2019届高考数学大一轮复习第三章导数及其应用3.1导数的概念及运算学案理北师大版
高考数学(理科)一轮复习:单元三 导数及其应用 3.1 导数的概念及运算
1 f'(x)= ������
第三章
知识梳理 考点自测
3.1
导数的概念及运算
关键能力
必备知识
-6-
4.导数的运算法则 若f'(x),g'(x)存在,则有 f'(x)±g'(x) (1)[f(x)±g(x)]'= f'(x)g(x)+f(x)g'(x) (2)[f(x)· g(x)]'=
原函数 f (x)=c(c 为常数) f (x)=xα(α∈Q, α≠0) f (x)=sin x f (x)=cos x f (x)=ax(a>0, 且 a≠1) f (x)=ex f (x)=loga x(a>0, 且 a≠1) f (x)=ln x 导函数 f'(x)=0 f'(x)=αxα-1 f'(x)=cos x f'(x)=-sin x f'(x)= axln a f'(x)= ex
处的切线方程为 y-2=1×(x-1),即 y=x+1.
关闭
y=x+1
解析 答案
第三章
知识梳理 考点自测
3.1
导数的概念及运算
关键能力
必备知识
-12-
1
2
3
4
5
5.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,3)处的切线方程是 .
=
������(������1 )-������(������0) ������1 -������0
������(������0 +������)-������(������0) = . ������
2019届高考数学一轮复习第三章导数及其应用3.1导数的概念及运算课件文新人教A版【优质ppt版本】
考点1
考点2
-15-
考点 1
导数的运算
例 1 分别求下列函数的导数:
f(x)=logax(a>0,且 a≠1)
导函数
f '(x)=0 f'(x)= αxα-1 f'(x)= cos x f'(x)= -sin x f'(x)=axln a(a>0,且a≠1) f'(x)= ex
f'(x)= ������l1n������(a>0,且 a≠1)
f(x)=ln x
1
f'(x)= ������
例3设a∈R,函数f(x)=ex+a·e-x的导函数是f'(x),且f'(x)是奇函数.若
曲线 y=f(x)的一条切线的斜率是32,则切点的横坐标为( )
A.ln 2
B.-ln 2
C.ln22
D.-ln22
思考已知切线方程(或斜率)求切点的一般思路是什么?
关闭
函数 f(x)=ex+a·e-x 的导函数是 f'(x)=ex-a·e-x.又 f'(x)是奇函数,所以
-5-
知识梳理 双基自测 自测点评
12345
2.函数 y=f(x)在 x=x0 处的导数
(1)定义:称函数
y=f(x)在
x=x0
处的瞬时变化率 lim
Δ ������ →0
������ ������
2019年高考数学(理)一轮复习精品资料专题13导数的概念及其运算(教学案)含解析
2019年高考数学(理)一轮复习精品资料1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.1.函数f (x )在点x 0处的导数 (1)定义函数y =f (x )在点x 0的瞬时变化率lim Δx →0 00()()f x x f x x+∆-∆=l ,通常称为f (x )在点x 0处的导数,并记作f ′(x 0),即lim Δx →0 00()()f x x f x x+∆-∆=f ′(x 0).(2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))的切线的斜率等于f ′(x 0).2.函数f (x )的导函数如果f (x )在开区间(a ,b )内每一点x 导数都存在,则称f (x )在区间(a ,b )可导.这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数f ′(x ).于是,在区间(a ,b )内,f ′(x )构成一个新的函数,我们把这个函数称为函数y =f (x )的导函数,记为f ′(x )(或y ′x 、y ′). 3.基本初等函数的导数公式4.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[]2()()()()()()()f x f x g x f x g'x 'g x g x ⎡⎤-=⎢⎥⎣⎦ (g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.高频考点一 导数的运算 例1、分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .【方法技巧】求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【变式探究】求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x ex ;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2; (4)y =ln(2x -5).(3)∵y =x sin ⎝⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x . ∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .(4)令u =2x -5,y =ln u . 则y ′=(ln u )′u ′=12x -5·2=22x -5, 即y ′=22x -5.高频考点二 导数的几何意义例2、(1)(2017·全国Ⅰ卷)曲线y =x 2+1x在点(1,2)处的切线方程为________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)解析 (1)设y =f (x ),则f ′(x )=2x -1x2,所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x.因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).答案 (1)y =x +1 (2)B【变式探究】(1)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0D.x -y +1=0(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 答案 (1)2x -y =0 (2)B【方法规律】(1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【变式探究】(1)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A.1 B.2C.-1D.-2(2)若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 (1)设切点为(x 0,y 0),y ′=1x +a,所以有⎩⎪⎨⎪⎧y 0=x 0+1,1x 0+a =1,y 0=ln (x 0+a ),解得⎩⎪⎨⎪⎧x 0=-1,y 0=0,a =2.(2)∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,∴x +1x-a =0有解,∴a =x +1x≥2(x >0).答案 (1)B (2)[2,+∞)【举一反三】已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.法二 同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案 8高频考点三、导数与函数图象的关系例3、如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )答案 D【感悟提升】导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f x 1x 0-x 1求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.【变式探究】(1)已知函数f (x )=3x +cos2x +sin2x ,a =f ′(π4),f ′(x )是f (x )的导函数,则过曲线y=x 3上一点P (a ,b )的切线方程为( )A .3x -y -2=0B .4x -3y +1=0C .3x -y -2=0或3x -4y +1=0D .3x -y -2=0或4x -3y +1=0(2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 答案 (1)C (2)-e(2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x=ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.1. (2018年全国I 卷理数)设函数,若为奇函数,则曲线在点处的切线方程为A.B.C.D.【答案】D2. (2018年全国Ⅱ卷理数)曲线在点处的切线方程为__________.【答案】【解析】1.(2017·全国Ⅰ卷)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析 (1)设y =f (x ),则f ′(x )=2x -1x2,所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1.2.(2017·天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析 f (1)=a ,切点为(1,a ).f ′(x )=a -1x,则切线的斜率为f ′(1)=a -1,切线方程为:y -a =(a-1)(x -1),令x =0得出y =1,故l 在y 轴上的截距为1.答案 1【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x =(C )e x y =(D )3y x =【答案】A【解析】当sin y x =时,cos y x '=,cos0cos 1⋅π=-,所以在函数sin y x =图象存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值均非负,不符合题意,故选A 。
高考数学一轮复习 第三章 导数及其应用 3.1 导数的概念及运算课件(理)
(2015·天津)已知函数 f(x)=axlnx,x∈(0,+∞),其中
a 为实数,f′(x)为 f(x)的导函数.若 f′(1)=3,则 a 的值为( )
A.1
B.2
C.3
D.4
解:f′(x)=alnx+x·1x=a(lnx+1),∴f′(1)=a=3.故选 C.
(2015·陕西)函数 y=xex 在其极值点处的切线方
(logax)′=____________; (ax)′=____________.
4.导数运算法则
(1)[f(x)±g(x)]′=__________________.
(2)[f(x)g(x)]′=____________________;
当 g(x)=c(c 为常数)时,即[cf(x)]′=____________.
②常用的导数运算法则:
法则 1:[u(x)±v(x)]′=u′(x)±v′(x). 法则 2:[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x).
法则 3:uv( (xx) )′=u′(x)v(vx2)(-x)u(x)v′(x)(v(x)≠0).
5.了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求函数的单调区间(其中多项式函数不超过三次).
6.了解函数在某点取得极值的必要条件和充分条件;会用导 数求函数的极大值、极小值(其中多项式函数不超过三次);会求 闭区间上函数的最大值、最小值(其中多项式函数不超过三次).
7.会用导数解决实际问题. 8.了解定积分的实际背景,了解定积分的基本思想,了解定 积分的概念. 9.了解微积分基本定理的含义.
处的切线的斜率.也就是说,曲线 y=f(x)在点 P(x0,f(x0))处的切线的斜率是 .相
2019高考数学一轮复习导数及其应用学案理
导数及其应用知识点一、导数的基本运算1.基本初等函数的导数公式原函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e xf ′(x )=e xf (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3、复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 小题速通1.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x2.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)3.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1034.(2016·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 5.函数y =ln 2x +1x的导数为________.易错点1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n)′=nxn -1中n ≠0且n ∈Q *,(cos x )′=-sin x .2.注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.1、已知函数f (x )=sin x -cos x ,若f ′(x )=12f (x ),则tan x 的值为( )A .1B .-3C .-1D .2 2、若函数f (x )=2x+ln x 且f ′(a )=0,则2aln 2a=( )A .-1B .1C .-ln 2D .ln 2知识点二、导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0). 小题速通1.(2018·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4 2.设函数f (x )=x ln x ,则点(1,0)处的切线方程是________. 3.已知曲线y =2x 2的一条切线的斜率为2,则切点的坐标为________.4.函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,则f (1)+f ′(1)=________. 易错点1.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别. 1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.(2017·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.知识点三、利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系(1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f ′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤(1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间. 小题速通1.函数f (x )=2x 3-9x 2+12x +1的单调减区间是( )A .(1,2)B .(2,+∞)C .(-∞,1)D .(-∞,1)和(2,+∞) 2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( )A .(-∞,-26] B.⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞) D .[-5,+∞) 易错点若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立. 若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________.知识点四、利用导数研究函数的极值与最值1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 小题速通1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .42.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( )A .2B .3C .4D .53.(2017·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0 D .不存在 4.若函数f (x )=12x 2-ax +ln x 有极值,则a 的取值范围为________.5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________. 易错点1.f ′(x 0)=0是x 0为f (x )的极值点的既不充分也不必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.2.求函数最值时,易误认为极值点就是最值点,不通过比较就下结论. 1.(2017·岳阳一模)下列函数中,既是奇函数又存在极值的是( )A .y =x 3B .y =ln(-x )C .y =x e -xD .y =x +2x2.设函数f (x )=x 3-3x +1,x ∈[-2,2]的最大值为M ,最小值为m ,则M +m =________.知识点五、定积分1.定积分的概念在∫ba f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1) ⎠⎛a b kf (x )d x =k ⎠⎛a b f (x )d x (k 为常数); (2) ⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3) ⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x ) ⎪⎪⎪ba,即⎠⎛ab f (x )d x =F (x ) ⎪⎪⎪ba =F (b )-F (a ).小题速通1.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-22.⎠⎛01(e x+x)d x =________.3.(2015·天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 易错点定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 由曲线y =x 2和直线x =0,x =1,y =14所围成的图形(如图所示)的面积为( )A .23 B.13 C .12 D.14过关检测练习一、选择题1.已知函数f (x )=log a x (a>0且a ≠1),若f ′(1)=-1,则a =( )A .e B.1e C.1e 2 D.122.直线y =kx +1与曲线y =x 2+ax +b 相切于点A(1,3),则2a +b 的值为( )A .-1B .1C .2D .-23.函数y =2x 3-3x 2的极值情况为( )A .在x =0处取得极大值0,但无极小值B .在x =1处取得极小值-1,但无极大值C .在x =0处取得极大值0,在x =1处取得极小值-1D .以上都不对4.若f(x)=-12x 2+m ln x 在(1,+∞)是减函数,则m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1]D .(-∞,1)5.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( )A .0B .1C .2D .37.由曲线y =x 2-1,直线x =0,x =2和x 轴所围成的封闭图形的面积是( )A .⎠⎛02(x 2-1)d x B.⎠⎛02|x 2-1|d x C .⎠⎛02(x 2-1)d x D .⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x8.若函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x >0的值域为[0,+∞),则实数a 的取值范围是( )A .[2,3]B .(2,3]C .(-∞,2]D .(-∞,2) 二、填空题9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是________. 10.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.11.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +3,则f (1)+f ′(1)=________.12.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m的取值范围为________. 三、解答题13.已知函数f (x )=x +a x+b (x ≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式; (2)讨论函数f (x )的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求实数b 的取值范围.14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.高考研究课:一 导数运算是基点、几何意义是重点、定积分应用是潜考点 考点 考查频度 考查角度导数的几何意义5年7考 求切线、已知切线求参数、求切点坐标定积分未考查[典例] (1)(2018·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( ) A .-3π2 B .-1π2 C .-3π D .-1π(2)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A .-sin x -cos xB .sin x -cos xC .sin x +cos xD .cos x -sin x (3)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1 D .e 方法技巧1、可导函数的求导步骤(1)分析函数y =f (x )的结构特点,进行化简; (2)选择恰当的求导法则与导数公式求导; (3)化简整理答案. 2、求导运算应遵循的原则求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错. 即时演练1.(2018·江西九校联考)已知y =(x +1)(x +2)(x +3),则y ′=( )A .3x 2-12x +6 B .x 2+12x -11 C .x 2+12x +6 D .3x 2+12x +11 2.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.题型二、导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题的第1问中,难度较低,属中、低档题. 常见的命题角度有: 1求切线方程; 2确定切点坐标;3已知切线求参数值或范围; 4切线的综合应用.角度一:求切线方程1.已知函数f (x )=ln(1+x )-x +x 2,则曲线y =f (x )在点(1,f (1))处的切线方程是________.角度二:确定切点坐标2.已知函数f (x )=exx(x >0),直线l :x -ty -2=0.若直线l 与曲线y =f (x )相切,则切点横坐标的值为________.角度三:已知切线求参数值或范围3.(2017·武汉一模)已知a 为常数,若曲线y =ax 2+3x -ln x 上存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是________.4.若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围是________.角度四:切线的综合应用5.已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值.方法技巧利用导数解决切线问题的方法(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.题型三、定积分及应用[典例] (1)(2018·东营模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈1,2],则⎠⎛02f(x)d x 等于( )A.34B.45C.56D .不存在 (2)设f (x )=)⎩⎨⎧1-x 2,x ∈[-1,1,x 2-1,x ∈[1,2],则⎠⎛-12f (x )dx 的值为( )A.π2+43 B.π2+3 C.π4+43 D.π4+3 (3)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.方法技巧求定积分的2种方法及注意事项(1)定理法运用微积分基本定理求定积分时要注意以下几点: ①对被积函数要先化简,再求积分;②求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; ③对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分; ④注意用“F′(x )=f (x )”检验积分的对错. (2)面积法根据定积分的几何意义可利用面积求定积分. 即时演练1.(2018·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -12.直线y =2x +3与抛物线y =x 2所围成封闭图形的面积为________.3.如图,在长方形OABC 内任取一点P ,则点P 落在阴影部分的概率为________.高考真题演练1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .32.(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.3.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________. 4.(2015·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 5.(2015·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.高考达标检测一、选择题1.若a =⎠⎛02x d x ,则二项式⎝⎛⎭⎪⎫x -a +1x 6展开式中的常数项是( ) A .20 B .-20 C .-540 D .5402.(2018·衡水调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -23.(2018·济南一模)已知曲线f (x )=ln x 的切线经过原点,则此切线的斜率为( )A .eB .-eC .1eD .-1e4.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f(x)图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-25.(2018·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,π B.⎣⎢⎡⎭⎪⎫2π3,π C .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π D.⎝ ⎛⎦⎥⎤π2,5π6 6.已知曲线y =1e x+1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0 D .4x -2y -1=0二、填空题7.若a 和b 是计算机在区间(0,2)上产生的随机数,那么函数f(x)=lg (ax 2+4x +4b)的值域为R 的概率为________. 8.已知函数f (x )=e ax+bx (a <0)在点(0,f(0))处的切线方程为y =5x +1,且f (1)+f ′(1)=12.则a ,b 的值分别为________.9.(2017·东营一模)函数f (x )=x ln x 在点P(x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P(x 0,f (x 0))的坐标为________.10.设过曲线f (x )=-e x-x(e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,则m 的取值范围是________. 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.12.已知函数f (x )=12x 2-ax +(3-a )ln x ,a ∈R.(1)若曲线y =f (x )在点(1,f (1))处的切线与直线2x -y +1=0垂直,求a 的值; (2)设f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 1)+f (x 2)>-5.能力提高训练题1.(2018·广东七校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 32.函数y =f (x )图象上不同两点M (x 1,y 1),N (x 2,y 2)处的切线的斜率分别是k M ,k N ,规定φ(M ,N )=|k M -k N ||MN |(|MN |为线段MN 的长度)叫做曲线y =f (x )在点M 与点N 之间的“弯曲度”.设曲线f (x )=x 3+2上不同两点M (x 1,y 1),N (x 2,y 2),且x 1x 2=1,则φ(M ,N )的取值范围是________.高考研究课:二、函数单调性必考,导数工具离不了全国卷5年命题分析考点 考查频度 考查角度函数单调性5年6考讨论单调性及证明单调性问题[典例] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x2,a ∈R ,讨论f (x )的单调性.方法技巧导数法判断函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 即时演练1.(2017·芜湖一模)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( )A.()0,+∞B.()-∞,0C.()-∞,1D.()1,+∞ 2.(2016·全国卷Ⅱ节选)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. 题型二、利用导数研究函数单调性的应用函数的单调性是高考命题的重点,其应用是考查热点.,常见的命题角度有: 1y =f (x )与y =f ′(x )的图象辨识;2比较大小;3已知函数单调性求参数的取值范围; 4构造函数解不等式.角度一:y =f (x )与y =f ′(x )的图象辨识1.已知函数f (x )=ax 3+bx 2+cx +d ,若函数f (x )的图象如图所示,则一定有( )A .b >0,c >0B .b <0,c >0C .b >0,c <0D .b <0,c <02.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )角度二:比较大小3.设定义在R 上的函数f (x )的导函数为f ′(x ),且满足f (2-x )=f (x ),f ′xx -1<0,若x 1+x 2>2,x 1<x 2,则( ) A .f (x 1)<f (x 2) B .f (x 1)=f (x 2) C .f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小不能确定角度三:已知函数单调性求参数的取值范围4.(2018·宝鸡一检)已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)5.(2018·成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.方法技巧由函数的单调性求参数的范围的方法(1)可导函数f (x )在D 上单调递增(或递减)求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)对x ∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f (x )在D 上不单调,则f (x )在D 上有极值点,且极值点不是D 的端点.角度四:构造函数解不等式6.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)7.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2f (x +2 018)-f (-1)<0的解集为________.高考真题演练1.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 2.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 3.(2017·全国卷Ⅰ)已知函数f (x )=e x(e x-a )-a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.高考达标检测一、选择题1.已知函数f (x )=ln x +x 2-3x (a ∈R),则函数f (x )的单调递增区间为( )A.⎝ ⎛⎭⎪⎫-∞,12 B .(1,+∞) C.⎝ ⎛⎭⎪⎫-∞,12和(1,+∞) D.⎝ ⎛⎭⎪⎫0,12和(1,+∞) 2.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )3.对于R 上可导的任意函数f (x ),若满足1-xf ′x≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)4.已知函数f (x )=x sin x ,x 1,x 2∈⎝ ⎛⎭⎪⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0 B .x 1+x 2>0 C .x 21-x 22>0 D .x 21-x 22<05.(2017·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定6.已知定义在R 上的函数y =f (x )满足条件f (x +4)=-f (x ),且函数y =f (x +2)是偶函数,当x ∈(0,2]时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈[-2,0)时,f (x )的最小值为3,则a 的值为( ) A .e 2B .eC .2D .1 二、填空题7.设函数f (x )=x (e x-1)-12x 2,则函数f (x )的单调增区间为________.8.已知函数f (x )=x ln x -ax 2-x .若函数f (x )在定义域上为减函数,则实数a 的取值范围是________. 9.(2018·兰州诊断)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 三、解答题10.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.11.(2018·武汉调研)已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求a 的取值范围; (2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.12.(2018·湖南十校联考)函数f (x )=13x 3+|x -a |(x ∈R ,a ∈R).(1)若函数f (x )在R 上为增函数,求a 的取值范围;(2)若函数f (x )在R 上不单调时,记f (x )在[-1,1]上的最大值、最小值分别为M (a ),m (a ),求M (a )-m (a ).能力提高训练题1.已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则b a的最小值为________.2.已知函数f (x )=(a -1)ln x -a 2x 2+x (a ∈R),g (x )=-13x 3-x +(a -1)ln x .(1)若a ≤12,讨论f (x )的单调性;(2)若过点⎝ ⎛⎭⎪⎫0,-13可作函数y =g (x )-f (x )(x >0)图象的两条不同切线,求实数a 的取值范围.高考研究课:三、极值、最值两考点,利用导数巧推演全国卷5年命题分析考点考查频度考查角度极值5年6考求极值、由极值求参数最值5年5考求最值、证明最值的存在性函数的极值是每年高考的必考内容,题型既有选择题、填空题,也有解答题,难度适中,为中高档题.常见的命题角度有:1知图判断函数极值;2已知函数求极值;3已知极值求参数值或范围.角度一:知图判断函数极值1.(2018·赤峰模拟)设函数f (x )在定义域R 上可导,其导函数为f ′(x ),若函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)角度二:已知函数求极值2.已知函数f (x )=x -1+aex (a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)求函数f (x )的极值.角度三:已知极值求参数值或范围3.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围是( ) A .(-1,0) B .(-1,+∞) C .(0,1) D .(1,+∞)4.已知函数f (x )=ax -x 2-ln x ,若函数f (x )存在极值,且所有极值之和小于5+ln 2,则实数a 的取值范围是________.方法技巧利用导数研究函数极值的一般流程题型二、运用导数解决函数的最值问题[典例] (2018·日照模拟)设函数f (x )=(x -1)e x -kx 2(k ∈R). (1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .方法技巧求函数f (x )在[a ,b ]上的最值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.即时演练1.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( ) A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)2.(2018·南昌模拟)已知函数f (x )=(2x -4)e x +a (x +2)2(x >0,a ∈R ,e 是自然对数的底数).(1)若f (x )是(0,+∞)上的单调递增函数,求实数a 的取值范围;(2)当a ∈⎝ ⎛⎭⎪⎫0,12时,证明:函数f (x )有最小值,并求函数f (x )的最小值的取值范围.高考真题演练1.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)·ex -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1 2.(2014·全国卷Ⅱ)设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)3.(2013·全国卷Ⅱ)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( )A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则 f ′(x 0)=04.(2015·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.5.(2013·全国卷Ⅱ)已知函数f (x )=x 2e -x .(1)求f (x )的极小值和极大值; (2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.6.(2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.7.(2017·山东高考)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e=2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程;(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.高考达标检测一、选择题1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为() A .-23 B .-2C .-2或-23D .2或-233.(2018·浙江瑞安中学月考)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( ) A.23B.43C.83D.163 4.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,有以下命题:①f (x )的解析式为:f (x )=x 3-4x ,x ∈[-2,2];②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于零.其中正确的命题个数为( )A .0B .1C .2D .3 5.(2017·长沙二模)已知函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A.3-1 B.34 C.43 D.3+16.已知直线l 1:y =x +a 分别与直线l 2:y =2(x +1)及曲线C :y =x +ln x 交于A ,B 两点,则A ,B 两点间距离的最小值为( )A.355B .3 C.655 D .3 2二、填空题7.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.8.已知函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为________. 9.(2018·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是________.三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 3+x 2,x <1,a ln x ,x ≥1.(1)求f(x)在区间(-∞,1)上的极小值和极大值点;(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.11.设函数f (x )=12x 2-(a +1)x +a ln x ,a >0.(1)求函数f (x )的单调区间;(2)讨论函数f (x )的零点个数.12.已知函数f (x )=ln x +x 2-ax (a ∈R).(1)当a =3时,求函数f (x )的单调区间;(2)若函数f (x )有两个极值点x 1,x 2,且x 1∈(0,1],证明f (x 1)-f (x 2)≥-34+ln 2.能力提高训练题1.若函数f (x )=x 3+ax 2+bx 的图象与x 轴相切于点(c,0),且f (x )有极大值4,则c =( )A .-3B .-1C .1D .32.已知函数f (x )=12x 2+(1-m )x +ln x .(1)若函数f (x )存在单调递减区间,求实数m 的取值范围;(2)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.高考研究课:四、综合问题是难点,3大题型全冲关全国卷5年命题分析考点考查频度考查角度利用导数解决生活中的优化问题未考查利用导数研究函数零点或方程根5年3考讨论函数零点个数不等式恒成立问题5年4考不等式恒成立求参证明不等式5年7考不等式证明[典例] 一辆火车前行每小时电力的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的电价值40元,其他费用每小时需400元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?方法技巧利用导数解决生活中的优化问题的4步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 即时演练1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件2.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k (k >0).现已知相距18 km 的A ,B 两家化工厂(污染源)的污染强度分别为a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km).(1)试将y 表示为x 的函数;(2)若a =1,且x =6时,y 取得最小值,试求b 的值.题型二、利用导数研究函数的零点或方程根[典例] 已知函数f (x )=(x +a )e x,其中e 是自然对数的底数,a ∈R.(1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. 方法技巧利用导数研究零点或方程根的方法研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 即时演练1.已知函数f (x )=e 2x-ax 2+bx -1,其中a ,b ∈R ,e 为自然对数的底数,若f (1)=0,f ′(x )是f (x )的导函数,函数f ′(x )在区间(0,1)内有两个零点,则a 的取值范围是( )A .(e 2-3,e 2+1) B .(e 2-3,+∞) C .(-∞,2e 2+2)D .(2e 2-6,2e 2+2)2.(2017·西安一模)已知函数f (x )=x +1+ax-a ln x .若函数y =f (x )的图象在x =1处的切线与直线2x +y -1=0平行.(1)求a 的值;(2)若方程f(x)=b的区间[1,e]上有两个不同的实数根,求实数b的取值范围.题型二、利用导数研究与不等式有关的问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.常见的命题角度有:1证明不等式;2不等式恒成立问题.角度一:证明不等式1.已知函数f(x)=ln x-ax2+(2-a)x(a>0).(1)讨论函数f(x)的单调性;(2)证明:当0<x <1a时,f ⎝ ⎛⎭⎪⎫1a +x >f ⎝ ⎛⎭⎪⎫1a -x ;(3)设函数y =f (x )的图象与x 轴交于A ,B 两点,线段AB 的中点的横坐标为x 0,证明:f ′(x 0)<0.方法技巧利用导数证明不等式的方法可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.如:证明:f (x )>g (x )(x ∈D ),令F (x )=f (x )-g (x ),x ∈D ,只需证明F (x )min >0(x ∈D )即可,从而把证明不等式问题转化求F (x )min 问题.角度二:不等式恒成立问题2.(2016·四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).方法技巧1.利用导数研究不等式恒成立问题的思路首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题. 2.不等式成立(恒成立)问题常见转化方法(1)f (x )≥a 恒成立⇒f (x )min ≥a ,f (x )≥a 成立⇒f (x )max ≥a . (2)f (x )≤b 恒成立⇔f (x )max ≤b ,f (x )≤b 成立⇔f (x )min ≤b . (3)f (x )>g (x )恒成立F x =f x -g xF (x )min >0.(4)①∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max .②∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min .③∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x )min .④∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max .高考真题演练1.(2017·全国卷Ⅰ)已知函数f (x )=a e 2x+(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.2.(2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12·⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.3.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.4.(2015·全国卷Ⅱ)设函数f(x)=e mx+x2-mx.(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.高考达标检测1.(2014·全国卷Ⅰ)设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2.已知函数f (x )=ln x -a x +a x2(a ∈R).(1)若a =1,求函数f (x )的极值;(2)若f (x )在[1,+∞)内为单调增函数,求实数a 的取值范围; (3)对于n ∈N *,求证:11+12+22+12+33+12+…+n n +12<ln(n +1).。
(新课标)2019届高考数学一轮复习第三章导数及其应用3.1导数的概念及运算课件理
自查自纠
1.(1)可导 f ′(x0) f(x0+Δ x)-f(x0) (3)①f(x0+Δ x)-f(x0) ② Δx 2.f′(x0) y-y0=f′(x0)(x-x0) 3.(1)0 αx
α -1
(2)cosx -sinx
1 (3) x
1 xlna
(4)ex axlna
4.(1)f′(x)± g′(x) (2)f′(x)g(x)+f(x)g′(x) cf′(x) f′(x)g(x)-f(x)g′(x) (3) [g(x)]2 5.yx′=y′u·u′x
Δy ③取极限,得导数 f′(x0)= lim . x 0 Δ x 2.导数的几何意义 函数 y=f(x)在点 x0 处的导数的几何意义, 就是曲线 y=f(x)在点 P(x0, f(x0)) 处的切线的斜率.也就是说,曲线 y=f(x)在点 P(x0,f(x0))处的切线的斜率 是 .相应的切线方程为 .
解:对 y=ex 求导得 y′=ex,令 x=0,得曲线 y=ex 在点(0, 1 1)处的切线斜率为 1,故曲线 y= (x>0)上点 P 处的切线斜率为 x 1 -1,由 y′=- 2=-1,得 x=1,则 y=1,所以 P 的坐标为(1, x 1).故选 A.
(2015· 陕西)函数 y=xex 在其极值点处的切线方程 为( ) A.y=ex 1 C.y= e B.y=(1+e)x 1 D.y=- e
3.基本初等函数的导数公式 (1)c′=(c 为常数), (x )′=(α∈Q*);
α
(2)(sinx)′=____________, (3)(lnx)′=____________, (4)(ex)′=____________, 4.导数运算法则
(cosx)′=____________; (logax)′=____________; (ax)′=____________.
2019版高考数学一轮复习第三章导数及其应用学案理
第三章 导数及其应用第一节 导数的概念及运算本节主要包括2个知识点: 1.导数的运算; 2.导数的几何意义.突破点(一) 导数的运算[基本知识]1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0Δy Δx =lim Δx →0fx 0+Δx -f x 0Δx为函数y=f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0fx 0+Δx -f x 0Δx.2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f x +Δx -f xΔx为f (x )的导函数.3.基本初等函数的导数公式4.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[基本能力]1.判断题(1)f ′(x 0)与(f (x 0))′的计算结果相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (4)⎝⎛⎭⎪⎫sin π3′=cos π3.( ) (5)若(ln x )′=1x,则⎝ ⎛⎭⎪⎫1x ′=ln x .( )(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) (7)y =cos 3x 由函数y =cos u ,u =3x 复合而成.( ) 答案:(1)× (2)× (3)√ (4)× (5)× (6)× (7)√ 2.填空题(1)已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x ,∴f ′(x 0)=-8+4x 0=4,解得x 0=3. 答案:3(2)函数y =ln xe x 的导函数为________________.答案:y ′=1-x ln xx e x(3)已知f (x )=2sin x +x ,则f ′⎝ ⎛⎭⎪⎫π4=________. 解析:∵f (x )=2sin x +x ,∴f ′(x )=2cos x +1,则f ′⎝ ⎛⎭⎪⎫π4=2cos π4+1=2+1. 答案:2+1[全析考法][典例] (1)函数f (x )=(x +1)2(x -3),则其导函数f ′(x )=( ) A .3x 2-2x B .3x 2-2x -5 C .3x 2-xD .3x 2-x -5(2)(2018·钦州模拟)已知函数f (x )=x ln x ,则f ′(1)+f (4)的值为( ) A .1-8ln 2 B .1+8ln 2 C .8ln 2-1D .-8ln 2-1(3)已知函数f (x )=sin x cos φ-cos x sin φ-1(0<φ<π2),若f ′⎝ ⎛⎭⎪⎫π3=1,则φ的值为( )A.π3B.π6C.π4D.5π12[解析] (1)法一:因为f (x )=(x +1)2(x -3)=(x +1)(x +1)(x -3),所以f ′(x )=[(x +1)(x +1)]′(x -3)+(x +1)(x +1)(x -3)′=2(x +1)(x -3)+(x +1)2=3x 2-2x -5.法二:f (x )=(x +1)2(x -3)=x 3-x 2-5x -3,则f ′(x )=3x 2-2x -5.(2)因为f ′(x )=ln x +1,所以f ′(1)=0+1=1,所以f ′(1)+f (4)=1+4ln 4=1+8ln 2.故选B.(3)因为f (x )=sin x cos φ-cos x sin φ-1⎝ ⎛⎭⎪⎫0<φ<π2,所以f ′(x )=cos x cos φ+sin x sin φ=cos(x -φ),因为f ′⎝ ⎛⎭⎪⎫π3=1,所以cos ⎝ ⎛⎭⎪⎫π3-φ=1,因为0<φ<π2,所以φ=π3,故选A.[答案] (1)B (2)B (3)A[方法技巧] 导数运算的常见形式及其求解方法[全练题点]1.下列函数中满足f (x )=f ′(x )的是( ) A .f (x )=3+x B .f (x )=-x C .f (x )=ln xD .f (x )=0解析:选D 若f (x )=0,则f ′(x )=0,从而有f (x )=f ′(x ).故选D.2.(2018·延安模拟)设函数f (x )=ax +3,若f ′(1)=3,则a =( ) A .2 B .-2 C .3D .-3解析:选C 由题意得,f ′(x )=a ,因为f ′(1)=3,所以a =3,故选C. 3.(2018·南宁模拟)设f (x )在x =x 0处可导,且li m Δx →0f x 0+3Δx -f x 0Δx=1,则f ′(x 0)=( )A .1B .0C .3 D.13解析:选D因为lim Δx →0f x 0+3Δx -f x 0Δx=1,所以lim Δx →0⎣⎢⎡⎦⎥⎤3×f x 0+3Δx -f x 03Δx =1,即3f ′(x 0)=1,所以f ′(x 0)=13.故选D.4.(2018·桂林模拟)已知函数y =x cos x -sin x ,则其导函数y ′=( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B 函数y =x cos x -sin x 的导函数y ′=cos x -x sin x -cos x =-x sin x ,故选B.5.(2018·九江一模)已知f (x )是(0,+∞)上的可导函数,且f (x )=x 3+x 2f ′(2)+2lnx ,则函数f (x )的解析式为( )A .f (x )=x 3-32x 2+2ln xB .f (x )=x 3-133x 2+2ln xC .f (x )=x 3-3x 2+2ln x D .f (x )=x 3+3x 2+2ln x解析:选B ∵f (x )=x 3+x 2f ′(2)+2ln x ,∴f ′(x )=3x 2+2xf ′(2)+2x,令x =2,得f ′(2)=12+4f ′(2)+1,∴f ′(2)=-133,∴f (x )=x 3-133x 2+2ln x ,故选B.突破点(二) 导数的几何意义[基本知识]函数f (x )在点x 0处 的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.[基本能力]1.判断题(1)曲线的切线与曲线不一定只有一个公共点.( ) (2)求曲线过点P 的切线时P 点一定是切点.( ) 答案:(1)√ (2)× 2.填空题(1)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=0(2)已知直线y =-x +1是函数f (x )=-1a·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e x 0=-1,∴e x 0=a ,又-1a·e x 0=-x 0+1,∴x 0=2,a =e 2.答案:e 2(3)曲线f (x )=x ln x 在点M (1,f (1))处的切线方程为________.解析:由题意,得f ′(x )=ln x +1,所以f ′(1)=ln 1+1=1,即切线的斜率为1.因为f (1)=0,所以所求切线方程为y -0=x -1,即x -y -1=0.答案:x -y -1=0[全析考法]“过点A A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程:点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程:切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f x 1x 0-x 1,求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.求切点坐标[例2] 32f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)[解析] ∵f (x )=x 3+ax 2,∴f ′(x )=3x 2+2ax ,∵曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,∴3x 20+2ax 0=-1,∵x 0+x 30+ax 20=0,解得x 0=±1,∴当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1.故选D.[答案] D求参数值或范围[例3] (1)(2018·长沙一模)若曲线y =2e x 2与曲线y =a ln x 在它们的公共点P (s ,t )处具有公共切线,则实数a =( )A .-2 B.12 C .1D .2(2)(2018·南京调研)若函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,则实数a 的取值范围是________.[解析] (1)y =12e x 2的导数为y ′=x e ,在点P (s ,t )处的切线斜率为se,y =a ln x 的导数为y ′=a x ,在点P (s ,t )处的切线斜率为a s ,由题意知,s e =a s ,且12es 2=a ln s ,解得ln s=12,s 2=e ,故a =1. (2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,故1x +a =2,即a =2-1x在(0,+∞)上有解,因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).[答案] (1)C (2)(-∞,2)[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.[全练题点]1.[考点一]曲线y =sin x +e x在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x ,∴y ′=cos x +e x,∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.2.[考点一]曲线y =x e x+2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 因为y ′=e x +x e x +2,所以曲线y =x e x+2x -1在点(0,-1)处的切线的斜率k =y ′| x =0=3,∴切线方程为y =3x -1.3.[考点二]已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.4.[考点三](2018·东城期末)若直线y =-x +2与曲线y =-e x +a相切,则a 的值为( )A .-3B .-2C .-1D .-4解析:选A 由于y ′=(-ex +a)′=-ex +a,令-ex +a=-1,得切点的横坐标为x =-a ,所以切点为(-a ,-1),进而有-(-a )+2=-1,故a =-3.5.[考点三](2018·西安一模)若曲线y =e x-aex (a >0)上任意一点处的切线的倾斜角的取值范围是⎣⎢⎡⎭⎪⎫π3,π2,则a =( ) A.112 B.13 C.34D .3解析:选 C y ′=e x+ae x ,∵y =e x-aex 在任意一点处的切线的倾斜角的取值范围是⎣⎢⎡⎭⎪⎫π3,π2,∴e x +a e ≥3,由a >0知,e x+a e ≥2a ⎝ ⎛⎭⎪⎫当且仅当e x =a e x 时等号成立,故2a =3,故a =34,故选C.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.2.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +lnx 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+1)-x2x 2+1.根据题意,有⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=x 2+-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x , 所以当x >0时,f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1. 答案:y =-2x -1[课时达标检测][小题对点练——点点落实]对点练(一) 导数的运算1.(2018·泉州质检)设函数f (x )=x (x +k )(x +2k ),则f ′(x )=( ) A .3x 2+3kx +k 2B .x 2+2kx +2k 2C .3x 2+6kx +2k 2D .3x 2+6kx +k 2解析:选C 法一:f (x )=x (x +k )(x +2k ),f ′(x )=(x +k )(x +2k )+x [(x +k )(x +2k )]′=(x +k )·(x +2k )+x (x +2k )+x (x +k )=3x 2+6kx +2k 2,故选C.法二:因为f (x )=x (x +k )(x +2k )=x 3+3kx 2+2k 2x ,所以f ′(x )=3x 2+6kx +2k 2,故选C.2.(2018·泰安一模)给出下列结论:①若y =log 2x ,则y ′=1x ln 2;②若y =-1x ,则y ′=12x x;③若f (x )=1x 2,则f ′(3)=-227;④若y =a x (a >0),则y ′=a xln a .其中正确的个数是( )A .1B .2C .3D .4解析:选D 根据求导公式可知①正确;若y =-1x=-x-12,则y ′=12x -32=12x x,所以②正确;若f (x )=1x 2,则f ′(x )=-2x -3,所以f ′(3)=-227,所以③正确;若y =a x(a >0),则y ′=a xln a ,所以④正确.因此正确的结论个数是4,故选D.3.若函数y =x m的导函数为y ′=6x 5,则m =( ) A .4 B .5 C .6D .7解析:选C 因为y =x m,所以y ′=mxm -1,与y ′=6x 5相比较,可得m =6.4.已知函数f (x )=xe x (e 是自然对数的底数),则其导函数f ′(x )=( ) A.1+x ex B.1-x e xC .1+xD .1-x解析:选B 函数f (x )=xe x ,则其导函数f ′(x )=e x -x e xe 2x =1-xe x ,故选B.5.若f (x )=x 2-2x -4ln x ,则f ′(x )<0的解集为( ) A .(0,+∞)B .(0,2)C .(0,2)∪(-∞,-1)D .(2,+∞)解析:选 B 函数f (x )=x 2-2x -4ln x 的定义域为{x |x >0},f ′(x )=2x -2-4x=2x 2-2x -4x ,由f ′(x )=2x 2-2x -4x<0,得0<x <2,∴f ′(x )<0的解集为(0,2),故选B.6.(2018·信阳模拟)已知函数f (x )=a e x+x ,若1<f ′(0)<2,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1e B .(0,1) C .(1,2)D .(2,3)解析:选B 根据题意,f (x )=a e x+x ,则f ′(x )=(a e x)′+x ′=a e x+1,则f ′(0)=a +1,若1<f ′(0)<2,则1<a +1<2,解得0<a <1,所以实数a 的取值范围为(0,1).故选B.对点练(二) 导数的几何意义1.(2018·安徽八校联考)函数f (x )=tan x 2在⎣⎢⎡⎦⎥⎤π2,f ⎝ ⎛⎭⎪⎫π2处的切线的倾斜角α为( )A.π6 B.π4 C.π3D.π2解析:选B f ′(x )=⎝ ⎛⎭⎪⎫sin x 2cos x 2′=12cos 2x 2,得切线斜率k =tan α=f ′⎝ ⎛⎭⎪⎫π2=1,故α=π4,选B. 2.若函数f (x )=x 3-x +3的图象在点P 处的切线平行于直线y =2x -1,则点P 的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,即3x 2-1=2⇒x =1或-1,又f (1)=3,f (-1)=3,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).3.(2018·福州质检)过点(-1,1)与曲线f (x )=x 3-x 2-2x +1相切的直线有( ) A .0条 B .1条 C .2条D .3条解析:选C 设切点P (a ,a 3-a 2-2a +1),由f ′(x )=3x 2-2x -2,当a ≠-1时,可得切线的斜率k =3a 2-2a -2=a 3-a 2-2a +-1a --,所以(3a 2-2a -2)(a +1)=a 3-a 2-2a ,即(3a 2-2a -2)(a +1)=a (a -2)(a +1),所以a =1,此时k =-1.又(-1,1)是曲线上的点且f ′(-1)=3≠-1,故切线有2条.4.(2018·重庆一模)已知直线y =a 与函数f (x )=13x 3-x 2-3x +1的图象相切,则实数a 的值为( )A .-26或83B .-1或3C .8或-83D .-8或83解析:选D 令f ′(x )=x 2-2x -3=0,得x =-1或x =3,∵f (-1)=83,f (3)=-8,∴a =83或-8.5.(2018·临川一模)函数f (x )=x +ln xx的图象在x =1处的切线与两坐标轴围成的三角形的面积为( )A.12B.14C.32D.54解析:选B 因为f (x )=x +ln x x ,f ′(x )=1+1-ln xx2,所以f (1)=1,f ′(1)=2,故切线方程为y -1=2(x -1).令x =0,可得y =-1;令y =0,可得x =12.故切线与两坐标轴围成的三角形的面积为12×1×12=14,故选B.6.(2018·成都诊断)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞B.⎣⎢⎡⎭⎪⎫-12,+∞C .(0,+∞)D .[0,+∞)解析:选D 由题意知,函数y =ln x +ax 2的定义域为(0,+∞),y ′=1x +2ax =2ax 2+1x≥0恒成立,即2ax 2+1≥0,a ≥-12x 2恒成立,又在定义域内,-12x2∈(-∞,0),所以实数a 的取值范围是[0,+∞).7.(2017·柳州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R),F (x )=fxex,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C ∵f ′(x )=2x +b ,∴F (x )=2x +b e x ,F ′(x )=2-2x -bex,又F (x )的图象在x =0处的切线方程为y =-2x +c ,∴⎩⎪⎨⎪⎧F=-2,F =c ,得⎩⎪⎨⎪⎧b =c ,b =4,∴f (x )=(x +2)2≥0,f (x )min =0.8.(2018·唐山模拟)已知函数f (x )=x 2-1,g (x )=ln x ,则下列说法中正确的为( )A .f (x ),g (x )的图象在点(1,0)处有公切线B .存在f (x )的图象的某条切线与g (x )的图象的某条切线平行C .f (x ),g (x )的图象有且只有一个交点D .f (x ),g (x )的图象有且只有三个交点解析:选B 对于A ,f (x )的图象在点(1,0)处的切线为y =2x -2,函数g (x )的图象在点(1,0)处的切线为y =x -1,故A 错误;对于B ,函数g (x )的图象在(1,0)处的切线为y =x -1,设函数f (x )的图象在点(a ,b )处的切线与y =x -1平行,则f ′(a )=2a =1,a =12,故b =⎝ ⎛⎭⎪⎫122-1=-34,即g (x )的图象在(1,0)处的切线与f (x )的图象在⎝ ⎛⎭⎪⎫12,-34处的切线平行,B 正确;如图作出两函数的图象,可知两函数的图象有两个交点,C ,D 错误.故选B.9.(2018·包头一模)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a ,f ′(1)=3+a ,又f (1)=a +2,所以切线方程为y -a -2=(3+a )(x -1),因为切线经过点(2,7),所以7-a -2=(3+a )(2-1),解得a =1.答案:1[大题综合练——迁移贯通]1.(2018·兰州双基过关考试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴f (1)=2. ∵f ′(x )=2x +1,∴f ′(1)=3.∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4≤x ≤-1时,h ′(x )≥0; 当-1<x ≤3时,h ′(x )≤0; 当3<x ≤4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得,而h (-1)=m +53,h (4)=m -203,∴h (x )的最大值为m +53,∴m +53≤0,即m ≤-53.∴实数m 的取值范围为⎝⎛⎦⎥⎤-∞,-53.2.(2018·青岛期末)设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +b x2,所以⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎪⎫1+3x20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 0(x -x 0).令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x=2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪⎪⎪-6x 0 |2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.3.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.(3)证明:不存在与曲线C 同时切于两个不同点的直线. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).(3)证明:设存在直线与曲线C 同时切于不同的两点A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则点A (x 1,y 1)处的切线方程为y -⎝ ⎛⎭⎪⎫13x 31-2x 21+3x 1=(x 21-4x 1+3)(x -x 1),化简得y =(x 21-4x 1+3)x +⎝ ⎛⎭⎪⎫-23x 31+2x 21,而点B (x 2,y 2)处的切线方程是y =(x 22-4x 2+3)x +⎝ ⎛⎭⎪⎫-23x 32+2x 22. 由于两切线是同一直线,则有x 21-4x 1+3=x 22-4x 2+3,即x 1+x 2=4;又有-23x 31+2x 21=-23x 32+2x 22,即-23(x 1-x 2)·(x 21+x 1x 2+x 22)+2(x 1-x 2)(x 1+x 2)=0,则-13(x 21+x 1x 2+x 22)+4=0,则x 1(x 1+x 2)+x 22-12=0,即(4-x 2)×4+x 22-12=0,即x 22-4x 2+4=0,解得x 2=2.但当x 2=2时,由x 1+x 2=4得x 1=2,这与x 1≠x 2矛盾. 所以不存在与曲线C 同时切于两个不同点的直线.第二节 导数与函数的单调性本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间;2.利用导数解决函数单调性的应用问题.突破点(一) 利用导数讨论函数的单调性或求函数的单调区间[基本知识]1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.由函数的单调性与导数的关系可得的结论(1)函数f(x)在(a,b)内可导,且f′(x)在(a,b)任意子区间内都不恒等于0.当x∈(a,b)时,f′(x)≥0⇔函数f(x)在(a,b)上单调递增;f′(x)≤0⇔函数f(x)在(a,b)上单调递减.(2)f′(x)>0(<0)在(a,b)上成立是f(x)在(a,b)上单调递增(减)的充分条件.[基本能力]1.判断题(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)上一定有f′(x)>0.( )(2)如果函数在某个区间内恒有f′(x)=0,则函数f(x)在此区间上没有单调性.( )(3)f′(x)>0是f(x)为增函数的充要条件.( )答案:(1)×(2)√(3)×2.填空题(1)函数f(x)=e x-x的减区间为________.答案:(-∞,0)(2)函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.答案:单调递增(3)已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是________.答案:3[全析考法][例1] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x2,a ∈R.讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=ax 2-x -x3.当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增; x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a x -x 3⎝⎛⎭⎪⎫x - 2a ⎝⎛⎭⎪⎫x + 2a .①若0<a <2,则 2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减.②若a =2,则2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0<2a<1,当x ∈⎝ ⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝ ⎛⎭⎪⎫1, 2a 内单调递减,在⎝⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝ ⎛⎭⎪⎫0, 2a 内单调递增,在⎝⎛⎭⎪⎫2a,1内单调递减,在(1,+∞)内单调递增.[方法技巧]导数法研究函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] (2018·山东德州期中)已知函数f (x )=13x 3-(2m +1)x 2+3m (m +2)x +1,其中m为实数.(1)当m =-1时,求函数f (x )在[-4,4]上的最大值和最小值; (2)求函数f (x )的单调递增区间.[解] (1)当m =-1时,f (x )=13x 3+x 2-3x +1,f ′(x )=x 2+2x -3=(x +3)(x -1).当x <-3或x >1时,f ′(x )>0,f (x )单调递增; 当-3<x <1时,f ′(x )<0,f (x )单调递减. ∴当x =-3时,f (x )极大值=10;当x =1时,f (x )极小值=-23.又∵f (-4)=233,f (4)=793,∴函数f (x )在[-4,4]上的最大值为793,最小值为-23.(2)f ′(x )=x 2-2(2m +1)x +3m (m +2) =(x -3m )(x -m -2).当3m =m +2,即m =1时,f ′(x )=(x -3)2≥0,∴f (x )单调递增,即f (x )的单调递增区间为(-∞,+∞).当3m >m +2,即m >1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <m +2或x >3m , 此时f (x )的单调递增区间为(-∞,m +2),(3m ,+∞).当3m <m +2,即m <1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <3m 或x >m +2, 此时f (x )的单调递增区间为(-∞,3m ),(m +2,+∞). 综上所述:当m =1时,f (x )的单调递增区间为(-∞,+∞); 当m >1时,f (x )的单调递增区间为(-∞,m +2),(3m ,+∞); 当m <1时,f (x )的单调递增区间为(-∞,3m ),(m +2,+∞).[方法技巧] 用导数求函数单调区间的三种类型及方法[全练题点]1.[考点二](2018·江西金溪一中等校联考)已知函数f (x )与f ′(x )的图象如图所示,则函数g (x )=f xex的单调递减区间为( )A .(0,4)B .(-∞,1),⎝ ⎛⎭⎪⎫43,4 C.⎝ ⎛⎭⎪⎫0,43 D .(0,1),(4,+∞)解析:选D g ′(x )=f xx-f xxx2=f x -f xex,令g ′(x )<0,即f ′(x )-f (x )<0,由题图可得x ∈(0,1)∪(4,+∞).故函数g (x )的单调递减区间为(0,1),(4,+∞).故选D.2.[考点二](2018·芜湖一模)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A.()0,+∞ B.()-∞,0 C.()-∞,1D.()1,+∞解析:选D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D. 3.[考点一]已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f (x )在 ⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.4.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b ,由已知可得⎩⎪⎨⎪⎧f =a +1=c ,g=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴函数f (x )+g (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a 2,⎝ ⎛⎭⎪⎫-a6,+∞;单调递减区间为⎝⎛⎭⎪⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.[全析考法]已知函数的单调性求参数的取值范围[例1] (1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3].(2)因为f(x)在区间(-1,1)上为减函数,所以f′(x)=3x2-a≤0在(-1,1)上恒成立,即a≥3x2在(-1,1)上恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即a的取值范围为[3,+∞).(3)因为f(x)=x3-ax-1,所以f′(x)=3x2-a.由f′(x)=0,得x=±3a3(a≥0).因为f(x)的单调递减区间为(-1,1),所以3a3=1,即a=3.[方法技巧]由函数的单调性求参数取值范围的方法(1)可导函数在区间(a,b)上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围,注意检验等号成立时导数是否在(a,b)上恒为0.(2)可导函数在区间(a,b)上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,即f′(x)max>0(或f′(x)min<0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f(x)在区间I上的单调性,区间I上含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而求出参数的取值范围.比较大小或解不等式[例2] (1)(2017·吉林长春三模)定义在R上的函数f(x)满足:f′(x)>f(x)恒成立,若x1<x2,则e x1f(x2)与e x2f(x1) 的大小关系为( )A.e x1f(x2)>e x2f(x1)B.e x1f(x2)<e x2f(x1)C.e x1f(x2)=e x2f(x1)D.e x1f(x2)与e x2f(x1)的大小关系不确定(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)设g (x )=f xex,则g ′(x )=f x x -f xxx2=f x -f xex,由题意得g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2),即f x 1ex 1<f x 2ex 2,所以e x 1f (x 2)>e x 2f (x 1).(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)A (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→⎣⎢⎡⎦⎥⎤f x x ′;(4)f ′(x )+f (x )→[e xf (x )]′; (5)f ′(x )-f (x )→⎣⎢⎡⎦⎥⎤f x e x ′.[全练题点]1.[考点一]若函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,则( ) A .a ≥3 B .a =3 C .a ≤3D .0<a <3解析:选A 因为函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,所以f ′(x )=3x 2-2ax ≤0在[0,2]上恒成立.当x =0时,显然成立,当x ≠0时,a ≥32x 在(0,2]上恒成立.因为32x ≤3,所以a ≥3.综上,a ≥3. 2.[考点一]已知函数f (x )=12x 2-t cos x ,若其导函数f ′(x )在R 上单调递增,则实数t 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-13B.⎣⎢⎡⎦⎥⎤-13,13C .[-1,1]D.⎣⎢⎡⎦⎥⎤-1,13 解析:选C 因为f (x )=12x 2-t cos x ,所以f ′(x )=x +t sin x .令g (x )=f ′(x ),因为f ′(x )在R 上单调递增,所以g ′(x )=1+t cos x ≥0恒成立,所以t cos x ≥-1恒成立,因为cos x ∈[-1,1],所以⎩⎪⎨⎪⎧-t ≥-1,t ≥-1,所以-1≤t ≤1,即实数t 的取值范围为[-1,1].3.[考点二]对于R 上可导的任意函数f (x ),若满足1-xf x≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).4.[考点二](2018·江西赣州联考)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e xf (x )>e x-1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)解析:选A 设g (x )=e xf (x )-e x,则g ′(x )=e xf (x )+e xf ′(x )-e x.由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e xf (x )>e x-1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).5.[考点一](2018·四川成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)6.[考点一](2018·辽宁大连双基测试)已知函数f (x )=ln x +axx +1(a ∈R).(1)若函数f (x )在区间(0,4)上单调递增,求a 的取值范围; (2)若函数y =f (x )的图象与直线y =2x 相切,求a 的值. 解:(1)f ′(x )=1x+ax +-ax x +2=x +2+axx x +2.∵函数f (x )在区间(0,4)上单调递增,∴f ′(x )≥0在(0,4)上恒成立,∴(x +1)2+ax ≥0,即a ≥-x 2+2x +1x =-⎝ ⎛⎭⎪⎫x +1x -2在(0,4)上恒成立.∵x +1x≥2,当且仅当x =1时取等号,∴a ∈[-4,+∞).(2)设切点为(x 0,y 0),则y 0=2x 0,f ′(x 0)=2,y 0=ln x 0+ax 0x 0+1,∴1x 0+a x 0+2=2,①且2x 0=ln x 0+ax 0x 0+1.②由①得a =⎝⎛⎭⎪⎫2-1x(x 0+1)2,③代入②,得2x 0=ln x 0+(2x 0-1)(x 0+1), 即ln x 0+2x 20-x 0-1=0.令F (x )=ln x +2x 2-x -1,x >0,则 F ′(x )=1x +4x -1=4x 2-x +1x>0,∴F (x )在(0,+∞)上单调递增. ∵F (1)=0,∴x 0=1,代入③式得a =4.[全国卷5年真题集中演练——明规律]1.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 解析:选C 法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎪⎨⎪⎧g=-43+a +53≥0,g-=-43-a +53≥0,解得-13≤a ≤13.故选C.3.(2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞) 解析:选A 设y =g (x )=f xx(x ≠0),则g ′(x )=xfx -f xx 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.4.(2017·全国卷Ⅰ)已知函数f (x )=a e 2x+(a -2)e x-x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1).(ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. (ⅱ)若a >0,则由f ′(x )=0,得x =-ln a . 当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a+ln a .①当a =1时,由于f (-ln a )=0, 故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a+ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0, 故f (x )在(-∞,-ln a )有一个零点.设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a-1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0.由于ln ⎝ ⎛⎭⎪⎫3a-1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).[课时达标检测][小题对点练——点点落实]对点练(一) 利用导数讨论函数的单调性或求函数的单调区间1.(2018·福建龙岩期中)函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A .(-∞,-2)B .[3,+∞)C .[-2,3]D.⎣⎢⎡⎭⎪⎫12,+∞解析:选A 由题图可以看出-2,3是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x )=3x 2+2bx +c =0的两根,所以-2b 3=1,c 3=-6,即2b =-3,c =-18,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3可化为y =log 2(x 2-x -6).解x 2-x -6>0得x <-2或x >3.因为二次函数y =x 2-x -6的图象开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A.2.(2017·焦作二模)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C .(1,+∞)D .(0,+∞)解析:选B 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x-2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧4x -2>0,ln x <0,或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫12,1,故选B.3.(2018·湖北荆州质检)函数f (x )=ln x -12x 2-x +5的单调递增区间为________.。
近年届高考数学大一轮复习第三章导数及其应用3.1导数的概念及运算学案理北师大版(2021年整理)
2019届高考数学大一轮复习第三章导数及其应用3.1 导数的概念及运算学案理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第三章导数及其应用3.1 导数的概念及运算学案理北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第三章导数及其应用3.1 导数的概念及运算学案理北师大版的全部内容。
§3.1导数的概念及运算最新考纲考情考向分析1。
了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义.3。
能根据导数定义求函数y=c(c为常数),y=x,y=x2,y=x3,y=错误!,y=错误!的导数.4。
能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为选择题或解答题的第(1)问,低档难度。
1.导数与导函数的概念(1)当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数y=f(x)在x0点的导数,通常用符号f′(x0)表示,记作f′(x0)=错误!错误!=错误!错误!.(2)如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)=错误!错误!,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为导数.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α为实数)f′(x)=αxα-1f(x)=sin x f′(x)=cos xf(x)=cos x f′(x)=-sin xf(x)=e x f′(x)=e xf(x)=a x(a〉0,a≠1)f′(x)=a x ln af(x)=ln x f′(x)=错误!f(x)=log a x(a>0,a≠1)f′(x)=1x ln a4。
2019版高考数学一轮总复习第三章导数及应用1导数的概念及运算课件理
( =
1+ΔΔxx(-11)+(Δx+1+1)Δx+1)=
1+1Δx+1=12.
【答案】
1 2
★状元笔记★ 导数定义探究
(1)判断一个函数在某点是否可导就是判断该函数的平均变 化率ΔΔyx当 Δx→0 时极限是否存在.
(2)利用导数定义求函数的导数时,先算函数的增量 Δy,再 算比值ΔΔyx=f(x+ΔxΔ)x-f(x),再求极限 y′=Δlxi→m0ΔΔyx.
3.(2017·课标全国Ⅰ,文)曲线 y=x2+1x在点(1,2)处的切线 方程为________.
答案 y=x+1 解析 因为 y′=2x-x12,所以在点(1,2)处的切线方程的斜率 为 y′|x=1=2×1-112=1,所以切线方程为 y-2=x-1,即 y=x +1.
4.设正弦函数 y=sinx 在 x=0 和 x=π2 附近的平均变化率
的一条切线,则 m 的值为( )
A.0
B.2
C.1
D.3
答案 B 解析 因为直线 y=-x+m 是曲线 y=x2-3lnx 的切线,所以 令 y′=2x-3x=-1,得 x=1 或 x=-32(舍去),即切点为(1,1), 又切点(1,1)在直线 y=-x+m 上,所以 m=2,故选 B.
6.有一机器人的运动方程为 s=t2+3t (t 是时间,s 是位移), 则该机器人在时刻 t=2 时的瞬时速度为________.
即 f′(x0)= f(x0+ΔxΔ)x-f(x0).
(2)当把上式中的 x0 看做变量 x 时,f′(x)即为 f(x)的导函数,
简称导数,即 y′=f′(x)=
f(x+Δx)-f(x)
Δx
.
导数的几何意义 函数 f(x)在 x=x0 处的导数就是曲线 y=f(x)在点 P(x0,f(x0)) 处的切线的斜率,即曲线 y=f(x)在点 P(x0,f(x0))处的切线的斜率 k=f′(x0),切线方程为 y-y0=f′(x0)(x-x0).
2019高考数学一轮复习_第三章 导数及其应用 3.1 导数的概念及运算课件 理 新人教A版
∴������03-4������02+5x0-2=(3������02-8x0+5)·(x0-2),
整理得(x0-2)2(x0-1)=0,解得 x0=2 或 x0=1,
∴经过点 A(2,-2)的曲线 f(x)的切线方程为 x-y-4=0 或 y+2=0.
曲线y=f(x)在点(0,f(0))处的切线方程是
.
关闭
(∴故曲1)曲答∵(线2线案)f(已yx为=)y知 =f=(eyfx(x=a)·x的 s∈x)i在.n一Rx点,,条f函'((0x切数),0=线)e处f (x的(x的s)i=斜n切exx率++线ec是 ���������o方��� 的s32程,x导则),为f函切'(0y数点)-=0是的1=,1f横(f×0'()(坐x=x)-0,标0且,),为即f'(xy)=是x.奇函.数.若
(2)因(3)为若函曲数线ff((xx))==aexx+3+e���������l���的n x导存函在数垂是直于f'(xy)轴=e的x-e切������������.又线,f则'(x实)是数奇a的函取数值,所范以
f'围(x)是=-f'(-x),
.
即 ex-e������������=-(e-x-a·ex),则 ex(1-a)=e-x(a-1),所以(e2x+1)·(1-a)=0,解得 a=1,
第三章 导数及其应用
3.1 导数的概念及运算
知识梳理 考点自测
1.函数
y=f(x)从
x1
到
x2
的平均变化率为������(������2)-������(������1)
数学一轮复习第三章导数及其应用3.1导数的概念及运算课件
5.已知函数f(x)=ax3+3x2+2,若f′(-1)=4,则a的值等于
19 A. 3
16 B. 3
13 C. 3
√10
D. 3
解析 因为f′(x)=3ax2+6x,f′(-1)=3a-6=4, 所以 a=130.
6.设f(x)=ln(3-2x)+cos 2x,则f′(0)= -23 .
解析 因为 f′(x)=-3-22x-2sin 2x, 所以 f′(0)=-32.
√A.0
B.1
C.2
D.4
解析 因为 f′(x)=sin x+xcos x+a,且 f′π2=1, 所以 sin π2+π2cos 2π+a=1,即 a=0.
(2)设函数 y=f (x)在区间(a,b)上有定义,x0∈(a,b),当 Δx 无限趋近于 0 时,
比值ΔΔxy=f
x0+Δx-f Δx
x0 无限趋近于一个常数
A,则称
f
(x)在
x=x0
处可导,
并称常数 A 为函数 f (x)在 x=x0 处的导数,记作 f′(x0).
2.导数的几何意义
函数y=f (x)在点x=x0处的导数的几何意义,就是曲线y=f (x)在点P(x0,f (x0)) 处的切线的斜率k,即k= f′(x0) .
§3.1 导数的概念及运算
INDEX
基础落实 回扣基础知识 训练基础题目
知识梳理
1.导数的概念
(1)函数y=f (x)从x1到x2的平均变化率 f x2-f x1
函数 y=f (x)从 x1 到 x2 的平均变化率为 x2-x1 ,若 Δx=x2-x1,Δy=f (x2)
-f (x1),则平均变化率可表示为ΔΔyx.
f′xgx-f xg′x (3)fgxx′=________[_g__x_]_2________(g(x)≠0).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1 导数的概念及运算
1.导数与导函数的概念
,那么这个值就是函数
平均变化率趋于一个固定的值时,如果0趋于x Δ,即0x 趋于1x 当(1)y =f (x )在x 0点的瞬时变化率.在数学中,称瞬时变化率为函数y =f (x )在x 0点的导数,通常
用符号f ′(x 0)表示,记作f ′(x 0)=lim x1→x0
错误!=错误!错误!.
(2)如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )= lim Δx→0错误!,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.
2.导数的几何意义
函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜
.
)0x ′(f =k ,即k 率 3.基本初等函数的导数公式
4.导数的运算法则
若f′(x),g′(x)存在,则有
(1)[f(x)±g(x)]′=f′(x)±g′(x);
(2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);
(3)[错误!]′=错误!(g(x)≠0).
5.复合函数的导数
一般地,对于两个函数y=f(u)和u=φ(x)=ax+b,给定x的一个值,就得到了u的值,进而确定了y的值,这样y可以表示成x的函数,我们称这个函数为函数y=f(u)和u=φ(x)的复合函数,记作y=f(φ(x)).其中u为中间变量.复合函数y=f(φ(x))的导数为y x′=[f(φ(x))]′=f′(u)φ′(x).
知识拓展
1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af(x)+bg(x)]′=af′(x)+bg′(x).
3.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.
题组一思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( ×)
(2)f′(x0)与[f(x0)]′表示的意义相同.( ×)
(3)与曲线只有一个公共点的直线一定是曲线的切线.( ×)
(4)函数f(x)=sin(-x)的导数是f′(x)=cos x.( ×)
题组二教材改编
2.若f(x)=x·e x,则f′(1)=.
答案2e
解析∵f′(x)=e x+x e x,∴f′(1)=2e.。