新修改:高中数学必修3_第一章算法初步课件1[1][1].1.2-1程序框图与顺序结构2
人教版高一数学 A版 必修三 同步课件:第一章 算法初步《1.1.2.程序框图与算法的基本逻辑结构》
的正方形的周长;③求三个数 a,b,c 中的最大数;④求函数 f(x)=xx- +12, ,xx≥<00,
的函数值.其中不需要用条件结构来描述其算法的有( )
A.1 个
B.2 个
C.3 个
D.4 个
解析: 问题①②不需要判断,问题③④需要判断,故③④要用条件结构来
描述.
答案: B
3.已知点 P(x0,y0),直线 l:x+2y-3=0,求点 P 到直线 l 的距离的一个 算法程序框图如图所示,则在①处应填________.
数学 必修3
第一章 算法初步
学案·新知自解 教案·课堂探究 练案·学业达标
3.某居民区的物业管理部门每月向居民收取卫生费,计费方法是:3 人和 3 人以下的住户,每户收取 5 元;超过 3 人的住户,每超出一人加收 1.2 元.设计 一个算法,根据住户的人数,计算应收取的卫生费,并画出程序框图.
解析: 算法: 第一步,输入 x; 第二步,若 x≤3,则 y=5;否则:y=5+1.2(x-3); 第三步,输出 y. 程序框图如图所示.
解析: (1)由程序框图可知,S=1×1 2+2×1 3+3×1 4+…+99×1100=1-12 +12-13+13-14+…+919-1010=1-1100=19090.
(2)算法如下: 第一步,设 M 的值为 1; 第二步,设 i 的值为 2;
第三步,如果 i≤2 013,则执行第四步,否则执行第六步; 第四步,计算 M 乘 i 并将结果赋给 M; 第五步,计算 i 加 1 并将结果赋给 i,返回执行第三步; 第六步,输出 M 的值并结束算法. 程序框图如右图. 答案: (1)0.99
数学 必修3
第一章 算法初步
学案·新知自解 教案·课堂探究 练案·学业达标
人教B版高中数学必修三《第一章 算法初步 1.1 算法与程序框图 1.1.2 程序框图》_1
[教案]1.1.2程序框图预算法的基本逻辑结构——————顺序结构、条件结构教学目标:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构.掌握画程序框图的基本规则,能正确画出程序框图.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点、难点:重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.难点:教学综合运用框图知识正确地画出程序框图教学基本流程:复习回顾引出探求算法表达方法的必要性――程序框图―――算法的三种逻辑结构―――顺序结构―――条件结构――课堂小结教学情景设计一、新课引入从1.1.1的学习中,我们了解了算法的概念和特征,即知道了“什么是算法”这节课我们来学习算法的表达问题,即解决“怎样表达算法”问题。
我们已知道用自然语言可以表示算法,但太烦琐,我们有必要探求直观、准确表示方法。
(S通过预习解决下面四个问题)1.算法的含义是什么?2.算法的5个特征.3.算法有几种基本的结构?4.如下图所示的几个图形在流程图中,分别代表什么框?5、任意给定一个正实数,设计一个算法求以这个数为棱长的正方体的体积。
二、问题设计:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面5题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.④阅读教材P7的程序框图. →讨论:输入15后,框图的运行流程,讨论:输出的结果。
2. 教学算法的基本逻辑结构:①讨论:P7的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)②出示例1:已知一个三角形的三边分别为3,4,5,计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)T:点明顺序结构的定义与特征及其对应的程序框图。
人教A版数学必修3第一章1.1.2算法与程序框图课件
例 2 比较下列各组语句的区别,再判断它们是否正确. ①赋值语句 r=9 ②赋值语句 9=r ③赋值语句 R=r=9 答案 ①对,②错,③错.
小结 赋值号的右边不能是常量,一个赋值语句的表 达式不能出现两个及两个以上的赋值号.
例4.交换两个变量A和B的值,
并输出交换前后的值
程序: INPUT A,B x=A A=B B=x
跟踪训练 2 判断下列给出的输入语句、输出语句和赋值语 句是否正确?为什么?
(1)输入语句 INPUT a;b;c (2)输出语句 PRINT A=4 (3)输出语句 PRINT 20.3]解 (1)错,变量之间应用“,” 隔解开(;1)错,变量之间应用“,”隔开;
(2)错,PRINT 语句不能用赋值号“=”; (3)正确,PRINT 语句可以输出常量、表达式的值; (4)错,赋值语句中“=”左右不能互换; (5)错,不能给一个表达式赋值; (6)错,一个赋值语句只能给一个变量赋值; (7)正确,该句的功能是将当前 T 的值平方后再赋给变量 T.
(2)几种常见的函数及功能
函数名 LOG(x) SQR(x)
ABS(x) INT(x)
功能
lnx x的算术平方 根
|x| 取整函数,求 不大于x的最 大整数.
注意事项 e≈2.71828
x
INT(3.2)=3
上例.用描点法作函数y x3 3x2 24x 30 的图象时,需要 求出自变量和函数的一组对应值.编写程序,分别计算当 x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值.
PRINT A,B END
二、知识小结
INPUT语句
PRINT语句
赋值语句
格 INPUT “提示内 PRINT “提示内
苏教版高中数学必修三-第一章-算法初步1.2.1ppt课件
已知一个三角形的三边长分别为 2,3,4.利用海伦公式设 计一个算法,求出该三角形的面积,并画出流程图.(海伦公 式:已知三角形的三边长分别为 a,b,c,则三角形的面积 S a+b+c = pp-ap-bp-c,其中 p= 2 )
【解】
先将三角形的各边长赋值,求出三角形周长的
一半,然后利用公式求解. 算法如下: S1 a←2,b←3,c←4;
组成的,其中图框
表示各种操作的类型, 图框中的 文字 和 符号 表示操作的内 容, 流程线 表示操作的先后次序.
2.常见的图框、流程线及功能
图形符号
功能 表示算法的 开始或 结束 ,一般画 起止框 成 圆角矩形 输入、输出 输入、 表示 操作,一般画成 平行四边形 输出框 或 计算 ,一般画成 矩形 处理框 表示 赋值 根据条件决定执行两条路径中 判断框 某一条 菱形 ,一般画成 表示 执行步骤 流程线 箭头线 表示 的
在老师的引导下,充分发挥学生的主观能动性,从问题 入手,通过分析问题、交流方案、解决问题、运用问题的探 索过程,让学生全程参与到问题的探索中而突破难点. 通过学生对常见的图框及功能的理解和认识,结合典型 例题及变式训练,使学生初步掌握顺序结构的流程图的设计 而强化了重点.
●教学流程
演示结束
§1.2 流程图 1.2.1 顺序结构
教师用书独具演示
●三维目标 1.知识与技能:掌握顺序结构的特点,设计方法. 2.过程与方法:学会用算法分析问题;能够使用顺序结 构编写简单的程序解决具体问题.
3.情感态度与价值观:体会用结构化方法解决数学问题 的便捷性;明确结构化在程序设计中的重要作用;激励尝试 使用多种方法解决问题;培养良好的编程习惯和态度. ●重点难点 重点:各种图框的功能,会用算法图框表示顺序结构. 难点:对顺序结构的概念的理解;利用图框表示流程线 顺序结构.
新修改:高中数学必修3-第一章算法初步课件1.2-1程序框图
法的程序框图.
开始
输入a, b, c
a+ b>c, a+ c>b, b+ c>a是否 同时成立?
是
存在这样 的三角形
否
不存在这样 三角形
结束
Company Logo
例5 设计一个求解一元二次方程ax2+bx+c=0的 算法,并画出程序框图表示.
算法步骤:
第一步,输入3个系数a,b,c.
第二步,计算△=b2-4ac.
第三步,输出m.
开始 输入x
x>3? Y
y=1.2x+1.4
N y=5
输出y
结束
Company Logo
P.20 习题1.1B组第1题
算法步骤: 第一步,输入a1,b1,c1,
a2,b2,c2. 第二步,计算 x=(c2b1 -c1b2)/(a1b2 -a2b1) y=(c2b1 -c1b2)/(a1b2 -a2b1) 第三步,输出x,y
第一步、输入A、B 第二步、令X=A 第三步、令A=B 第四步、令B=X 第五步、输出A、B
Company Logo
1、已知摄氏温度C与华氏温度F之间的关系为 F=1.8C+32。设计一个由摄氏温度求华氏温度的算法, 并画出相应的程序框图。
算法步骤:
第一步:输入摄氏温度C;
第二步:计算1.8C+32,
是 输出x1=x2=p
△≥0? 是
p b 2a
q 2a
△=0? 否 x1= p + q x2= p - q
输出x1,x2
结束
否
输出“方程没有 实数根”
Company Logo
P.20 习题A组第3题
高一数学人教A版必修3第一章1.1.2算法与程序框图课件(19张PPT)
高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T)
第一步,给定实数 x .
第二步,判断 x 0
是否成立.若成立,
则 y x;若不成立, 则 y x .
开始
输入 x
x 0? 否
是
y x y x
高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T)
开始 输入
条件结构
a,b, c
ab c bc a
否
c a b是否同时成立?
是
存在这样的 三角形
不存在这样的 三角形
高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T)
结束
高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T) 高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T)
高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T)
课后作业:
必做:
课本第20页 习题1.1A组1题.2题
选做:
1. 任意给定一个大于1的整数n,设计一
个算法求出n的所有因数,并画出程 序框图表示.
2. 请用所学知识推导例1中的三角形面积
高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T)
输出 x
x2
b 2a
输出 x1, x2 输出:“方程没有实数根”
结束
高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T)
回顾反思:
1.本节课大家学到了哪些知识? 2.如何得到程序框图?
高一数学人教A版必修3第一章1.1.2算 法与程 序框图 课件( 19张PP T)
人教版高中数学必修三课件:第一章 算法初步(共25张PPT)
当型循环在每次执行循环体前对循环条件进行判 断,当条件满足时执行循环体,不满足则停止;(当条 件满足时反复执行循环体)
循环体
满足条件?
是
否
Until(直到型)循环
循环体
满足条件?
是 否
While(当型)循环 17
练习: 1.就逻辑结构,说 出其算法功能.
开始
2.此为某一函数的求值程序 图,则满足该流程图的函数 解析式为( ).
6
(2)构成程序框图的图形符号及其作用
终端框 (起止框) 输入、 输出框
表示一个算法的起始和结束
表示一个算法输 入和输出的信息
处理框
赋值、计算
(执行框)
判断某一条件是否成立,成
判断框
立时在出口处标明“是” 或“Y”,不成立时标明“否”
或“N”.
流程线
连接程序框
连结点
连接程序框图的两部分
7
6
开始
顺
(3)程序设计语言 1.2基本算法语句中讲解
4
算法初步
§1.1.2 程序框图
5
二、新课
1、程序框图 (1)程序框图的概念
程序框图又称流程图,是一种用规定的 程序框、流程线及文字说明来准确、直观地 表示算法的图形。
在程序框图中,一个或几个程序框的组 合表示算法中的一个步骤;带有方向箭头的 流程线将程序框连接起来,表示算法步骤的 执行顺序。
k 8 _________?_____
k=10 , s=1
是
s=s×k k=k-1
第7题图
否
输出s 结束
25
1
讲授新课
1.算法的定义
在数学中,算法通常是指按照一定规则 解决某一类问题的明确和有限的步骤.现在, 算法通常可以编成计算机程序,让计算机执 行并解决问题.
高中数学第1章算法初步1.2流程图1.2.1流程图备课素材苏教版必修3
1.2.1 流程图
备课资料
备用习题
1.写出求某学生的语文、数学、英语、物理、化学五门成绩的平均分的一个算法,并
根据这个算法写出流程图.
解:算法:
图14
S1 输入语文、数学、英语、物理、化学五门成绩a,b,c,d,e;
S2 x=;
S3 输出x.
流程图如图14所示:
2.设计计算上底为3,下底为7,高为6的梯形的面积的算法,并画出流程图.
解:算法:
S1 令a←3;
S2 令b←7;
S3 令h←6;
S4 计算S=;
S5 输出S.
流程图如图15所示:
图15
3.交换三个数x、y、z的值,使得x的值赋给y,y的值赋给z,x的值为原始的z的值.设计出解决这个问题的一个算法,并画出流程图.
解:算法:
S1 输入x,y,z;S2 t←z;
S3 z←y;
S4 y←x;
S5 x←t;
S6 输出x,y,z. 流程图如图16所示:
图16。
高中数学第1章算法初步1.2流程图课件苏教版必修3
[解] 依据当型循环和直到型循环结构的 特征判断改写.
此流程图的功能是计算 1×3×5×7×…×97 的值.是当型循环结构, 可用直到型循环结构表示,如图所示:
1.循环结构主要用于解决有规律的重复计算问题,如累加求和、 累乘求积等.如果算法问题里涉及的运算进行了多次重复的操作,且 先后参与运算的各数之间有相同的变化规律,就可以引入循环变量参 与运算,构成循环结构.
构与循环结构的定义 可知,A、B、C 不正 确.D 正确.特别提醒:
B.选择结构的流程图有一个入口和两个 本题易错选 B,判断框
出口 C.选择结构中的两条路径可以同时执行 D.循环结构中存在选择结构
是一个入口和两个出 口,但是选择结构中的 两条路径,只能执行其 一,不能同时执行,故
B 不正确.]
2.如图所示的流程图的运行结果是________.
S3 判断 Δ≥0 是否成立.若是,则计算 p←-2ba,q← 2aΔ;否则, 输出“方程没有实数根”,结束算法;
S4 判断 Δ=0 是否成立.若是,则输出 x1=x2=p;否则,计算 x1←p+q,x2←p-q,并输出 x1,x2.
流程图如图所示:
循环结构流程图 [探究问题] 1.循环结构有哪两种形式? [提示] ห้องสมุดไป่ตู้环结构有当型循环结构和直到型循环结构两种常见形 式.
其示意图如图 1 所示:
图1
图2
②直到型循环:先执行一次循环体,再判断所给条件是否成立,
若不成立,则继续执行循环体,如此反复,直到_条__件__成__立__时__为__止__,
这样的循环结构称为直到型循环.
其示意图如图 2 所示.
D [根据选择结
1.下列对流程图的描述,正确的是( ) A.流程图中的循环可以是无止境的循环
人教版高中数学 A版 必修三 第一章《1.1.2 程序框图与算法的基本逻辑结构》教学课件
解
算法分析:设鸡和兔各有 4m-n
x,y
只,则有x2+x+y=4ym=,n,
解得 x= 2 .
算法:第一步,输入m,n.
4m-n 第二步,计算鸡的只数 x= 2 .
第三步,计算兔的只数y=m-x.
第四步,输出x,y.
程序框图如图所示:
反思与感悟 解析答案
跟踪训练2 已知一个三角形三条边的边长分别为a,b,c,利用海伦-秦
试设计计算费用f的算法并画出程序框图.
反思与感悟 解析答案
跟踪训练2 设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并 画出相应的程序框图. 解 算法步骤如下: 第一步,输入3个系数a,b,c. 第二步,计算Δ=b2-4ac. 第三步,判断Δ≥0是否成立.若是,则输出 “方程有实数根”;否则,输出“方程无 实数根”.结束算法. 相应的程序框图如右图:
解析答案
类型三 涉及三类以上的分类讨论问题 例3 解关于x的方程ax+b=0的算法的程序框图如何表示? 解 先设计算法步骤: 第一步,输入实数a,b. 第二步,判断a是否为0,若是,执行第三步,否则,
计算x=-ba,并输出x,结束算法. 第三步,判断b是否为0.若是,则输出 “方程的解为任意实数”;否则,输出“方程无实数解”. 再用程序框图表达上述算法如右图:
解析答案
1 2345
2.下列说法:
①条件结构是最简单的算法结构;
②顺序结构就是按照程序语句的自然顺序,依次地执行顺序;
③条件结构中的判断框中的条件是与流程走向相关联的;
④条件结构可以根据设定的条件,控制语句流程,有选择地执行不同的
语句序列.其中正确的说法是( C )
A.①②③
B.①③④
C.②③④
高中数学人教A版必修3第一章 1.1 1.1.2 第一课时 程序框图、顺序结构课件
[答案] (1)D (2)A
程序框图的理解 框图符合标准化,框内语言简练化,框间流程方向 化.从上到下,从左到右,勿颠倒.起止框不可少,判断 框一口进,两口出.顺序结构处处有.
[活学活用] 在程序框图中,表示判断框的图形符号的是
()
解析:选 C 四个选项中的程序框依次为处理框,输入、输 出框,判断框和起止框.
()
解析:选 B 由处理框的定义知选 B. 3.在程序框图中,算法中间要处理数据或计算,可以分别
写在不同的
()
A.处理框内
B.判断框内
C.输入、输出框内
D.起、止框内
解析:选 A 处理框表示的意义为赋值、执行计算语句、
结果的传送,故选 A,其他选项皆不正确.
4.阅读如图所示的程序框图,输入 a1=3,a2=4,则输出的结
用顺序结构表示算法
[典例] 求底面边长为 4,侧棱长为 5 的正四棱锥的侧面
积及体积,为该问题设计算法,并画出程序框图. [解] 算法一:第一步,a=4,c=5.
第二步,计算
R=
2 2 a.
第三步,计算 h= c2-R2,S1=a2.
第四步,计算 V=13S1h.
第五步,计算 h′=
c2-a42.
(1)框图①中 x=4 的含义是什么? (2)框图②中 y1=x3+2x+3 的含义是什么? (3)框图④中 y2=x3+2x+3 的含义是什么? [解] (1)框图①的含义是初始化变量,令 x=4. (2)框图②中 y1=x3+2x+3 的含义:该框图是在执行① 的前提下,即当 x=4 时,计算 x3+2x+3 的值,并令 y1 等 于这个值. (3)框图④中 y2=x3+2x+3 的含义:该图框是在执行③ 的前提下,即当 x=-2 时,计算 x3+2x+3 的值,并令 y2 等于这个值.
高一数学人教A版必修3课件:1.1.2-1程序框图与顺序结构(共16张PPT)
二、算法的三种基本逻辑结构
输入n i=2
用n除以i,得余数r
顺序结构
i=i+1
循环结构
否 i>n-1或r=0?
是 r=0是?
否
条件
输出“n不是质数” 输出“n是质数” 结构
1.顺序结构 是最简单的算法结构,它是由若干个依
次执行的步骤组成的,语句与语句之间,框 与框之间是按从上到下的顺序进行的,这是 任何一个算法都离不开的基本结构.用程序框 图可以表示为: 左图中,语句A和语
1.1.2 程序框图与算法 的基本逻辑结构
第一课时
1.1.2-1 程序框图与顺序结构
一、程序框图 1. 概念 教材第6页 思考:用程序框图表示算法,相对于 自然语言描述的算法有什么优点? 程序框图相对于自然语言表述算法,看 起来更清晰,更明确,也更接近于计算机 的程序设计.
2.常见的程序框图
图形符号 名 称
3.画流程图的规则 (1)使用标准的框图符号; (2)框图一般按从上到下,从左到右的方向画
(3)一个完整的程序框图必须有起止框,用于 表示一个算法的开始和结束.
(3)除判断框外,大多数程序框图符号只有 一个进入点和一个退出点,判断框是唯一具 有超过一个退出点的框图符号.
(4)一类判断框是“是”与“否”两分支的 判断,而且有且仅有两个结果;另一类是多分 支判断,有几种不同的结果. (5)在图形符号内描述的语言要非常简练清楚
第五步:判断“i>(n-1)”或“r=0”是否成 立.若是,再判断“r=0”是否成立,否则, 返回第三步;
若“r=0”成立,则n不是质数,否则,n是 质数.
开始
输入n
i=2 用n除以i,得余数r
i=i+1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
否
是
存在这样 的三角形 不存在这样 的三角形
结束
Company Logo
例5 设计一个求解一元二次方程ax2+bx+c=0的 算法,并画出程序框图表示.
算法步骤:
第一步,输入3个系数a,b,c. 第二步,计算△=b2-4ac. 第三步,判断△≥0是否成立.若是,则计 算b ;否则,输出“方 p ,q 2a 2a 程没有 实数根”,结束算法. 第四步,判断△=0是否成立.若是,则输出 x1=x2=p,否则,计算x1=p+q,x2=p-q, 并输出x1,x2.
算法步骤: 第一步:输入摄氏温度C; 第二步:计算1.8C+32, 并 将这个值记为华 氏温度F;
第三步:输出华氏温度F。
Company Logo
2:任意给定一个正实数,设计一个算法求以 这个数为半径的圆的面积,并画出程序框图表示. 算法步骤为:
程序框图:
开始 输入r 计算
第一步,输入圆的半径 r .
否
是
否
输出“n 是质数”
输出“n不 是质数” 结束
开始
输入n
i=2 求n除以i的余数r 是
r=0? 否 i的值增加1, 仍用i表示 i>n-1? 是
否
输出“n不 是质数”
输出“n 是质数” 结束
上述表示算法的图形称为算法的程序框图又 称流程图,其中的多边形叫做程序框,带方向 箭头的线叫做流程线,你能指出程序框图的含 义吗? 用程序框、流程线及文字说明来 表示算法的图形. 思考3:在上述程序框图中,有4种程序框,2种 流程线,它们分别有何特定的名称和功能?
S= p(p - a)(p - b)(p - c)
思考:上述算法的程序 框图如何表示?
开始
输入a,b,c
a + b+ c p= 2
S = p( p - a )( p - b)( p - c)
输出S
结束
第四步,输出S.
例2、已知右图是 “求一个正奇数的平 方加5的值”的程序框 图,若输出的数是30, 求输入的数n的值.
第二步,计算s
r
2
第三步,输出s.
s r
2
输出s 结束
Company Logo
(2)条件结构 条件结构是指在算法中通过对某条件的判断, 根据条件是否成立而选择不同流向的算法结构.
否
满足条件?
满足条件?
否
是
是 步骤A 步骤B
步骤A
基本形式1
基本形式2
Company Logo
例4 任意给定3个正实数,设计一个算法,判断分别 以这三个数为三边边长的三角形是否存在.画出这个算 法的程序框图. 开始 输入a, b, c
○
连接点
连接程序框的两部分
开始
思考4:在逻辑结构上, “判断整数n(n>2)是 否为质数”的程序框图 由几部分组成? 顺序结构
输入n i=2 求n除以i的余数r i的值增加1, 仍用i表示 i>n-1或r=0?
否
循环结构 条件结构
是 r=0?
是
否
输出“n 是质数”
输出“n不 是质数” 结束
算法千差万别,但都是由这 三种基本逻辑结构构成的.
输入n
i=2
求n除以i的余数r
i的值增加1,仍用i表示
否 i>n-1或r=0? 是顺Βιβλιοθήκη 结构是 r=0? 否 N是质数
循环结构
N不是质数
条件结构
你能说出这三种基本逻辑结构的特点吗? 条件结构与循环结构有什么区别和联系?
(1)顺序结构 顺序结构是最简单的算法结构,语句与语句 之间,框与框之间是按从上到下的顺序进行的, 它是由若干个依次执行的处理步骤组成的,它是 任何一个算法都离不开的一种基本算法结构。 顺序结构在程序框图中的体现就是用流程线 将程序框自上而下地连接起来,按顺序执行算法 步骤。
数学必修三第一章
1.1.2 程序框图与算法 的基本逻辑结构
第一课时
问题提出
1.算法的含义是什么? 在数学中,按照一定规则解决某一类 问题的明确和有限的步骤称为算法. 2.算法是由一系列明确和有限的计算步骤组成 的,我们可以用自然语言表述一个算法,但往 往过程复杂,缺乏简洁性,因此,我们有必要 探究使算法表达得更加直观、准确的方法,这 个想法可以通过程序框图来实现.
Company Logo
图形符号
名 称
终端框 (起止框)
输入、 输出框 处理框 (执行框) 判断框 流程线
功 能
表示一个算法的起始和结束 表示一个算法输入 和输出的信息 赋值、计算
判断某一条件是否成立, 成立时在出口处标明“是”或“Y”; 不成立时标明“否”或“N”。
连接程序框, 表示算法步骤的执行顺序
Company Logo
知识探究一:算法的程序框图
思考1:“判断整数n(n>2)是 否为质数”的算法步骤如何? 第一步,给定一个大于2的整数n
开始 输入n i=2 求n除以i的余数r i的值增加1, 仍用i表示 i>n-1或r=0? 是 r=0?
第二步,令i=2
第三步,用i除n,得到余数r 第四步,判断“r=0”是否成立. 若是,则n不是质数,结束算法; 否则,将i的值增加1,仍用i表示 第五步,判断“i>(n-1)”是否 成立,若是,则n是质数,结束算 法;否则,返回第三步 思考2:我们将上述算法 用右边的图形表示:
Company Logo
开始 输入正整数n x=2n-1
y=x2+5
输出y 结束
Company Logo
例3、已知两个变量A和B的值,试设计一个交 换这两个变量的值的算法,并画出程序框图
第一步、输入A、B
第二步、令X=A 第三步、令A=B
第四步、令B=X
第五步、输出A、B
Company Logo
1、已知摄氏温度C与华氏温度F之间的关系为 F=1.8C+32。设计一个由摄氏温度求华氏温度的算法, 并画出相应的程序框图。
Company Logo
程序框图:
开始 输入a,b,c △= b2-4ac △≥0? 是
p b 2a
否
q
2a
是
△=0? 否 x1= p + q x2= p - q 输出“方程没有 实数根”
Company Logo
输出x1=x2=p
输出x1,x2 结束
三、课时小结:
1、掌握程序框的画法和功能。 2、了解什么是程序框图,知道学习 程序框图的意义。 3、掌握顺序结构、条件结构的应用, 并能解决与这两种结构有关的程序框 图的画法。
步骤n
步骤n+1
例1、若一个三角形的三条边 长分别为a,b,c,令 a + b+ c ,则三角形面积 p= 2 S = p(p - a)(p - b)(p - c) 你能利用这个公式设计一个计
算三角形面积的算法步骤吗? 第一步,输入三角形三条边 的边长a,b,c. a + b+ c 第二步,计算 p = 2 第三步,计算