要注意的是,时间序列模型是一种基于过去数据的预测方法,其预测精度可能受到多种因素的影响。

时间序列建模案例VAR模型分析报告与协整检验

时间序列建模案例VAR模型分析报告与协整检验

传统的经济计量方法是以经济理论为基础来描述变量关系的模型。

但是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。

为了解决这些问题而出现了一种用非结构性方法来建立各个变量之间关系的模型。

本章所要介绍的向量自回归模型(vector autoregression ,VAR)和向量误差修正模型(vector error correction model ,VEC)就是非结构化的多方程模型。

向量自回归(VAR)是基于数据的统计性质建立模型,VAR 模型把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而将单变量自回归模型推广到由多元时间序列变量组成的“向量”自回归模型。

VAR 模型是处理多个相关经济指标的分析与预测最容易操作的模型之一,并且在一定的条件下,多元MA 和ARMA 模型也可转化成VAR 模型,因此近年来VAR 模型受到越来越多的经济工作者的重视。

VAR(p ) 模型的数学表达式是t=1,2,…..,T其中:yt 是 k 维内生变量列向量,xt 是d 维外生变量列向量,p 是滞后阶数,T 是样本个数。

k ⨯k 维矩阵Φ1,…, Φp 和k ⨯d 维矩阵H 是待估计的系数矩阵。

εt 是 k 维扰动列向量,它们相互之间可以同期相关,但不与自己的滞后值相关且不与等式右边的变量相关,假设 ∑ 是εt 的协方差矩阵,是一个(k ⨯k )的正定矩阵。

11t t p t p t t --=+⋅⋅⋅+++y Φy Φy Hx ε注意,由于任何序列相关都可以通过增加更多的yt 的滞后而被消除,所以扰动项序列不相关的假设并不要求非常严格。

以1952一1991年对数的中国进、出口贸易总额序列为例介绍VAR 模型分析,其中包括;① VAR模型估计;②VAR模型滞后期的选择;③VAR模型平隐性检验;④VAR模型预侧;⑤协整性检验VAR模型佑计数据Lni(进口贸易总额), ,Lne的时间序列见图。

时间序列分析基础及模型

时间序列分析基础及模型
时间序列分析
PowerPoint
1
时间序列分析
第一节 时间序列的对比分析 第二节 长期趋势分析 第三节 季节变动分析 第四节 循环波动分析
2
学习目标
1 掌握时间序列对比分析的方法 2 掌握长期趋势分析的方法及应用 3 掌握季节变动分析的原理与方法 4 掌握循环波动的分析方法
3
第一节 时间序列的对比分析
34
年度化增长率
计算结果
解:
1) 由于是月份数据;所以 m=12;从1999年一月到
2000年一月所跨的月份总数为12;所以 n=12
12
GA
3012 25
120%
即年度化增长率为20%;这实际上就是年增长率;因 为所跨的时期总数为一年 也就是该地区社会商品零
售总额的年增长率为20%
35
年度化增长率
实例
例2设某种股票1999年各统计时点的收盘价如表 2;计算该股票1999年的年平均价格
表12 某种股票1999年各统计时点的收盘价
统计时点 1月1日 3月1日 7月1日 10月1日 12月31日
收盘价元 15 2 14 2 17 6
16 3
15 8
1.2 51.2 421.2 41.6 741.6 71.3 631.3 61.8 53 Y 2 2 2 2
2. 平均发展水平
现象在不同时间上取值的平均数;又称序时平均数 说明现象在一段时期内所达到的一般水平 不同类型的时间序列有不同的计算方法
11
绝对数序列的序时平均数
计算方法
时期序列
n
计算公式:
Y Y1 Y2
Yn
ห้องสมุดไป่ตู้
Yi
i1
n

时间序列分析自回归模型详解

时间序列分析自回归模型详解

j)
齐次线性差分方程的通解
定理1.1 设A(z)是k个互不相同的零点 z1, z2 , zk 其中z j
是r(j)重零点。则
{z
t j
tl
},
l
0,1, 2,
r( j) 1, j 1,2,
k
是(1.2)的p个解,而且(1.2)的任何解都可以写成
这p个解的线性组合
k r ( j)1
(1.7)
Xt
60
80
100
120
AR( p) 模型 定义2.1( AR( p) 模型) 如果{t} 是白噪声WN(0, 2 ),实数
a1, a2, ap , ap 0 使得多项式A(z)的零点都在单位圆外 p A(z) 1 aj z j 0, z 1 则称P阶差分方程 j 1
p
Xt a j Xt j t ,t Z j 1
是一个p阶自回归模型,简称为 AR( p) 模型
满足 AR( p) 模型(2.5)的平稳时间序列称为(2.5)的平稳解或 AR( p) 序列
称 a (a1,a2, ap )T 为 AR( p) 模型的自回归系数。
称条件(2.4)是稳定性条件或最小相位条件。 A(z)称为模型(2.5)的特征多项式。
X t [a1X t1 a2 X t2 ap X t p ] 0,t Z
为p阶齐次常系数线性差分方程,简称齐次差分方程。 满足上式方程的实数列称为它的解, 满足上式的实值(或复值)时间序列也成为它的解。
上式的解可以由p个初值逐次递推得到
Xt [a1X t1 a2 X t2 ap X t p ],t p
U
l
,
jt
'
z
t j
,

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。

时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。

本文将介绍几种常见的时间序列分析模型。

1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。

它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。

该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。

2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。

自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。

3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。

自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。

4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。

时间序列分析模型实例

时间序列分析模型实例
用自相关函数和偏自相关函数衡量时间序列中的自相关关 系
时间序列的自相关关系
自相关函数 随机过程的自相关函数 样本的自相关函数
偏自相关函数 随机过程的偏自相关函数 样本的偏自相关函数
自相关函数
对于平稳随机过程,滞后期为 K 的自相关函数定义为 滞后期为 K 的自协方差与方差之比
1 时间序列分析模型【ARMA模型 】简介
引入滞后算子,并令 (B) 11B 2B2 qBq 则模型【3】可简写为
X t (B)ut
【4】
注1:移动平均过程无条件平稳
注2:滞后多项式 (B) 的根都在单位圆外时,AR过程与MA过程
能相互表出,即过程可逆,
1 w1B w2B2
1 时间序列分析模型【ARMA模型 】简介
1、自回归【 AR 】模型
自回归序列 X t:
如果时间序列 X t 是它的前期值和随机项的线性 函数,即可表示为
X t 1 X t1 2 X t2 p X t p ut 【1】
【1】式称为 p 阶自回归模型,记为AR( p )
通过对该数学模型的分析研究,能够更本质地认
识时间序列的结构与特征,达到最小方差意义下的 最优预测.
ARMA模型有三种基本类型:
自回归(AR:Auto-regressive)模型 移动平均(MA:Moving Average)模型
自回归移动平均(ARMA:Auto-regressive Moving Average)模型
平稳序列(stationary series)
基本上不存在趋势的序列,各观察值基本上在某个固 定的水平上波动
或虽有波动,但并不存在某种规律,而其波动可以看 成是随机的

时间序列分析第七章趋势性时间序列模型王振龙第二版

时间序列分析第七章趋势性时间序列模型王振龙第二版

20000
0.4 0.3
15000
0.2
10000
0.1 0.0
5000
-0.1
XFP 0 55 60 65 70 75 80 85 90
DLNXFP -0.2 55 0.3 60 65 70 75 80 85 90
10
9
0.2
8
0.1
7
0.0
6 LNXFP 55 60 65 70 75 80 85 90
第二步,计算均值序列或方差序列的逆序总数。
A Ai
i 1
M 1
第三步,计算统计量进行检验 在原假设条件下,A具有以下期望与方差
1 E ( A) M ( M 1) 4 M (2 M 2 3M 5) D( A) 72
其中,M为数据个数。
统计量
1 [ A E ( A)] 2 Z D ( A)
d d 1 d 2 d 2 d d
例:对温度序列作一阶差分。 原序列图
15 10 5 0 -5 -10 -15 25 50 75 100 125 tempreture 150 175 200
一阶差分序列图
8
4
0
-4
-8 25 50 75 100 125 150
DWD 175 200
过差分
• 足够多次的差分运算可以充分地提取原 序列中的非平稳确定性信息 • 但过度的差分会造成有用信息的浪费
30
20
10
0
-10 85
DGY 86 87 88 89 90 91 92 93
gy
• 对数变换与差分运算的结合运用
如果时间序列含有指数趋势,可以通过取对数将 指数趋势转化为线性趋势。

数学建模——时间序列分析

数学建模——时间序列分析

时间序列数据的预处理
➢ 1962年1月—1975年12月平均每头奶牛月产奶量SAS程 序
时间序列数据的预处理
➢ 1949年——1998年北京市每年最高气温SAS程序
时间序列数据的预处理
3 纯随机性检验
➢ 纯随机序列的定义 ➢ 纯随机性的性质 ➢ 纯随机性检验
时间序列数据的预处理
3.1 纯随机序列的定义 ➢ 纯随机序列也称为白噪声序列,它满足如下两条
疏系数模型类型如果只是自相关部分有省缺系数那么该疏系数模型可以简记为为非零自相关系数的阶数如果只是移动平滑部分有省缺系数那么该疏系数模型可以简记为为非零移动平均系数的阶数如果自相关和移动平滑部分都有省缺可以简记例16对1917年1975年美国23岁妇女每万人生育率序列建模非平稳时间序列数据分析一阶差分非平稳时间序列数据分析自相关图非平稳时间序列数据分析偏自相关图非平稳时间序列数据分析arima1410参数估计模型检验模型显著参数显著季节模型简单季节模型乘积季节模型非平稳时间序列数据分析简单季节模型简单季节模型是指序列中的季节效应和其它效应之间是加法关系简单季节模型通过简单的趋势差分季节差分之后序列即可转化为平稳它的模型结构通常如下例17拟合19621991年德国工人季度失业率序列非平稳时间序列数据分析差分平稳对原序列作一阶差分消除趋势再作4步差分消除季节效应的影响差分后序列的时序图如下非平稳时间序列数据分析白噪声检验延迟阶数统计量4384000011251710000118544800001差分后序列自相关图非平稳时间序列数据分析差分后序列偏自相关图非平稳时间序列数据分析arima14140参数估计模型检验残差白噪声检验参数显著性检验延迟参数统计20907191348000011210990358434100001拟合效果图非平稳时间序列数据分析乘积季节模型使用场合序列的季节效应长期趋势效应和随机波动之间有着复杂地相互关联性简单的季节模型不能充分地提取其中的相关关系构造原理短期相关性用低阶armapq模型提取季节相关性用以周期步长s为单位的armapq模型提取假设短期相关和季节效应之间具有乘积关系模型结构如下例18拟合19481981年美国女性月度失业率序列非平稳时间序列数据分析差分平稳一阶12步差分非平稳时间序列数据分析差分后序列自相关图非平稳时间序列数据分析差分后序列偏自相关图非平稳时间序列数据分析简单季节模型拟合结果延迟拟合模型残差白噪声检验ar112ma1212arma112112145800057950023313770000412164200883141901158179900213结果拟合模型均不显著乘积季节模型拟合模型定阶arima11101112参数估计1212非平稳时间序列数据分析模型检验残差白噪声检验参数显著性检验延迟参数统计450021204660000112942040022303000

计量经济学实例时间序列

计量经济学实例时间序列
预测结果展示
将预测结果与实际股票价格进行对比 分析,评估模型的预测效果。
06
总结与展望
研究成果总结
通过对时间序列数据的深入分析和建模,本研究成功揭示了经济变量之间的动态关系和长期趋势,为 政策制定和市场预测提供了有力支持。
在模型选择和参数估计方面,本研究采用了先进的计量经济学方法和技术,有效提高了模型的拟合优度 和预测精度。
预测误差评估指标
均方误差(MSE)
衡量预测值与实际值之间误差的平方的平均值,值越小表示预测 精度越高。
均方根误差(RMSE)
MSE的平方根,能更直观地反映预测误差的大小。
平均绝对误差(MAE)
预测值与实际值之间绝对误差的平均值,能反映预测误差的实际情 况。
实例分析:股票价格预测
数据收集
收集历史股票价格数据,包括开盘价、 收盘价、最高价、最低价等。
02
ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,能够更全 面地刻画时间序列的动态特征。
03
ARMA模型的表达式为:Xt=c+∑i=1pφiXt−i+εt+∑j=1qθjεt−j,其中φi和θj分别 为自回归系数和移动平均系数,p和q分别为自回归阶数和移动平均阶数。
模型定阶与参数估计方法
具有平稳性。
03
对数变换与幂变换
对数变换和幂变换是两种常用的非线性变换方法,可以消除时间序列中
的异方差性和非线性趋势,使得变换后的序列具有平稳性。这些方法在
处理金融和经济数据时尤为有效。
04
模型建立与参数估计
ARMA模型介绍
01
自回归移动平均模型(ARMA模型)是时间序列分析中的一种重要模型,用于 描述平稳时间序列的随机过程。

时间序列分析应用实例(使用Eviews软件实现)

时间序列分析应用实例(使用Eviews软件实现)

时间序列分析应⽤实例(使⽤Eviews软件实现)引⾔某公司的苹果来货量数据是以时间先后为顺序记录的⼀组数据,从计量经济学的⾓度来分类就是⼀组时间序列数据。

为了提⾼苹果来货量预测的准确度以及预测结果的可信度,下⾯运⽤Eviews软件包(即Econometrics Views 计量经济学软件包)并结合计量经济学的理论知识,选取2017年1⽉⾄2019年4⽉的苹果来货量⽉度数据(事前对原始数据进⾏处理,把数值单位从吨转换为万吨)为样本数据,⽤⼀个时间序列模型来拟合上述样本数据,然后利⽤建⽴好的模型预测苹果未来⼏个⽉的来货量情况,并对预测结果进⾏分析。

1 平稳性检验1.1 初步检验设来货量时间序列为Qt,⾸先观察Qt的折线图,如图1所⽰:图1 Qt的折线图从图1可知,苹果来货量的⽉度数据总体呈下降趋势,并存在季节性因素,进⽽通过序列原⽔平的⾃相关系数图进⼀步探讨序列的平稳性,结果如图2所⽰:图2 Qt的⾃相关系数图从图2可以看到,所有的⾃相关系数(Autocorrelation)均落在2倍标准差之内(垂⽴的两道虚线表⽰2倍标准差),初步判定序列Qt是平稳的。

下⾯运⽤ADF单位根检验法证明序列的平稳性。

1.2 ADF单位根检验假设序列Qt的特征⽅程存在多个特征根,那么序列平稳的条件为所有特征根λi的绝对值均⼩于1,即所有特征根都在单位圆内。

构造该ADF 检验的原假设H0:存在i,使得λi>1,备择假设H1:λ1, λ2, … , λp<1,运⽤Eviews软件对序列Qt的原⽔平进⾏带常数项(Intercept)的ADF检验,采⽤SC准则⾃动选择滞后阶数,检验结果如图3所⽰:图3 ADF检验根据图3的检验结果可知,t统计量(t-Statistic)的伴随概率p为0.00,在显著性⽔平α=0.05下,因此我们有理由拒绝原假设(p<α),说明序列Qt是平稳的。

2 模型识别从图2可知,序列Qt的⾃相关系数(Autocorrelation)和偏⾃相关系数(Partial correlation)均在阶数1处突然衰减为在零附近⼩值波动,因此我们初步选择AR(1)、ARMA(1,1)这两个模型拟合样本数据3 模型参数估计3.1 AR(1)模型的拟合与参数估计设AR(1)模型为:Qt=C + Φ*Qt-1 +εt,其中C为常数项,Φ为待估计的Qt滞后⼀阶的系数,εt为服从均值为零、⽅差为常数正态分布的正态分布(即⽩噪声序列),下⾯运⽤Eviews软件对AR(1)模型的参数采⽤最⼩⼆乘估计法(⽆偏估计)进⾏参数估计,模型估计结果如图4所⽰:图4 AR(1)模型拟合结果根据图4的参数估计结果来看,在显著性⽔平α=0.05下,常数项显著不为零,⽽参数Φ的显著性估计结果并不是太好,另外AR(1)模型的特征⽅程的根(Inverted AR Roots)为-0.16,印证了序列Qt是平稳的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
平稳时间序列
2260
2240
2220
2200
SCO RE
2180
2160 1
11
21
31
41
51
61
71
81
91
6
16
26
36
46
ห้องสมุดไป่ตู้
56
66
76
86
96
序號
精品课件
非平稳时间序列
42 40
38 36
34
32
30
28
26
1
27
53
79
105
131 157 183 209
235
14
40
66
92
通过对该数学模型的分析研究,能够更本质 地认识时间序列的结构与特征,达到最小方差意义 下的最优预测.
ARMA模型有三种基本类型:
自回归(AR:Auto-regressive)模型 移动平均(MA:Moving Average)模型 自回归移动平均(ARMA:Auto-精r品e课gr件essive Moving Average)模型
❖ 随机性时间序列模型是以时间序列的平稳性为基础建立的
精品课件
随机性时间序列模型的特点
❖ 利用时间序列中的自相关关系进行分析和建摸
❖ 时间序列的自相关关系是指时间序列在不同时期观测值之 间的相关关系
❖ 许多因素产生的影响不是瞬间的,而是持续几个时期或更 长时间,因此时间序列在不同时期的值往往存在较强的相 关关系
精品课件
1 时间序列分析模型【ARMA模型 】简介
一、概 述
ARMA模型是一类常用的随机时间序列模型, 是一种精度较高的时间序列短期预测方法,其基本
思想是:某些时间序列是依赖于时间 t 的一族
随机变量,构成该时间序列的单个序列值虽然具有 不确定性,但整个序列的变化却有一定的规律性, 可以用相应的数学模型近似描述.
ρk
Cov(Yt ,Ytk ) Var(Yt )
γ γ
k 0
ρ0
γ γ
0 0
;
ρ1
γ γ
1 0
;
精品课件
ρ
2
γ1 γ0
样本自相关函数
ρk
T
1 K
T K
__
(Yt Y )( Yt k
t 1
1 T
(Yt
__
Y )2
__
Y)
如果样本较大, 1 近似 1 ,上式可简化为:
T K
T
T K


( Yt Y )( Yt k Y )
ρ k t 1 T
—2
( Yt
Y

精品课件
t 1
样本自相关函数的性质
❖ 可以用来判断时间序列的平稳性
平稳性时间序列的样本自相关函数值随滞后期的延长很快趋 近于零
❖ 可以较好描述季节性变动或其他周期性波动的规律
如果季节变化的周期是 12 期,观测值 Yt 与 Yt+12,Yt+24 ,Yt+36之间存在较强自相关关系
1 时间序列分析模型【ARMA模型 】简介
1、自回归【 AR 】模型
自回归序列 X t :
如果时间序列 X t 是它的前期值和随机项的线性函 数,即可表示为
X t 1 X t 1 2 X t 2 p X t p u t 【1】
【1】式称为 p 阶自回归模型,记为AR(p

注1:实参数 1,2, ,p
因此,当 K=12,24,36,48,……时,样本自相关函数值在 绝对值上大于它周围的值
精品课件
偏自相关函数值
❖ 滞后期为 K 的偏自相关函数值是指去掉 Y t+1,Y t+2,Y t+3, …… Y t+k-2,Y t+k-1 的影响之后,反映观测值Yt和Y t+k之间相关 关系的数值
精品课件
118 144 170 196 222 248
序號
精品课件
STO CK
平稳性时间序列
❖ 由平稳随机过程产生的时间序列的性质: 概率分布函数不随时间的平移而变化,即: P(Y1,Y2,… …,Yt)=P(Y1+m,Y2+m,… …,Yt+m) 期望值、方差和自协方差是不依赖于时间的常数,即: E(Yt)=E(Yt+m) Var(Yt)= Var(Y t+m) Cov(Yt,Y t+k)= Cov(Y t+m,Y t+m+k)
时间序列分析模型
1 时间序列分析模型简介 一、时间序列分析模型概述 1、自回归模型 2、移动平均模型 3、自回归移动平均模型 二、随机时间序列的特性分析 三、模型的识别与建立 四、模型的预测
2 长江水质污染的发展趋势预测 【CUMCM 2005A】 一、问题分析 二、模型假设 三、模型建立
四、模型预测 五、结果分析 六、模型评价与改进 精品课件
随机性时间序列模型的特点
❖ 建摸过程是一个反复实验的过程 ❖ 借助自相关函数值和偏自相关函数值确定模型的类型 ❖ 借助诊断性检验判断模型的实用性
精品课件
时间序列最佳模型的确定
出发点:模型总类 选择暂时试用的模型
估计模型中的参数
诊断检验:模型是否适用
运用模型分析和预测
精品课件
模型分类
❖ 总类模型 ❖ 移动平均模型 MA(q) (Moving Average) ❖ 自回归模型 AR(p) (Autoregression) ❖ 混合自回归移动平均模型 ARMA (p,q) ❖ 差分自回归-移动平均模型 ARIMA (p,d,q)
❖ 用自相关函数和偏自相关函数衡量时间序列中的自相关关 系
精品课件
时间序列的自相关关系
❖ 自相关函数 随机过程的自相关函数 样本的自相关函数
❖ 偏自相关函数 随机过程的偏自相关函数 样本的偏自相关函数
精品课件
自相关函数
❖ 对于平稳随机过程,滞后期为 K 的自相关函数定义为 滞后期为 K 的自协方差与方差之比
时间序列的分类
时间序列
平稳序列
非平稳序列
有趋势序列
精品课件
复合型序列
随机性时间序列模型的特点
❖ 把时间序列数据作为由随机过程产生的样本来分析 ❖ 多数影响时间序列的因素具有随机性质,因此时间序列的
变动具有随机性质 ❖ 随机过程分为平稳随机过程和非平稳随机过程
由平稳随机过程产生的时间序列叫做平稳性时间序列 由非平稳随机过程产生的时间序列叫做非平稳性时间序列
精品课件
❖ 平稳序列(stationary series)
基本上不存在趋势的序列,各观察值基本上在某个固 定的水平上波动
或虽有波动,但并不存在某种规律,而其波动可以看 成是随机的
❖ 非平稳序列 (non-stationary series)
有趋势的序列:线性的,非线性的
有趋势、季节性和周期性的复合型序列
称为自回归系数,
是且待服估从参均u t数值2 为.随0机、项方差为
是相互独立的白噪声序列, 的正态分布.随机项与滞
后变量不相关。
注2:一般假定 X t
则令
均值精为品课0件,否 Xt Xt
相关文档
最新文档