2019届高考数学大一轮复习第三章导数及其应用3.1导数的概念及运算学案理北师大版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1 导数的概念及运算
1.导数与导函数的概念
,那么这个值就是函数
平均变化率趋于一个固定的值时,如果0趋于x Δ,即0x 趋于1x 当(1)y =f (x )在x 0点的瞬时变化率.在数学中,称瞬时变化率为函数y =f (x )在x 0点的导数,通常
用符号f ′(x 0)表示,记作f ′(x 0)=lim x1→x0
错误!=错误!错误!.
(2)如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )= lim Δx→0错误!,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.
2.导数的几何意义
函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜
.
)0x ′(f =k ,即k 率 3.基本初等函数的导数公式
4.导数的运算法则
若f′(x),g′(x)存在,则有
(1)[f(x)±g(x)]′=f′(x)±g′(x);
(2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);
(3)[错误!]′=错误!(g(x)≠0).
5.复合函数的导数
一般地,对于两个函数y=f(u)和u=φ(x)=ax+b,给定x的一个值,就得到了u的值,进而确定了y的值,这样y可以表示成x的函数,我们称这个函数为函数y=f(u)和u=φ(x)的复合函数,记作y=f(φ(x)).其中u为中间变量.复合函数y=f(φ(x))的导数为y x′=[f(φ(x))]′=f′(u)φ′(x).
知识拓展
1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af(x)+bg(x)]′=af′(x)+bg′(x).
3.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.
题组一思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( ×)
(2)f′(x0)与[f(x0)]′表示的意义相同.( ×)
(3)与曲线只有一个公共点的直线一定是曲线的切线.( ×)
(4)函数f(x)=sin(-x)的导数是f′(x)=cos x.( ×)
题组二教材改编
2.若f(x)=x·e x,则f′(1)=.
答案2e
解析∵f′(x)=e x+x e x,∴f′(1)=2e.