高考数学第一轮复习指数与指数函数
年高考第一轮复习数学指数与指数函数
指数与指数函数●知识梳理1.指数(1)n 次方根的定义若 x n =a,则称 x 为 a 的 n 次方根,“n”是方根的记号.在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0 的奇次方根是 0;正数的偶次方根是两个绝对值相等符号相反的数,0 的偶次方根是0,负数没有偶次方根 .(2)方根的性质①当 n 为奇数时,n a n=a.②当 n 为偶数时,n a na( a0), =|a|=( a0).a(3)分数指数幂的意义m①a n = n a m(a>0,m、n 都是正整数, n>1).m11②a n= m=a n n a m(a>0, m、n 都是正整数, n>1).2.指数函数(1)指数函数的定义一般地,函数 y=a x(a>0 且 a≠ 1)叫做指数函数 .(2)指数函数的图象底数互为倒数的两个指数函数的图象对于y 轴对称 .(3)指数函数的性质①定义域: R.②值域:(0,+∞) .③过点( 0,1),即 x=0 时, y=1.④当 a>1 时,在 R 上是增函数;当0<a<1 时,在 R 上是减函数 .●点击双基1. 3a·6 a 等于A. -aB.-aC.aD. a11111分析:3 a ·6 a =a3·(- a)6 =-(- a)36=-(- a)2 .答案: Ax2.(2003 年郑州市质量检测题)函数y=2 3的图象与直线 y=x 的地点关系是x分析: y=23 =(32)x.∵3 2 >1,∴不行能选 D.x x又∵当 x=1 时, 2 3>x,而当 x=3 时, 2 3<x,∴不行能选 A 、B.答案: C3.(2004 年湖北,文 5)若函数 y=a x+b-1(a>0 且 a≠1)的图象经过二、三、四象限,则必定有<a<1 且 b>0>1 且 b> 0<a<1 且 b<0>1 且 b< 0分析:作函数 y=a x-的图象.+b1答案: C4.(2004 年全国Ⅱ,理6)函数 y=-e x的图象A. 与 y=e x的图象对于 y 轴对称B.与 y=e x的图象对于坐标原点对称C.与 y=e-x的图象对于 y 轴对称D.与 y=e-x的图象对于坐标原点对称分析:图象法 .答案: D5.(2004 年湖南,文 16)若直线 y=2a 与函数 y=|a x- 1|(a> 0 且 a≠ 1)的图象有两个公共点,则 a 的取值范围是 ___________________.分析:数形联合 .由图象可知 0<2a<1,0<a<1 . 21答案: 0<a<6.函数 y=(1)x22 x 2的递加区间是 ___________. 2分析:∵ y=(1)x在(-∞, +∞)上是减函数,而函数y=x2-2x+2=(x-1)2+1 2的递减区间是(-∞,1],∴原函数的递加区间是(-∞,1] .答案:(-∞, 1]●典例分析【例 1】以下图是指数函数( 1)y=a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,则 a、b、c、d 与 1 的大小关系是<b<1<c<d<a<1<d<c<a<b<c<d<b<1<d<c分析:可先分两类,即( 3)(4)的底数必定大于1,(1)(2)的底数小于 1,而后再从( 3)(4)中比较 c、d 的大小,从( 1)( 2)中比较 a、b 的大小 .解法一:当指数函数底数大于 1 时,图象上涨,且当底数越大,图象向上越凑近于y 轴;当底数大于0 小于 1 时,图象降落,底数越小,图象向右越凑近于x 轴.得 b<a <1< d< c.解法二:令 x=1,由图知∴b<a<1<d<c.答案:Bc1>d1>a1> b1,【例 2】 已知 2 x 2x≤( 1) x - 2,求函数 y=2x- 2-x的值域 .4解:∵ 2 x 2 x ≤2- 2( x -2),∴ x 2+x ≤ 4-2x ,即 x 2 +3x -4≤0,得- 4≤ x ≤ 1.又∵ y=2x-2-x是[- 4,1]上的增函数, ∴ 2-4-24≤y ≤2-2-1.故所求函数 y 的值域是[-255,163].2【例 3】 要使函数 y=1+2x +4x a 在 x ∈(-∞, 1]上 y >0 恒建立,求 a 的取值范围.x解:由题意,得 1+2x +4xa >0 在 x ∈(-∞,1]上恒建立,即 a >-12在x ∈(-4x∞,1]上恒建立 .又∵-1 2 x=-( 1)2x-( 1) x=-[( 1)x+ 1]2+ 1,当 x ∈(-4x22224∞, 1]时价域为(-∞,-3],∴a >-3.44评论:将不等式恒建立问题转变为求函数值域问题是解决这种问题常用的方法.●闯关训练夯实基础1.已知 f ( x )=a x ,g ( x )=- log b x ,且 lga+lgb=0,a ≠1,b ≠ 1,则 y=f (x )与 y=g(x )的图象A. 对于直线 x+y=0 对称B.对于直线 x - y=0 对称C.对于 y 轴对称D.对于原点对称分析: lga+lgb=0ab=1.∴g (x )=-log b x=-log a - 1x=log a x.∴f (x )与 g ( x )的图象对于 y=x 对称 .答案: B2.以下函数中值域为正实数的是=-5x=( 1 )1- x31 x1= 1 2 x= ( )2分析:∵ y=( 1)x的值域是正实数,而 1-x ∈R ,∴ y=( 1)1-x的值域是正实数 .33答案: B化简a 3b 2 3 ab 2 (a >0,b >0)的结果是 ___________________.3.1 14 3b42 )(a ba3211 3 1 1 10 4 分析:原式 =a 2322 b 2 6363= a.b [( ab )1 ]= aa 7 b= a2 b 7ab 2 ( b) 3a 3b 3a 3b 3 ba答案:ab知足条件m m 2>( m m ) 2的正数 m 的取值范围是 ___________________. 4.分析:∵ m > 0,∴当 m >1 时,有 m 2> 2m ,即 m > 2;当 0< m <1 时,有 m 2<2m ,即 0<m < 1.综上所述, m >2 或 0< m < 1.答案: m >2 或 0<m <15.(2004 年湖北,理 7)函数 f ( x )=a x +log a ( x+1)在[ 0,1]上的最大值与最小值的和为 a ,则 a 的值为A.1B. 142解 析 : f ( x ) 在 [ 0 , 1 ] 上 是 单 调 函 数 , 由 已 知 f ( 0 ) +f ( 1 )=a 1+log a 1+a+log a 2=alog a 2=- 1 a= 1.2答案: B已知x-10·3x≤ ,求函数 ( 1)x -1-4( 1 ) x的最大值和最小值.6.9+9y=+242解:由 9x - 10·3x +9≤ 0 得(3x-1)(3x-9)≤0,解得 1≤3x≤9.∴ 0≤ x ≤2.令( 1)2x=t,则1 ≤t≤1,y=4t2-4t+2=4(t- 1)2+1.当t= 1即x=1时, ymin=1;当t=1即x=0 422时, y max=2.7.若 a 2x+ 1·a x- 1≤0(a >0 且 a ≠1),求 y=2a 2x -3·a x+4 的值域 . 2 2 解:由 a 2x+ 1·a x- 1 ≤0(a >0 且 a ≠ 1)知 0<a x≤ 1.222令 a x=t ,则 0 < t ≤ 1,y=2t 2-3t+4.借助二次函数图象知 y ∈[ 3,4).28.(2004 年全国Ⅲ, 18)解方程 4x +|1- 2x |=11.解:当 x ≤0 时, 1-2x ≥0.原方程4x -2x - 10=0 2x= 1 ±412x= 1 -41<0(无解)或 2x= 1+ 41 >2 2222 21 知 x >0(无解) .当 x > 0 时, 1-2x < 0. 原方程4x x-12=02x - 1 ± 7x - (无解)或x2 (为原方+2=222 =42 =3 x=log 3程的解) .研究创新若对于 的方程-|x+1|-|x+1|有实根,求 m 的取值范围 .x 25 -4· 5-m=09.解法一:设 y=5-|x+1|,则 0< y ≤1,问题转变为方程 y 2-4y -m=0 在( 0,1]内有实根 .设 f ( y ) =y 2- 4y -m ,其对称轴 y=2,∴ f (0)> 0 且 f (1)≤ 0,得- 3≤ m <0.解法二:∵ m=y 2- 4y ,此中 y=5-|x+1|∈( 0,1],∴ m=(y -2)2- 4∈[- 3,0).●思悟小结1.利用分数指数幂的意义能够把根式的运算转变为幂的运算,进而简化计算过程 .2.指数函数 y=a x (a >0,a ≠1)的图象和性质受a 的影响,要分 a >1 与 0<a <1来研究 .13.指数函数的定义重在“形式” ,像 y=2· 3x ,y=2 x ,y=3 x 2 ,y=3x +1 等函数都不切合形式 y=a x ( a > 0, a ≠ 1),所以,它们都不是指数函数 .●教师下载中心1.本小节的要点是指数函数的图象和性质的应用.对于含有字母参数的两个函数式比较大小或两个函数式因为自变量的不一样取值而有不一样大小关系时,一定对字母参数或自变量取值进行分类议论.用好用活指数函数单一性,是解决这一类问题的要点.2.对可化为 a2x+b·a x+c=0 或 a2x+b· a x+c≥0(≤ 0)的指数方程或不等式,常借助换元法解决,但应提示学生注意换元后“新元”的范围.拓展题例1 a b【例 1】若 60a=3,60b=5.求 12 2(1 b)的值 .1-b=1-log605= log6012,1-a-b=1-log603- log605=log604,1 a b = log 60 4=log12,1b log 60 121 a b112 2(1b)=12 2=12log12 2=2.log12 4【例 2】方程 2x=2-x 的解的个数为 ______________.分析:方程的解可看作函数y=2x和 y=2- x 的图象交点的横坐标,分别作出这两个函数图象(以以下图) .由图象得只有一个交点,所以该方程只有一个解.答案: 1评论:没法直接求解的方程问题,常用作图法来解,注意数形联合的思想.。
2023届高考数学一轮复习讲义:第11讲 指数与指数函数
第11讲 指数与指数函数1.根式 (1)根式的概念①若 ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里 叫做根指数, 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n=⎩⎨⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.2.有理数指数幂(1)幂的有关概念①正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于 ,0的负分数指数幂 . (2)有理数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②a r a s =a r -s(a >0,r ,s ∈Q ); ③(a r )s =a rs (a >0,r ,s ∈Q ); ④(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x (a >0且 a ≠1)a >10<a <1图象定义域 值域性质过定点当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数➢考点1 指数幂的运算[名师点睛]1.对于指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:(1)必须是同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 1.(2022·全国·高三专题练习)(1)计算120.75013110.027()81()369-----++-;(2)若11226x x -+22x x -+的值.2.(2022·全国·高三专题练习)化简下列各式(其中各字母均为正数).(1)()211302270.00210528π---⎛⎫-+-+ ⎪⎝⎭; (2323211113342a b ab a b a b -⎛⎫ ⎪⎝⎭(3)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (4)12112133265a b a b a b ---⎛⎫⋅⋅⋅ ⎪⎝⎭⋅.[举一反三]1.(2022·全国·高三专题练习)计算:100.256361.5()87-⨯-+2.(2022·全国·高三专题练习)(1)计算:1111200.253473(0.0081)3()81(3)88------⨯⨯⎡⎤⎡⎤⎢⎣+⎥⎢⎥⎣⎦⎦;(2211113322a b ---3.(2022·全国·高三专题练习)已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++.4.(2022·全国·高三专题练习)已知11223x x -+=,求22332223x x x x--+-+-的值.5.(2022·全国·高三专题练习)分别计算下列数值: (1)()110340.06416π----+ (2)已知16x x -+=,()01x <<,求221122x x x x---+.6.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.➢考点2 指数函数的图象及应用[名师点睛]1.对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图像,数形结合求解. [典例]1.(2022·浙江·宁波诺丁汉附中模拟预测)函数()x x kf x a-=(0a >且1a ≠)的图象如图所示,则( )A .1,1k a >>B .1,1k a ><C .01,1k a <<<D .01,1k a <<>2.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)- B .(1,0) C .(0,0) D .(0,1)-[举一反三]1.(2022·全国·高三专题练习)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-2.(多选)(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .➢考点3 指数函数的性质及其应用[名师点睛]1.比较指数式的大小的方法:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.指数方程(不等式)的求解主要利用指数函数的单调性进行转化.3.涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断. 1.(2022·天津河西·一模)设0.3log 0.2a =,0.30.2b =,log b c a =,则a ,b ,c 的大小关系为( ). A .a b c << B .b a c << C .c a b <<D .c b a <<2.(多选)(2022·全国·高三专题练习)若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( ) A .12B .13C .3D .23.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.4.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤5.(2022·重庆市朝阳中学高三开学考试)已知函数4()2x x ag x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值; (2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.[举一反三]1.(2022·天津·一模)设3ln 2a =,0.80.5b =,0.50.8-=c ,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .a b c <<D .c a b <<2.(2022·山西吕梁·二模)已知343344333,,444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭a b c ,则( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<3.(2022·全国·高三专题练习)已知函数212,022()3,02x a a a x x f x a x +⎧-+-≥⎪⎪=⎨⎪<⎪⎩在()000x x >处取得最小值,且()03-<f x a ,则实数a 的取值范围( ) A .[2,3)B .[1,3)C .[1,2)D .(1,3)4.(2022·上海市进才中学高三期中)设函数()2xf x =,若存在[]0,4x ∈使不等式()()22f a x f x +-≥成立,则实数a 的取值范围为______.5.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是________6.(2022·全国·高三专题练习)已知函数()936=-⋅++x x f x m m ,若方程()()0f x f x 有解,则实数m 的取值范围是_________.7.(2022·全国·高三专题练习)已知函数()x x f x a ka -=+(0a >且1a ≠)是定义在R 上的偶函数,且17(1)4f =. (1)求()f x 的解析式;(2)若函数()()22xxmg x f x m =-⋅+在[0,)+∞上的最小值是1,求m 的值.8.(2022·全国·高三专题练习)已知函数4()1(0,1)2x f x a a a a=->≠+且(0)0f =.(1)求a 的值;(2)若函数()(21)()x g x f x k =++有零点,求实数k 的取值范围. (3)当(0,1)x ∈时,()22x f x m >-恒成立,求实数m 的取值范围.9.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔ (2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围第12讲 指数与指数函数1.根式 (1)根式的概念①若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n=⎩⎨⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.2.有理数指数幂(1)幂的有关概念①正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②a r a s =a r -s(a >0,r ,s ∈Q ); ③(a r )s =a rs (a >0,r ,s ∈Q ); ④(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x (a >0且 a ≠1)a >10<a <1图象定义域 R 值域(0,+∞) 性质过定点(0,1)当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数➢考点1 指数幂的运算[名师点睛]1.对于指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:(1)必须是同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 1.(2022·全国·高三专题练习)(1)计算120.75013110.027()81()369-----++-;(2)若11226x x -+22x x -+的值. 【解】(1)120.75013110.027()81()369-----++-=0.3﹣1﹣36+33+111033-=-36+27+113-=-5.(2)若11226x x -+∴x 1x ++2=6,x 1x+=4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.2.(2022·全国·高三专题练习)化简下列各式(其中各字母均为正数).(1)()211302270.00210528π---⎛⎫-+-+ ⎪⎝⎭; (2323211113342a b ab a b a b -⎛⎫ ⎪⎝⎭(3)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (4)12112133265a b a b a b ---⎛⎫⋅⋅⋅ ⎪⎝⎭⋅. 【解】(1)原式()()21210523500125252-⎛⎫=-+ ⎪⎝⎭-+416710*********=++=-;(2)原式11223233311111122633311233a b a b a a b b ab a b +-++---⎛⎫ ⎪⎝⎭===; (3)原式253112536427110008-⎧⎫⎡⎤⎪⎪⎪⎪⎛⎫⎛⎫⎢⎥=--⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎪⎪⎩⎭1521335233435311010222⎛⎫⨯-⨯ ⎪⎝⎭⎡⎤⎡⎤⎛⎫⎛⎫=--=--=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦;(4)原式111111111533223262361566a b a baba b-----+-⋅==⋅1a=. [举一反三]1.(2022·全国·高三专题练习)计算:100.256361.5()87-⨯-+【解】100.256361.5()87-⨯-+1111323334432()1(2)223()23-=⨯+⨯+⨯-, 113322()2427()33=++⨯-, 110=.2.(2022·全国·高三专题练习)(1)计算:1111200.253473(0.0081)3()81(3)88------⨯⨯⎡⎤⎡⎤⎢⎣+⎥⎢⎥⎣⎦⎦;(2211113322a b ---【解】(1)原式111123()4()4(0.25)34231310112101()[3()]31032333333-⨯-⨯--⨯-⎛⎫=-⨯+=-⨯+=-= ⎪⎝⎭; (2)原式11111111153322132623615661a b aba ba aa b-----+--⋅⋅==⋅==⋅. 3.(2022·全国·高三专题练习)已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++. 【解】(1)将11223a a -+=两边平方得1129a a -++=,所以117a a -+=.(2)将117a a -+=两边平方得22249a a -++=,所以2247a a -+=. (3)由(1)(2)可得22114716.171a a a a --+++==+++ 4.(2022·全国·高三专题练习)已知11223x x -+=,求22332223x x x x--+-+-的值.【解】设12x t =,则121x t-=,所以13t t +=,于是,333222321111x xt t t t t t -⎛⎫⎛⎫+=+=++- ⎪⎪⎝⎭⎝⎭,而2224242112x x t t t t -⎛⎫+=+=+- ⎪⎝⎭,将13t t+=平方得22129t t ++=,于是2217t t +=,所以原式()2222221272471137131513t t t t t t ⎛⎫+- ⎪-⎝⎭===--⎛⎫⎛⎫++-- ⎪⎪⎝⎭⎝⎭. 5.(2022·全国·高三专题练习)分别计算下列数值: (1)()110340.06416π----+ (2)已知16x x -+=,()01x <<,求221122x x x x---+.【解】(1)原式()()()11034340.423ππ--=--++-,()110.4123π--=-++-, 1π=-,(2)∵()()()221116x x x xx x x x -----=+-=-, ∴()()2211432,x x x x ---=+-=∵01x <<, ∴1x x --=-∴()2216x x x x ---=-=-又∵21112228x x x x --⎛⎫+=++= ⎪⎝⎭,∵01x <<,∴1122x x -+= ∴221122x x x x---+=12-.6.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.【解】(1)原式6614342717399πππ=⨯+--=⨯+-+-=+ (2)原式=11121082232333354331127272333333a b a b a b a b a b ab a b a b a b -⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭===.(3)原式1122313122221211111a a a a a a a a a a a a a ⎛⎫⎛⎫-⋅++ ⎪ ⎪-+--+-+⎝⎭⎝⎭=--++1122111a a a a -=--=-.➢考点2 指数函数的图象及应用1.(2022·浙江·宁波诺丁汉附中模拟预测)函数()x x kf x a-=(0a >且1a ≠)的图象如图所示,则( )A .1,1k a >>B .1,1k a ><C .01,1k a <<<D .01,1k a <<>【答案】D 【解析】因为(0)f k =-,由图得10k -<-<, 所以01k <<,所以排除AB ,因为由图象可知当x →+∞时,()0f x →, 所以1a >,所以排除C , 故选:D2.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)- B .(1,0) C .(0,0) D .(0,1)-【答案】B 【解析】因为01a =,所以当10x -=,即1x =时,函数值为定值0,所以点P 坐标为(1,0).另解:因为()11x f x a -=-可以由x y a =向右平移一个单位长度后,再向下平移1个单位长度得到,由x y a =过定点(0,1),所以()11x f x a -=-过定点(1,0).故选:B[举一反三]1.(2022·全国·高三专题练习)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D2.(多选)(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .【答案】AC【解析】解:令()()()0f x x a x b =--=,解得1x a =、2x b =,根据二次函数图形可知,a 、b 两个数一个大于1,一个大于0且小于1,①当1a >,01b <<时,则()x g x a b =-在定义域上单调递增,且()001g a b b =-=-,即()001g <<,所以满足条件的函数图形为C ;②当1b >,01a <<时,则()x g x a b =-在定义域上单调递减,且()0010g a b b =-=-<,所以满足条件的函数图形为A ; 故选:AC➢考点3 指数函数的性质及其应用1.(2022·天津河西·一模)设0.3log 0.2a =,0.30.2b =,log b c a =,则a ,b ,c 的大小关系为( ). A .a b c << B .b a c << C .c a b << D .c b a <<【答案】D【解析】由指数函数的性质,可得...030002021<<=,所以01b <<, 根据对数的运算性质,可得0.30.3log 0.2log 0.31a =>=,所以1a >, 由01b <<,1a >,所以log log 10b b c a =<=,即0c <, 所以c b a <<. 故选:D2.(多选)(2022·全国·高三专题练习)若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( )A .12B .13C .3D .2【答案】BC【解析】当1a >时,函数x y a =在区间[1,1]-上为单调递增函数,当1x =时,max y a =,当1x =-时,1min y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为1a >,所以3a =;当01a <<时,函数x y a =在区间[1,1]-上为单调递减函数,当1x =时,min y a =,当1x =-时,1max y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为01a <<,所以13a =.综上可得,实数a 的值为3或13.故选:BC3.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.【答案】9,2⎛⎫-∞ ⎪⎝⎭【解析】①当2x ≤时,11x -≤,()221010x x f x --=-在(],2-∞上单调递增,()()20f x f ∴≤=,又()()()1120f x f f -≤<=, ()()10f x f x ∴+-<恒成立;②当23x <≤时,112x <-≤,()3120f x x x =--=-<, 又()()120f x f -≤=,()()10f x f x ∴+-<恒成立;③当34x <≤时,213x <-≤,()314f x x x =--=-,()1413f x x x -=--=-;()()110f x f x ∴+-=-<恒成立;④当4x >时,13x ->,()314f x x x =--=-,()1415f x x x -=--=-,()()1290f x f x x ∴+-=-<,解得:92x <,942x ∴<<; 综上所述:不等式()()10f x f x +-<的解集为9,2⎛⎫-∞ ⎪⎝⎭.故答案为:9,2⎛⎫-∞ ⎪⎝⎭.4.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤【答案】A【解析】因为函数()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,则当0x ≥时,0x -≤,()()2xf x f x =-=,故对任意的R x ∈,()2x f x =, 对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,即222x x m -≥,即2x x m ≥-对任意的[],1x m m ∈+恒成立,且m 为正数,则()2x x m ≥-,可得2x m ≤,所以,12m m +≤,可得m 1≥. 故选:A.5.(2022·重庆市朝阳中学高三开学考试)已知函数4()2x x ag x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值; (2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【解】解:(1)因为函数4()2x x ag x -=是奇函数,所以(0)0g =得1a =,则41()2x x g x -=,经检验()g x 是奇函数.又()()lg 101xf x bx =++是偶函数,所以(1)(1)f f -=得12b =-,则()1()lg 1012xf x x =+-,经检验()f x 是偶函数,∴112a b ==-,.(2)()()lg 101x h x =+,lg(109)(lg(109))lg[101lg(1010)m h m m +⎤+=+=+⎦,则由已知得,存在(]0,1x ∈,使不等式lg(1010)()m g x >+成立,因为411()222x x x x g x -==-,易知()g x 单调递增,∴max 3()(1)2g x g ==,∴323lg(1010)lg102m +<==∴1010m +<所以1m <,又109010100m m +>⎧⎨+>⎩,解得910m >-,所以9110m -<<.[举一反三]1.(2022·天津·一模)设3ln 2a =,0.80.5b =,0.50.8-=c ,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .a b c <<D .c a b <<【答案】C 【解析】3ln ln e 12<=,0.800.50.51<=,0.500.80.81->=,c a ∴>,c b >;31ln22==,0.8110.50.52>=,b a ∴>;a b c ∴<<.故选:C.2.(2022·山西吕梁·二模)已知343344333,,444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭a b c ,则( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】因为函数34xy ⎛⎫= ⎪⎝⎭单调递减,故3143344⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭a b . 因为3433344433334444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫<⇒> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以c b <.又34331443331444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫<⇒< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a c <.综上a c b <<, 故选B.3.(2022·全国·高三专题练习)已知函数212,022()3,02x a a a x x f x a x +⎧-+-≥⎪⎪=⎨⎪<⎪⎩在()000x x >处取得最小值,且()03-<f x a ,则实数a 的取值范围( ) A .[2,3) B .[1,3) C .[1,2) D .(1,3)【答案】C【解析】由函数()f x 在0(0,)x ∈+∞处取得最小值得()()0f x f x ≥,则0a >且002x a=> 当0x <时1233()2x a a f x +=>,又()20222a a f x f ⎛⎫==- ⎪⎝⎭,所以203222a a a >⎧⎪⎨-≤⎪⎩,得1a ≥.又()03-<f x a ,所以32af a ⎛⎫-< ⎪⎝⎭,即12332a a a -+<,整理得1221a -+>,102a -+>,解得2a <. 综上,12a ≤<. 故选:C .4.(2022·上海市进才中学高三期中)设函数()2xf x =,若存在[]0,4x ∈使不等式()()22f a x f x +-≥成立,则实数a 的取值范围为______.【答案】3,2⎡⎫+∞⎪⎢⎣⎭【解析】解:由()()22f a x f x +-≥,得2222a x x +-≥,两边同除2x , 即2222a x x -≥+⨯,又222x x -+⨯≥222x x -=⨯, 即12x =[]0,4∈时取等号,所以3222a ≥=,所以32a ≥.故答案为:3,2⎡⎫+∞⎪⎢⎣⎭5.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是________ 【答案】(),1-∞-【解析】函数的定义域为R ,()()322x x f x x f x --=--=-,所以函数()f x 是奇函数,并由解析式可知函数()f x 是增函数,原不等式可化为()()213f x f -<-,所以213x -<-,解得1x <-,故x 的取值范围是(),1-∞-. 故答案为:(),1-∞-6.(2022·全国·高三专题练习)已知函数()936=-⋅++x x f x m m ,若方程()()0f x f x 有解,则实数m 的取值范围是_________.【答案】4,)+∞【解析】由题意得:99(33)2120x x x x m m --+-+++=有解 令233(2),992x x x x t t t --+=≥+=-则22100t mt m ∴-++=有解,即2(2)10m t t -=+有解,显然2t =无意义2,2(0)t t y y ∴>-=>令2(2)101444y m y y y ++∴==++≥,当且仅当14y y =,即y4,)m ∴∈+∞故答案为:)4,∞⎡+⎣.7.(2022·全国·高三专题练习)已知函数()x xf x a ka -=+(0a >且1a ≠)是定义在R 上的偶函数,且17(1)4f =. (1)求()f x 的解析式;(2)若函数()()22xxmg x f x m =-⋅+在[0,)+∞上的最小值是1,求m 的值. 【解】(1)因为函数()f x 是定义在R 上的偶函数, 所以()()x x x x f x a ka f x a ka ---=+==+,整理得()()10x xk a a ---=,所以1k =,又因为17(1)4f =,可得117(1)4f a a =+=,所以4a =或14a =, 所以()44x xf x -=+.(2)由(1)可知()4422x x xm g x m x-=+-⋅+211(2)(2)222x x x xm =---+ 令122xx u =-,则2()2h u u mu =-+. 因为函数122xxu =-在[0,)+∞上是增函数,所以0u ≥, 因为函数()()2[0,)2xxmg x f x m =-⋅++∞上的最小值是1, 所以函数()h u 在[0,)+∞上的最小值是1. 当0m ≥时,2min()()2124m m h u h ==-+=,解得2m =或2m =-(舍去);当0m <时,min ()(0)21h u h ==≠,不合题意,舍去. 综上,2m =.8.(2022·全国·高三专题练习)已知函数4()1(0,1)2x f x a a a a=->≠+且(0)0f =.(1)求a 的值;(2)若函数()(21)()x g x f x k =++有零点,求实数k 的取值范围. (3)当(0,1)x ∈时,()22x f x m >-恒成立,求实数m 的取值范围. 【解】解:(1)对于函数4()1(0,1)2x f x a a a a=->≠+,由4(0)102f a =-=+, 解得2a =,故42()1122221xxf x =-=-++. (2)若函数()(21)()21221x x x g x f x k k k =++=+-+=-+ 有零点, 则函数2x y =的图象和直线1y k =-有交点,10k ∴->,解得1k <. (3)当(0,1)x ∈时,()22x f x m >-恒成立,即212221x xm ->-+恒成立. 令2x t =,则(1,2)t ∈,且323112(1)(1)1t m t t t t t t t +<-==++++.由于121t t ++ 在(1,2)上单调递减,∴1212712216t t +>+=++,76m ∴.即7,6m ⎛⎤∈-∞ ⎥⎝⎦ 9.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.【解】(1)当2a =-时,()24222(213)x x x f x =-⨯-=--,令2,x t =由(0,)x ∈+∞, 可得(1,)t ∈+∞,令()2)1(3g t t =--,有()3g t >-,可得函数()f x 的值域为(3,)-+∞ 故函数()f x 在(),0-∞上不是有界函数;(2)由题意有,当(),0x ∈-∞时,24222,x x a -≤+⋅-≤ 可化为0424x x a ≤+⋅≤ 必有20x a +≥且422x x a ≤-, 令2x k =,由(),0x ∈-∞,可得()0,1k ∈, 由20x a +≥恒成立,可得0a ≥, 令()()401h t t t t=-<<, 可知函数()h t 为减函数,有()413h t >-=, 由422x x a ≤-恒成立, 可得3,a ≤故若函数()f x 在(,0)-∞上是以2为上界的有界函数, 则实数a 的取值范围为[]0,3。
函数及指数函数、对数函数、幂函数知识清单课件-2025届高三数学一轮复习
3.两个函数图象的对称 (1)函数y=f(x)与y=f(-x)的图象关于 y轴 对称; (2)函数y=f(x)与y=-f(x)的图象关于 x轴 对称; (3)函数y=f(x)与y=-f(-x)的图象关于 原点 对称.
函数y=f(x)的图象关于直线x=a对⇔f(x)=f(2a-x)⇔f(a-x)=f(a+x); a+b
函数.
3.函数y=f(x)(f(x)>0或f(x)<0)在公共定义域内与y=-f(x),y=f1x 的单调性 相反.
4.复合函数的单调性:同增异减.
确定函数单调性的四种方法 (1)定义法.(2)导数法.(3)图象法.(4)性质法.
求函数的值域(最值)的常用方法 (1)配方法:主要用于和一元二次函数有关的函数求值域问题. (2)单调性法:利用函数的单调性,再根据所给定义域来确定函数的值域. (3)数形结合法. (4)换元法:引进一个(几个)新的量来代替原来的量,实行这种“变量代换”. (5)分离常数法:分子、分母同次的分式形式采用配凑分子的方法,把函 数分离成一个常数和一个分式和的形式.
么函数f(x)就叫做奇函数
2.函数的周期性 (1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数 T,使得对每一个x∈D都有x+T∈D,且 f(x+T)=f(x) ,那么函数y= f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个 最小 的正数, 那么这个 最小正数 就叫做f(x)的最小正周期.
⑥余弦函数
f(x)=cos
x,对应
f(x)+f(y)=2f
x+y
2
f
x-y,来源于 2
cos
α+
α+β α-β cos β=2cos 2 ·cos 2 ;
2025届高中数学一轮复习课件《指数函数》PPT
第29页
求解与指数函数有关的复合函数问题时,首先要熟知指数函数的定义域、值域、单调性 等相关性质,其次要明确复合函数的构成,当涉及单调性问题时,要借助“同增异减”这一 性质分析判断.
高考一轮总复习•数学
第30页
对点练 4(1)(2024·山东莱芜模拟)已知函数 f(x)=|-2x-x+15|,,xx≤>22,, 若函数 g(x)=f(x)-
解析:∵y=35x 是 R 上的减函数,∴35-13 >35-14 >350,即 a>b>1,又 c=32-34 <320 =1,∴c<b<a.
高考一轮总复习•数学
第11页
4.(2024·四川成都模拟)若函数 f(x)=13-x2+4ax 在区间(1,2)上单调递增,则 a 的取值范 围为___-__∞__,__12_ _.
在(4,+∞)上单调递增.令12x≤4,得 x≥-2,令12x>4,得 x<-2, 代入外层函数的单调递减区间,得到自变量 x 的取值范围,这才是复合函数的单调递增 区间. 而函数 t=12x 在 R 上单调递减,所以函数 y=122x-8·12x+17 的单调递增区间为[-2, +∞).
高考一轮总复习•数学
所谓“底大图高”,反映指数函数的排列规律.
高考一轮总复习•数学
第8页
1.判断下列结论是否正确. (1)函数 y=a-x(a>0,且 a≠1)是 R 上的增函数.( ) (2)函数 y=ax(a>0,且 a≠1)与 x 轴有且只有一个交点.( ) (3)若 am>an,则 m>n.( ) (4)函数 y=ax 与 y=a-x(a>0,且 a≠1)的图象关于 y 轴对称.( √ )
指数+课件-2025届高三数学一轮复习
负数没有偶次方根,故C错误;
x + y 2 是非负数,所以
x+y
2
= |x + y|,故D正确.
)
例1-2 [教材链接题]已知a,b ∈ ,下列各式总能成立的有( B )
A.
3
a−b
4
3
=b−a
B.
4
C. a4 − b 4 = a − b
【解析】
3
a−b
3
【答案】 − = − =
− ,∴
− =
∴
+
− = − ,
−
− =
=
−
+−
=
−
=
−
,
,
故 − + �� − = − +
−
.
− × = ( − ) =
再将x + x −1 = 7平方并化简得x 2 + x −2 = 47,
3
2
x +x
3
−2
1
2
= x +x
1
−2
1
2
x−x ⋅x
3
2
1
−2
方和公式展开求解,也可由x + x
解)
从而
3
3
−
x2 +x 2 +2
x2 +x−2 +3
=
18+2
高考数学一轮复习规划第三章第5讲 指数与指数函数
解析 答案
5 . 设 a = 0.993.3 , b = 0.994.5 , c = 1.10.99 , 则 a , b , c 的 大 小 关 系 为 ________.
答案 12或32 解析 当 0<a<1 时,a-a2=a2,∴a=12或 a=0(舍去);当 a>1 时, a2-a=a2,∴a=32或 a=0(舍去).综上所述,a=12或32.
解析 答案
2
PART TWO
核心考向突破
考向一 指数幂的运算
例 1 求值与化简: (1)823×100-12×14-3×8116-34;
底数
a>1
0<a<1
图象
性质
函数的定义域为 R,值域为 13 __(0_,__+__∞__) __
函数图象过定点 14 ___(_0_,1_)____,即 x=0 时,y=1
当 x>0 时,恒有 y>1; 当 x<0 时,恒有 0<y<1
15 __增__函__数___
当 x>0 时,恒有 0<y<1; 当 x<0 时,恒有 y>1 16 __减__函__数___
5.函数y=ax-a-1(a>0,且a≠1)的图象可能是( )
解析 函数 y=ax-1a是由函数 y=ax 的图象向下平移1a个单位长度得到 的,A 显然错误;当 a>1 时,0<1a<1,平移距离小于 1,所以 B 错误;当 0<a<1 时,1a>1,平移距离大于 1,所以 C 错误.故选 D.
a>c,则
新课标2023版高考数学一轮总复习第2章函数第5节指数与指数函数教师用书
第五节 指数与指数函数考试要求:1.了解指数幂的拓展过程,掌握指数幂的运算性质.2.了解指数函数的实际意义,了解指数函数的概念.3.能画具体指数函数的图象,探索并理解指数函数的单调性与特殊点.一、教材概念·结论·性质重现1.n 次方根(1)根式的概念一般地,如果x n = a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当有意义时,叫做根式,n 叫做根指数,a 叫做被开方数.(2)a 的n 次方根的性质①()n =a .②当n 为奇数时,=a .当n 为偶数时,=|a |=2.有理数指数幂幂的有关概念正数的正分数指数幂:a =()m = (a >0,m ,n ∈N *,n >1)正数的负分数指数幂:a ==(a >0,m ,n ∈N *,n >1)0的正分数指数幂等于0,0的负分数指数幂没有意义指数幂的运算性质,a r a s =a r + s (a >0,r ,s ∈Q);(a r )s =a rs (a >0,r ,s ∈Q );(ab )r =a r b r (a >0,b >0,r ∈Q )3.指数函数的概念一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R .形如y =ka x (k ≠1),y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数.4.指数函数的图象与性质定义域R 值域(0 ,+∞ )性质过定点(0,1),即x =0时,y =1当x <0时,y >1 ;当x >0时,0< y <1 当x >0时,y >1 ;当x <0时,0< y <1减函数增函数二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)=()n =a .( × )(2)(-1)=(-1)=.( × )(3)函数y =a -x 是R 上的增函数.( × )(4)函数y =2x 是指数函数.( √ )(5)若a m <a n (a >0,且a ≠1),则m <n .( × )2.计算[(-2)6]-(-1)0的结果为( )A .-9B .7C .-10D .9B 解析:原式=2-1=23-1=7.故选B .3.函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .3C .2D .1B 解析:由指数函数的定义知a 2-4a +4=1且a ≠1,解得a =3.4.若函数f (x)=ax (a >0,且a ≠1)的图象经过点P ,则f (-1)=________. 解析:由题意知=a 2,所以a =,所以f (x )=,所以f (-1)==.5.若函数y =(a 2-1)x 在R 上为增函数,则实数a 的取值范围是________.a >或a <- 解析:由y =(a 2-1)x 在R 上为增函数,得a 2-1>1,解得a >或a <-.考点1 指数幂的化简与求值——基础性1.若实数a>0,则下列等式成立的是( )A.(-2)-2=4B.2a-3=C.(-2)0=-1D.(a)4=D 解析:对于A,(-2)-2=,故A错误;对于B,2a-3=,故B错误;对于C,(-2)0=1,故C错误;对于D,(a)4=,故D正确.2.(多选题)已知a+a-1=3,在下列各选项中,其中正确的是( )A.a2+a-2=7B.a3+a-3=18C.a+a=±D.a+=2ABD 解析:在选项A中,因为a+a-1=3,所以a2+a-2=(a+a-1)2-2=9-2=7,故A正确;在选项B中,因为a+a-1=3,所以a3+a-3=(a+a-1)(a2-1+a-2)=(a +a-1)·[(a+a-1)2-3]=3×6=18,故B正确;在选项C中,因为a+a-1=3,所以(a +a)2=a+a-1+2=5,且a>0,所以a+a=,故C错误;在选项D中,因为a3+a-3=18,且a>0,所以=a3+a-3+2=20,所以a+=2,故D正确.3.已知a>0,b>0,化简:·=________. 解析:原式=2×=21+3×10-1=.4.计算:+(0.002)-10(-2)-1+π0=__________.- 解析:原式=+500-+1=+10-10-20+1=-.1.解决这类问题要优先考虑将根式、分数指数幂统一为分数指数幂,以便利用法则计考点2 指数函数的图象及应用——综合性(1) (2021·海南中学模拟)已知函数f(x)=4+2a x-1(a>1且a≠1)的图象恒过点P,则点P的坐标是( )A.(1,6)B.(1,5)C.(0,5)D.(5,0)A 解析:当x=1时,f(1)=6,与a无关,所以函数f(x)=4+2a x-1的图象恒过点P(1,6).故选A.(2)若函数y=|2x-1|的图象与直线y=b有两个公共点,则b的取值范围为________ __.(0,1) 解析:作出曲线y=|2x-1|的图象与直线y=b如图所示.由图象可得b的取值范围是(0,1).在本例(2)中,若将条件中的“有两个公共点”,改为“有一个公共点”,则结果如何?b≥1或b=0 解析:作出曲线y=|2x-1|的图象与直线y=b如图所示.由图象可得b的取值范围是b≥1或b=0.1.(多选题)在同一坐标系中,关于函数y=3x与y=的图象的说法正确的是( ) A.关于y轴对称B.关于x轴对称C.都在x轴的上方D.都过点(0,1)ACD 解析:在同一坐标系中,作出y=3x与y=的图象(略),知两函数的图象关于y 轴对称,A项正确.由指数函数的性质,知选项CD正确.2.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.[-1,1] 解析:作出曲线|y|=2x+1的图象,如图所示,要使该曲线与直线y=b没有公共点,只需-1≤b≤1.3.已知实数a,b满足等式=,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中可能成立的有________.(填序号)①②⑤ 解析:函数y1=与y2=的图象如图所示.由=得,a<b<0或0<b<a或a=b=0.故①②⑤可能成立,③④不可能成立.考点3 指数函数的性质及应用——应用性考向1 比较大小(1)已知a=2,b=4,c=25,则( )A.b<a<c B.a<b<cC.b<c<a D.c<a<bA 解析:因为a=2=4>4=b,c=25=5>4=a,所以b<a<c.(2)(2020·全国Ⅱ卷)若2x-2y<3-x-3-y,则( )A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0A 解析:因为2x-2y<3-x-3-y,所以2x-3-x<2y-3-y.因为y=2x-3-x=2x-在R上单调递增,所以x<y,所以y-x+1>1,所以ln(y-x+1)>ln 1=0.考向2 解指数不等式若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为.{x|x>4或x<0} 解析:当x<0时,f(x)=f(-x)=2-x-4.所以f(x)=当f(x-2)>0时,有或解得x>4或x<0.所以不等式的解集为{x|x>4或x<0}.考向3 指数型函数的单调性函数f(x)=的单调递减区间为________.(-∞,1] 解析:设u=-x2+2x+1,因为y=在R上为减函数,所以函数f(x)=的单调递减区间即为函数u=-x2+2x+1的单调递增区间.又u=-x2+2x+1的单调递增区间为(-∞,1],所以f(x)的单调递减区间为(-∞,1].在例4中,若函数f(x)=改为f(x)=2-x2+2x+1,结果如何?[1,+∞) 解析:设u=-x2+2x+1,因为y=2u在R上为增函数,所以函数f(x)=2-x2+2x+1的单调递减区间即为函数u=-x2+2x+1的单调递减区间.又u=-x2+2x+1的单调递减区间为[1,+∞),所以f(x)的单调递减区间为[1,+∞).考向4 指数型函数的最值(1)已知函数f(x)=a x+b(a>0,且a≠1)的定义域和值域都是[-1,0],则a+b=________.- 解析:当a>1时,易知f(x)在[-1,0]上单调递增,则即无解.当0<a<1时,易知f(x)在[-1,0]上单调递减,则即解得所以a+b=-.(2)若函数f(x)=有最大值3,则a=________.1 解析:令h(x)=ax2-4x+3,y=.因为f(x)有最大值3,所以h(x)应有最小值-1,因此有解得a=1.1.研究指数函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.2.研究复合函数的单调性,要明确复合函数的构成,借助“同增异减”,将问题归结为内层函数相关的问题加以解决.1.已知a=(),b=2,c=9,则( )A.b<a<c B.a<b<cC.b<c<a D.c<a<bA 解析:a=()=2=2,b=2,c=9=3.由2<3,得a<c.由>,得a>b,所以c>a>b.故选A.2.(2021·柳州高三月考)已知函数y=f(x)的定义域为R,y=f(x+1)为偶函数,对任意x1,x2,当x1>x2≥1时,f(x)单调递增,则关于a的不等式f(9a+1)<f(3a-5)的解集为( )A.(-∞,1)B.(-∞,log32)C.(log32,1)D.(1,+∞)B 解析:因为函数y=f(x)的定义域为R,y=f(x+1)为偶函数,所以f(-x+1)=f(x+1),所以函数y=f(x)关于x=1对称.因为函数y=f(x)在[1,+∞)为增函数,所以函数y=f(x)在(-∞,1]为减函数.不等式f(9a+1)<f(3a-5)等价于|9a+1-1|<|3a-5-1|,即|3a-6|>9a⇒3a-6>9a或3a-6<-9a,令3a=t(t>0)得到:t2-t+6<0或t2+t -6<0.当t2-t+6<0时,无解.当t2+t-6<0时,(t+3)(t-2)<0,解得t<2,即3a<2,a<log32.3.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为( ) A.[9,81]B.[3,9]C.[1,9]D.[1,+∞)C 解析:由f(x)的图象过定点(2,1)可知b=2.因为f(x)=3x-2在[2,4]上单调递增,所以f(x)min=f(2)=32-2=1,f(x)max=f(4)=34-2=9.故选C.4.若函数f(x)=(2a-1)x-3-2,则y=f(x)的图象恒过定点________;又f(x)在R 上是减函数,则实数a的取值范围是________.(3,-1) 解析:对于函数f(x)=(2a-1)x-3-2,令x-3=0,得x=3,则f(x)=(2a-1)0-2=1-2=-1,可得y=f(x)的图象恒过定点(3,-1).又∵函数f(x) =(2a-1)x-3-2 在R上是减函数,故有0<2a-1<1,求得 <a<1.故答案为(3,-1);.设a=,b=,c=,则a,b,c的大小关系是( )A.a>c>b B.a>b>cC.c>a>b D.b>c>a[四字程序]读想算思比较大小比较大小的方法是什么?式子变换转化与化归a, b, c均为幂值的形式1.利用函数单调性.2.通过中间量比较大小.3.作差或商比较1.构造函数.2.统一幂指数.3.化为根式形式注意分数指数幂的等价变形以及运算法则思路参考:构造指数函数,利用单调性求解.A 解析:先比较b与c的大小,构造函数y=.因为0<<1,所以函数y=为减函数.又因为>,所以b=<=c.再比较a与c,因为=>=1,且a,c均大于0,所以a>c,所以a>c>b.故选A.思路参考:统一幂指数,利用幂函数单调性比较大小.A 解析:因为a,b,c为正实数,且a5==,b5==,c5==,所以a5>c5>b5,即a>c>b.故选A.思路参考:将三个数转化为同次根式的形式比较大小.A 解析:因为a=,b=,c=,所以a>c>b.故选A.1.本题给出了三种比较指数幂大小的方法,解法1是构造函数法,利用指数函数性质比较大小,利用这种方法应注意底数是否大于1;解法2与解法3比较类似,都是对a,b,c进行简单变形,转化为同次根式的形式,由被开方数的大小可得出a,b,c的大小.特别是解法3,结构较为简洁,转化为同次根式迅速求解.2.基于新课程标准,解决比较大小的问题,要熟练掌握基本初等函数的性质,尤其是单调性,同时也要熟练掌握指数式与对数式的互化,指数幂的运算法则等知识.解决比较大小问题体现了逻辑推理、数学运算的数学素养.函数y=F(x)的图象如图所示,该图象由指数函数f(x)=a x与幂函数g(x)=x b“拼接”而成.(1)求F(x)的解析式;(2)比较a b与b a的大小;(3)若(m+4)-b<(3-2m)-b,求m的取值范围.解:(1)依题意得解得所以F(x)=(2)因为a b==,b a=,指数函数y=在R上单调递减,所以<,即a b<b a.(3)由(m+4)<(3-2m),得解得-<m<,所以m的取值范围是.。
高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第5节指数与指数函数课件新人教A版
(2)指数函数的图象与性质
a>1
0<a<1
图象
定义域 值域
性质
R
_(_0_,___+__∞___) __ 过定点_(_0_,__1__)_,即x=0时,y=1
当x>0时,___y_>_1___; 当x<0时,_0_<__y_<_1__
与 0<a<1 来研究. 3.在第一象限内,指数函数 y=ax(a>0,且 a≠1)的图象越高,底数越大.
诊断自测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)ห้องสมุดไป่ตู้ (-4)4=-4.( )
(2)分数指数幂 amn可以理解为mn 个 a 相乘.(
)
(3)函数 y=2x-1 是指数函数.( )
的大小关系是( )
A.a<b<c
B.a<c<b
C.b<a<c
D.b<c<a
解 析 根 据 指 数 函 数 y = 0.6x 在 R 上 单 调 递 减 可 得 0.61.5<0.60.6<0.60 = 1 , 而 c =
1.50.6>1,∴b<a<c.
答案 C
4.(2017·北京卷)已知函数 f(x)=3x-13x,则 f(x)(
规律方法 求解与指数函数有关的复合函数问题,第一要熟知指数函数的定义域、 值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最 值等问题时,都要借助“同增异减”这一性质分析判断. 易错警示 在研究指数型函数的单调性时,当底数a与“1”的大小关系不确定时,要 分类讨论.
2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第5讲指数与指数函数pptx课件
[解析] ①将
=3 两边平方,得 a+a-1+2=9,所以 a+a-1
=7. ②将 a+a-1=7 两边平方,得 a2+a-2+2=49,所以 a2+a-2=47.
a2+a-2+1 47+1 ③由①②可得 a+a-1+1 = 7+1 =6.
名师点拨:指数幂运算的一般原则 1.有括号的先算括号里的,无括号的先做指数运算. 2.先乘除后加减,负指数幂化成正指数幂的倒数. 3.底数是负数,先确定符号,底数是小数,先化成分数,底数是 带分数的,先化成假分数. 4.若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用 指数幂的运算性质来解答. 5.运算结果不能同时含有根号和分数指数,也不能既有分母又含 有负指数,形式力求统一.
2
2 ,f(-1)=
22-1=
2.
题组三 走向高考 5.(2017·北京)已知函数 f(x)=3x-13x,则 f(x)( A ) A.是奇函数,且在 R 上是增函数 B.是偶函数,且在 R 上是增函数 C.是奇函数,且在 R 上是减函数 D.是偶函数,且在 R 上是减函数
[解析] 因为 f(x)=3x-13x,且定义域为 R,所以 f(-x)=3-x-13-x =13x-3x=-3x-13x=-f(x),即函数 f(x)是奇函数.又 y=3x 在 R 上 是增函数,y=13x 在 R 上是减函数,所以 f(x)=3x-13x 在 R 上是增函数, 故选 A.
双基自测 题组一 走出误区 1.判断下列结论是否正确(请在括号中打“√”或“×”)
4
(1)
-44=-4.(
×
)
(2)2a·2b=2ab.( × )
(3)
(n,m∈N*).( × )
(4)函数 y=3·2x,与 y=2x+1 都不是指数函数.( √ )
3.4指数与指数函数课件高三数学一轮复习
考点三指数函数的性质的应用 考情提示 指数函数的性质及应用是高考的命题热点,多以选择题或填空题的形式呈现,重 点考查比较大小、解方程或不等式、求值域等问题,难度中档或以下.
解题技法
第三章 函数及其应用
第四节 指数与指数函数
必备知识·逐点夯实 核心考点·分类突破
【课标解读】 【课程标准】 1.了解指数幂的拓展过程,掌握指数幂的运算性质. 2.了解指数函数的实际意义,理解指数函数的概念. 3.会画出具体指数函数的图象,理解指数函数的单调性与特殊点. 【核心素养】 数学抽象、逻辑推理、数学运算.
(0,1)∪(1,+∞)
核心考点·分类突破
1
-10y
47
解题技法 指数幂的运算
(1)运算顺序:有括号先算括号内的,无括号先进行指数的乘方、开方,再乘除后加 减,底数是负数的先确定符号. (2)运算基本原则:①化负指数为正指数;②化根式为分数指数幂;③化小数为分数, 化带分数为假分数.
由图象知,其在(-∞,0]上单调递减,所以实数k的取值范围为(-∞,0].
解题技法 有关指数函数图象问题的解题思路
(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若 不满足则排除; (2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、 伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论; (3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求 解; (4)根据指数函数图象判断底数大小的问题,可以通过直线x=1与图象的交点进行判断.
备战2024年高考数学一轮复习13、指数函数与对数函数
指数函数与对数函数知识回顾:1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a xy a 的图象与性质2、指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a xy a 互为 ,其图象关于直线 对称 典型例题分析:一、指对函数的图象及性质应用例1、已知实数,a b 满足等式11()()23ab=,下列五个关系式(1)0b a <<(2)0a b <<(3)0a b <<(4)0b a <<(5)a b = 其中不可能成立的关系式有A 、4个B 、1个C 、2个D 、3个 例2、对于函数()f x 定义域中任意1212,,()x x x x ≠,有如下结论 (1)1212()()()f x x f x f x += (2)1212()()()f x x f x f x =+ (3)1212()()0f x f x x x ->- (4)1212()()22x x f x x f ++<当()lg f x x =时,上述结论中正确结论的序号是 。
例3、如图,是指数函数(1)x y a =,(2)x y b =,(3)x y c =, (1) (2) (3) (4) (4)x y d =的图象,则,,,a b c d 与1的大小关系是 A 、1a b c d <<<<0 B 、1b a d c <<<< C 、1a b c d <<<< 2 D 、1a b d c <<<< 3例4、若函数log ()(0,1)a y x b a a =+>≠的图象过两点(1,0)-和(0,1),则A 、2,2a b ==B 、2a b ==C 、 2,1a b ==D 、a b ==例5、方程log 2(01)a x x a =-<<的实数解的个数是 A 、0 B 、1 C 、2 D 、3 例6、函数2xy -=的单调递增区间是A 、(-∞,+∞)B 、(-∞, 0)C 、(0, +∞)D 、不存在例7、当a >1时,函数x y a -=与log a y x =的图像是 ( )例8、设01a <<,函数2()log (22)x x a f x a a =--,则使()0f x <的x 取值范围是 A 、(-∞,0) B 、(0, +∞) C 、(-∞,log 3a ) D 、(log 3a , +∞) 例9、函数x y a =在[]0,1上的最大值与最小值的和为3,则a 的值为 A 、12 B 、2 C 、4 D 、14例10、已知不等式2log (21)log (3)0x x x x +<<成立,则实数x 的取值范围是 A 、1(0,)3 B 、1(0,)2 C 、1(,1)3 D 、11(,)32二、比较大小例1、若92log 3a =, 8log b =14c =,则这三个数的大小关系是 A 、a c b << B 、a b c << C 、c a b << D 、c b a <<例2、若60a =︒, 2log sin30b =︒, 3log 45c tg =︒,则,,a b c 的大小关系是( )。
数学课标通用(理科)一轮复习配套教师用书:第二章 函数概念与基本初等函数Ⅰ 指数与指数函数
§2。
5 指数与指数函数考纲展示► 1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.考点1 指数幂的化简与求值1.根式(1)根式的概念若________,则x叫做a的n次方根,其中n>1且n∈N*.式子错误!叫做根式,这里n叫做根指数,a叫做被开方数.(2)a的n次方根的表示x n=a⇒错误!答案:(1)x n=a2.有理数指数幂(1)幂的有关概念①正分数指数幂:a错误!=________(a>0,m,n∈N*,且n>1);②负分数指数幂:a错误!=________=________(a>0,m,n∈N*,且n>1);③0的正分数指数幂等于________,0的负分数指数幂________.(2)有理数指数幂的性质①a r a s=________(a>0,r,s∈Q);②(a r)s=________(a>0,r,s∈Q);③(ab)r=________(a>0,b>0,r∈Q).答案:(1)①na m②错误!错误!③0 无意义(2)①a r+s②a rs③a r b r(1)[教材习题改编]若x+x-1=5,则x2-x-2=________.答案:±5错误!解析:把x+x-1=5两边平方,可得x2+x-2=23,所以(x-x-1)2=x2-2+x-2=21,所以x-x-1=±错误!,所以x2-x-2=(x+x-1)(x -x-1)=±5错误!.(2)[教材习题改编]若x错误!+x错误!=3,则错误!=________。
答案:错误!解析:由x错误!+x错误!=3,得(x错误!+x错误!)2=9,即x+x-1=7.错误!=错误!=错误!=错误!。
根式化简与指数运算的误区:混淆“na n”与“(错误!)n”;误用性质.(1)错误!=__________;答案:|a-b|=错误!解析:错误!=|a-b|=错误!(2)化简[(-2)6]错误!-(-1)0的结果为________.答案:7解析:[(-2)6]错误!-(-1)0=(26)错误!-1=8-1=7。
2023年高考数学一轮总复习第10讲:指数与指数函数
第1页共11页2023年高考数学一轮总复习第10讲:指数与指数函数【教材回扣】1.分数指数幂(1)a m n =________(a >0,m ,n ∈N *,且n >1);a -m n=________(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =________,(a r )s =________,(ab )r =________,其中a >0,b >0,r ,s ∈Q .2.指数函数的图象与性质y =a x a >10<a <1图象定义域________值域________性质过定点________当x >0时,________;当x <0时,□10________当x >0时,□11________;当x <0时,□12________在(-∞,+∞)上是□13________在(-∞,+∞)上是□14________【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.n a n 与(n a )n 都等于a (n ∈N *).()2.2a ·2b =2ab .()3.函数y =3·2x 与y =2x +1都不是指数函数.()4.若a m <a n (a >0,且a ≠1),则m <n .()题组二教材改编1.(多选题)设a >0,则下列运算中不正确的是()A .a 43a 34=a B .a ÷a 23=a 32C .a 23a-23=0D .(a 14)4=a 2.如图,①②③④中不属于函数y =2x ,y =6x ,y 的一个是()。
2024届新高考一轮总复习人教版 第二章 第5节 指数与指数函数 课件(40张)
分数指数幂 负分数指数幂
1 规定 a-mn= 1m=__n_a_m__(a>0,m,n∈N*,n>1)
an
0 的分数指数幂 0 的正分数指数幂等于_0__,0 的负分数指数幂没有意义
4.有理数指数幂的运算性质 (1)aras=__a_r+__s __(a>0,r,s∈Q). (2)(ar)s=__a_r_s _(a>0,r,s∈Q). (3)(ab)r=__a_rb_r__(a>0,b>0,r∈Q). 5.指数函数定义 一般地,函数 y=ax(a>0,且 a≠1)叫做指数函数,其中指数 x 是自变量,定义域是 _R___.
在(-∞,+∞)上是_减__函__数___
[必记结论] 指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx 的图象,底数 a,b,c,d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
第二章 函 数
[课标解读] 1.了解指数幂的拓展过程,掌握指数幂的运算性质. 2.了解指数函数 的实际意义,理解指数函数的概念. 3.能画具体指数函数的图象,探索并理解指数函 数的单调性与特殊点.
备考第 1 步——梳理教材基础,落实必备知识 1.根式及相关概念 (1)a 的 n 次方根定义 如果_x_n_=__a__,那么 x 叫做 a 的 n 次方根,其中 n>1,且 n∈N*. (2)根式:式子n a叫做根式,这里 n 叫做_根__指__数___,a 叫做_被__开__方__数___.
备考第 2 步——突破核心考点,提升关键能力 考点 1 指数幂的运算 【考点集训】
高三数学第一轮复习 指数运算及指数函数
1 (C) 8
3 (D) 8
21
3.指数形式的复合函数的单调性、奇偶性
例8:若函数y=ax+b-1(a>0,且a≠1)的图象经过第二、三、四象 限,则一定有……( ).
A. 0 a 1, 且 b 0
y
B. a 1, 且 b 0 C. 0 a 1, 且 b 0 D. a 1, 且 b 0
第二章 基本初等函数
考点一 指数及指数函数
一、指数与指数幂的运算
8.根式的运算,可以先把根式化成分数指数幂,然后利用有理数 指数幂的运算性质进行运算.
在进行指数幂运算时,应注意什么问题? (1)化简要求同初中要求,注意结果形式的统一,即结果不能 同时含有根式和分数指数,也不能既有分母,又含有负分数. (2)一般地,进行指数幂运算时,化负指数为正指数,化根式为 分数指数幂,化小数为分数,化底数为指数等,便于进行乘、 除、乘方、开方运算,以达到化繁为简的目的.
1 6 1 5
1.70.3 , 0.93.1
比较指数大小的方法: ①构造函数法:要点是利用函数的单调性,数的特征是同 底不同指(包括可以化为同底的),若底数是参变量要注 意分类讨论。 ②搭桥比较法:用别的数如0或1做桥。数的特征是不同底 不同指。
例 5.(2010
2 2 3 5 2 3 2 5 5 ( ) ,c ( ) ( ),b 安徽文数)设 a ,则 5 5 5
(1)
4
81 9
2 3
(2)
3
a
9 2
a 3
3
a 7 3 a13
一般地,进行指数幂运算时,化负指数为正指数,化根式为分数指数,化小数
为分数进行运算,便于进行乘、除、乘方、开方运算,以达到化繁为简的目的.
2025届高考数学一轮复习讲义函数之 幂函数、指数与指数函数
C. 当x>1时,f(x)>1
[解析]
D.
(1 )+(2 )
1 +2
当0<x1<x2时,
<f(
)
2
2
1
α
α
因为幂函数 f ( x )= x 的图象经过点(16,4),所以16 =4,α= ,所以 f ( x )
2
1
2
= = ,由其图象可知,A错误,B正确;当 x >1时, f ( x )> f (1)=1,故C正
(2)指数函数的图象和性质
函数
y=ax(a>1)
y=ax(0<a<1)
图象
函数的定义域为R;值域为⑲ (0,+∞) .
函数图象过定点⑳ (0,1) ,即当x=0时,y=1.
性质
当x>0时,0<y<1;当x<0时,
当x>0时,y>1;当x<0时,0<y<1.
y>1.
函数在R上单调递㉑ 增 .
函数在R上单调递㉒ 减 .
确;由 f ( x )=
(1 )+(2 )
1 +2
的图象可知
<f(
),故D正确.故选BCD.
2
2
)
3. 函数 f ( x )= ax -1+2( a >0,且 a ≠1)的图象恒过定点 (1,3) .
4. 已知函数 f ( x )= ax + b ( a >0,且 a ≠1)的定义域和值域都是[-1,0],则 a + b
=⑭
( a >0, m , n ∈N*,且 n >1).
1
( a >0, m , n ∈N*,且 n >1).
0的正分数指数幂等于0,0的负分数指数幂没有意义.
(3)有理数指数幂的运算性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 指数与指数函数【2014年高考会这样考】1.考查指数函数的图象与性质及其应用.2.以指数与指数函数为知识载体,考查指数的运算和函数图象的应用. 3.以指数或指数型函数为命题背景,重点考查参数的计算或比较大小. 【复习指导】1.熟练掌握指数的运算是学好该部分知识的基础,较高的运算能力是高考得分的保障,所以熟练掌握这一基本技能是重中之重.2.本讲复习,还应结合具体实例了解指数函数的模型,利用图象掌握指数函数的性质.重点解决:(1)指数幂的运算;(2)指数函数的图象与性质.基础梳理1.根式 (1)根式的概念如果一个数的n 次方等于a (n >1且,n ∈N *),那么这个数叫做a 的n 次方根.也就是,若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)根式的性质①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n 次方根用符号na 表示.②当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时,正数的正的n 次方根用符号n a 表示,负的n 次方根用符号-na 表示.正负两个n 次方根可以合写为±na (a >0). ③⎝⎛⎭⎫n a n =a . ④当n 为奇数时,na n =a ;当n为偶数时,na n=|a|=⎩⎨⎧a(a≥0)-a(a<0).⑤负数没有偶次方根.2.有理数指数幂(1)幂的有关概念①正整数指数幂:a n=a·a·…·an个(n∈N*);②零指数幂:a0=1(a≠0);③负整数指数幂:a-p=1a p(a≠0,p∈N*);④正分数指数幂:a mn=na m(a>0,m、n∈N*,且n>1);⑤负分数指数幂:a-mn=1amn=1na m(a>0,m、n∈N*且n>1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r、s∈Q)②(a r)s=a rs(a>0,r、s∈Q)③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质R一个关系分数指数幂与根式的关系根式与分数指数幂的实质是相同的,分数指数幂与根式可以相互转化,通常利用分数指数幂进行根式的化简运算. 两个防范(1)指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按:0<a <1和a >1进行分类讨论. (2)换元时注意换元后“新元”的范围. 三个关键点画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a . 双基自测1.(2011·山东)若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( ). A .0 B.33 C .1 D. 3解析 由题意有3a =9,则a =2,∴tan a π6=tan π3= 3. 答案 D2.(2012·郴州五校联考)函数f (x )=2|x -1|的图象是( ).解析 f (x )=⎩⎨⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,故选B.答案 B 3.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( ). A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值解析 设y =f (x ),t =2x +1, 则y =1t ,t =2x +1,x ∈(-∞,+∞)t =2x +1在(-∞,+∞)上递增,值域为(1,+∞). 因此y =1t 在(1,+∞)上递减,值域为(0,1). 答案 A4.(2011·天津)已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( ).A .a >b >cB .b >a >cC .a >c >bD .c >a >b解析 c =⎝ ⎛⎭⎪⎫15log 30.3=5-log 30.3=5log 3103,log 23.4>log 22=1,log 43.6<log 44=1,log 3103>log 33=1,又log 23.4>log 2103>log 3 103,∴log 2 3.4>log 3 103>log 4 3.6 又∵y =5x 是增函数,∴a >c >b . 答案 C5.(2012·天津一中月考)已知a 12+a -12=3,则a +a -1=______;a 2+a -2=________.解析 由已知条件(a 12+a -12)2=9.整理得:a +a -1=7又(a+a-1)2=49,因此a2+a-2=47.答案747考向一指数幂的化简与求值【例1】►化简下列各式(其中各字母均为正数).(1)(a23·b-1)-12·a-12·b136a·b5;(2)56a13·b-2·(-3a-12b-1)÷(4a23·b-3)12.[审题视点] 熟记有理数指数幂的运算性质是化简的关键.解(1)原式=a-13b12·a-12b13a16b56=a-13-12-16·b12+13-56=1a.(2)原式=-52a-16b-3÷(4a23·b-3)12=-54a-16b-3÷⎝⎛⎭⎪⎫a13b-32=-54a-12·b-32=-54·1ab3=-5ab4ab2.化简结果要求(1)若题目以根式形式给出,则结果用根式表示;(2)若题目以分数指数幂的形式给出,则结果用分数指数幂表示;(3)结果不能同时含有根号和分数指数幂,也不能既有分母又有负指数幂.【训练1】计算:(1)0.027-13-⎝⎛⎭⎪⎫-17-2+⎝⎛⎭⎪⎫27912-() 2-10;(2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)30.1-2(a 3b -3)12.解 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-(-1)-2⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45.(2)原式=412·432100·a 32·a -32·b 32·b -32=425a 0·b 0=425.考向二 指数函数的性质【例2】►已知函数f (x )=⎝ ⎛⎭⎪⎫1a x -1+12·x 3(a >0且a ≠1).(1)求函数f (x )的定义域; (2)讨论函数f (x )的奇偶性;(3)求a 的取值范围,使f (x )>0在定义域上恒成立.[审题视点] 对解析式较复杂的函数判断其奇偶性要适当变形;恒成立问题可通过求最值解决.解 (1)由于a x -1≠0,且a x ≠1,所以x ≠0. ∴函数f (x )的定义域为{x |x ∈R ,且x ≠0}. (2)对于定义域内任意x ,有 f (-x )=⎝ ⎛⎭⎪⎫1a -x -1+12(-x )3=⎝ ⎛⎭⎪⎫a x1-a x +12(-x )3=⎝⎛⎭⎪⎫-1-1a x -1+12(-x )3 =⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ),∴f (x )是偶函数.(3)当a >1时,对x >0,由指数函数的性质知a x >1, ∴a x -1>0,1a x -1+12>0. 又x >0时,x 3>0,∴x 3⎝ ⎛⎭⎪⎫1a x -1+12>0,即当x >0时,f (x )>0.又由(2)知f (x )为偶函数,即f (-x )=f (x ), 则当x <0时,-x >0,有f (-x )=f (x )>0成立. 综上可知,当a >1时,f (x )>0在定义域上恒成立. 当0<a <1时,f (x )=(a x +1)x 32(a x -1).当x >0时,1>a x >0,a x +1>0,a x -1<0,x 3>0,此时f (x )<0,不满足题意; 当x <0时,-x >0,f (-x )=f (x )<0,也不满足题意. 综上可知,所求a 的取值范围是a >1.(1)判断此类函数的奇偶性,常需要对所给式子变形,以达到所需要的形式,另外,还可利用f (-x )±f (x ),f (x )f (-x )来判断. (2)将不等式恒成立问题转化为求函数值域问题,是解决恒成立问题的常用方法. 【训练2】 设f (x )=e -x a +ae -x 是定义在R 上的函数.(1)f (x )可能是奇函数吗?(2)若f (x )是偶函数,试研究其在(0,+∞)的单调性. 解 (1)假设f (x )是奇函数,由于定义域为R , ∴f (-x )=-f (x ),即e x a +ae x =-⎝⎛⎭⎪⎫e -x a +a e -x ,整理得⎝ ⎛⎭⎪⎫a +1a (e x +e -x )=0,即a +1a =0,即a 2+1=0显然无解. ∴f (x )不可能是奇函数.(2)因为f (x )是偶函数,所以f (-x )=f (x ), 即e x a +a e x =e -x a +a e-x ,整理得⎝ ⎛⎭⎪⎫a -1a (e x -e -x )=0,又∵对任意x ∈R 都成立,∴有a -1a =0,得a =±1.当a=1时,f(x)=e-x+e x,以下讨论其单调性,任取x1,x2∈(0,+∞)且x1<x2,则f(x1)-f(x2)=e x1+e-x1-e x2-e-x2=(e x1-e x2)(e x1+x2-1)e x1+x2,∵x1,x2∈(0,+∞)且x1<x2,∴e x1+x2>1,e x1-e x2<0,∴e x1+x2-1>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数f(x)=e-xa+ae-x,当a=1时在(0,+∞)为增函数,同理,当a=-1时,f(x)在(0,+∞)为减函数.考向三指数函数图象的应用【例3】►(2009·山东)函数y=e x+e-xe x-e-x的图象大致为().[审题视点] 函数图象的判断要充分利用函数的性质,如奇偶性、单调性.解析y=e2x+1e2x-1=1+2e2x-1,当x>0时,e2x-1>0且随着x的增大而增大,故y=1+2e2x-1>1且随着x的增大而减小,即函数y在(0,+∞)上恒大于1且单调递减,又函数y是奇函数,故选A.答案 A利用指数函数的图象和性质可研究复合函数的图象和性质,比如:函数y=a x-1a x+1,y=e x-e-x2,y=lg(10x-1)等.【训练3】已知方程10x=10-x,lg x+x=10的实数解分别为α和β,则α+β的值是________.解析 作函数y =f (x )=10x ,y =g (x )=lg x ,y =h (x )=10-x 的图象如图所示,由于y =f (x )与y =g (x )互为反函数,∴它们的图象是关于直线y =x 对称的.又直线y =h (x )与y =x 垂直,∴y =f (x )与y =h (x )的交点A 和y =g (x )与y =h (x )的交点B 是关于直线y =x 对称的.而y =x 与y =h (x )的交点为(5,5).又方程10x =10-x 的解α为A 点横坐标,同理,β为B 点横坐标.∴α+β2=5,即α+β=10. 答案 10难点突破3——如何求解新情景下指数函数的问题高考中对指数函数的考查,往往突出新概念、新定义、新情景中的问题,题目除最基本问题外,注重考查一些小、巧、活的问题,突出考查思维能力和化归等数学思想.一、新情景下求指数型函数的最值问题的解法【示例】► (2011·福建五市模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数K ,定义函数f K (x )=⎩⎨⎧f (x ),f (x )≥K ,K ,f (x )<K ,取函数f (x )=2+x +e -x ,若对任意的x ∈(-∞,+∞),恒有f K (x )=f (x ),则K 的最大值为________.二、新情景下求与指数型函数有关的恒成立问题的解法 【示例】► 若f 1(x )=3|x -1|,f 2(x )=2·3|x -a |,x ∈R ,且f (x )=⎩⎨⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ),则f (x )=f 1(x )对所有实数x 成立,则实数a 的取值范围是________.。