疲劳裂纹扩展实验准备
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
疲劳裂纹扩展和热解碳复合材料的断裂
热解碳在人工心脏瓣膜上的成功应用已经有了很长一段时间的历史了。稳定疲劳裂纹扩展的证实使人们对于了解什么情况下会发生稳定疲劳裂纹扩展现象产生了浓厚的兴趣。在人工心瓣的许多应用中,制作材料都是采用的以石墨为核心,以热解碳为两侧表面的三层复合形式。这篇文章描述的实验就是针对研究石墨、整体热解碳和这种三层结构的石墨与热解炭的复合体进行的。
实验的主要目的是遵循ASTM标准E647的实验步骤来确定疲劳裂纹扩展率。此外,在疲劳测试完成之后,也可以通过相同的试样来确定平面应变断裂韧性K IC。其测试的步骤遵循ASTM标准E399.
试验样品
实验样品是一种对ASTM标准E399的圆盘紧凑拉伸样品DC(T)进行了改进的试样。这种样品与标准样品的稍微不同在于它没有被削平的部分也就是说没有尺寸c,形状上是一个完整的圆形。其公称直径为25.4mm,并且带着一个机械加工出来的4.8mm的裂纹,这个机械裂纹宽度为0.2mm,其尖端圆角半径为0.1mm。(样品的边缘是否可以有涂层,对结果会有什么影响?)
其中有一组复合试样,(这里所说的一组是复合样品的哪一组,还是所有的复合样品都是这种形式?)其试样中间有一个直径为3.2mm的孔,所以其机
械裂纹的长度名义上就变为8.0mm。这个机械加工缺口越过中间孔向试样背面延伸了大约0.5mm。(这里有孔样品与没有孔的样品在实验过程和结果上有区别没有?)
因为使用的试验样品和ASTM标准的E399DC(T)样品稍有不同,所以这里把K1值作为裂纹尺寸的函数,并采用有限元分析去确定K1值。(应力强度因子K1值与△K如何确定,可以直接读出还是需要自己计算?)结果显示,对于E399样品的描述同样适用于现在这种试验样品,并且误差在2%范围之内。这样的话,所有的计算过程都可以依据E399DC(T)样品的步骤来进行。
许多的实验圆片都是用中间是石墨、外围涂层是热解碳的三层复合材料制成。因为两种材料的弹性模量不同,所以在每一层上,给定的裂纹长度所对应的应力强度因子也不尽相同。在这篇文章中,假设所有的圆盘都具有一致的弹性模量,根据E399计算出了所有的应力强度因子的数据。
实验材料
石墨的样品是由半导体石墨股份有限公司利用石墨块切削加工制成的。根据钨的含量分为两个等级,AXF-5Q(含钨0%)和AXF-5Q10W(含钨10%)。(这里石墨样品的厚度为多少?)
单片热解碳样品是这样制成的:先在石墨圆盘两侧表面上涂覆0.69mm厚
热解碳涂层,被涂覆之后,沿石墨中间平面切开,移除石墨基体只留下0.69mm 厚的热解碳圆片。制备这样的五片样品进行试验。
另外,准备三组三层复合试样进行试验,三组都是热解碳包覆在AXF-5Q (含钨0%)或者AXF-5Q10W(含钨10%)石墨上制成的,(这里所采用的石墨到底是含钨的还是不含钨的?两者的区别是什么?)不过厚度不同。对于第一组,样品整体厚度为 1.50mm,(样品厚度太小,引伸计怎么往上装夹?)其中石墨厚度为1.00mm,热解碳涂层厚度为0.25mm,取四个试样进行试验。第二组试样中,试样总厚度为0.37mm,其中石墨厚度为0.27mm,热解碳涂层厚度为0.3mm,也取其中四个试样进行实验。对于第三组样品,样品整体厚度为1.73mm,其中石墨厚度为0.35mm,热解碳涂层厚度为0.69mm,取其中五个试样进行试验。这三组样品中,两侧热解碳总厚度与石墨厚度之比分别为0.5,2.2和3.9。
疲劳裂纹扩展速率并非总是与试样的几何形状无关,试样厚度的变化对疲劳裂纹扩展速率的影响有可能增大、减小或保持不变,因此,对试样的厚度效应应当引起注意。(试样的厚度效应对结果的影响是什么?如果试样很薄的话,影响会怎样?)
实验过程
实验是在MTS810型闭环液压试验机上进行的。裂纹长度是通过样品表面的显微镜进行测量的,(显微镜的位置,精度为多少?)裂纹长度上0.25mm的变化都能够被轻易的测量到。此外,在样品的背部边缘或者穿过机械加工缺口的前部边缘贴好应变片,(应变片的位置以及引伸计)这样就可以随时监控应变大小以及由于应变产生的裂纹长度变化。并且,利用有限元分析和验证试验就可以
得出各个位置的应变与裂纹长度变化的关系。一般来说,也可以直接目测裂纹长度和引伸计的数据。裂纹长度每隔变化0.2mm或者0.25mm就要被记录一次,同时还要记录在这个裂纹长度时相对应的循环周期的数目。(装载式样的U型夹具是否需要自己根据样品厚度设计尺寸,另外夹具和样品以及销子之间的配合是什么样的?)
预制疲劳裂纹的加力要求如下:(预制裂纹的长度要求为多少?)
a) 顶制疲劳裂纹时应使最大力Pmax的误差控制在生5%以内;
b) 预制疲劳裂纹最后一级的最大力值不得超过开始记录试验数据时的最大力值;
c) 为减少预制疲劳裂纹所用时间,可以先用比试验最大力值较高的力产生疲劳裂纹,但必须把较高的力分级降到试验最大力值,每级下降率不得大于20%(疲劳预制裂纹时所加的载荷是什么形式的,分级递减是怎么回事?)
预制裂纹之后,预制裂纹载荷形式?是否横幅载荷就会被逐步降低至满足ASTM标准E647的水平,而且裂纹的长度也由6mm变为了9mm。不断施加循环载荷直到驱动裂纹扩展率达到10-11m/cycle时,(裂纹扩展率是自己计算得出还是有仪器可以直接读取?)开始收集数据。保持这个载荷,一直到裂纹扩展率达到10-7m/cycle的时候,停止数据收集。然后将载荷降低,直到可以提供10-11m/cycle的裂纹扩展率时停止降低,开始收集数据。然后保持这个载荷大小,直到裂纹扩展率再次达到10-7m/cycle的时候,停止数据收集。通过这种方式,就能得到符合大多数样品的两条曲线。(曲线是否可以自动生成?)不过这里没有试图再去研究裂纹扩展率低于10-11m/cycl时的情况。
所有的实验操作都是在23℃的空气中或者37℃的生理盐溶液中进行的。37℃的实验是在一个温度保持在37±1℃的炉子中进行,这样就可以保持夹具,样品和溶液都能保持在37℃。所使用的疲劳循环是频率为50HZ的正弦曲线。所有实验的载荷比为R=0.1(R=P min/P max)。
当疲劳试验完成之后,就可以通过改变引伸计控制和行程控制来确定断裂韧性K IC的值。载荷对比裂纹开口量的关系都是根据ASTM标准E399的步骤利用引伸计提供的裂纹开口量得到的。(能不能做完疲劳试验直接不换样品进行断裂韧性实验?)
首先是预制疲劳裂纹,预制疲劳裂纹时可以采用载荷控制,也可以用位移控制,但K。标定对所用试样及夹具的准确度应不低于5%。如果循环载荷保持恒定,则最大Ki值和Ki的幅度将随裂纹长度的增加而增加。
预裂纹开始时的最大疲劳载荷应使应力强度因子的最大值不超过材料Kic