2018年上海市春季高考数学试卷
(完整版)2018年春季高考数学真题
![(完整版)2018年春季高考数学真题](https://img.taocdn.com/s3/m/d6100b840912a2161579292b.png)
2018春季高考真题一、选择题1、已知集合,,则等于 M ={a,b}N ={b,c}M ∩N A 、 B 、 C 、D 、∅{b} {a,c}{a,b,c} 2、函数的定义域是f (x )=x +1+xx ‒1A 、B 、(-1,+∞)(-1,1)∪(1,+∞)C 、 D 、[ -1,+∞) [ -1,1)∪(3、奇函数的布局如图所示,则 y =f(x)A 、 B 、 f(2)>0>f(4) f(2)<0<f(4)C 、 D 、f(2)> f(4)>0 f(2)<f(4)<04、已知不等式的解集是1+lg|x|<0AB 、、(‒110,0)∪ (0,110)(‒110,110)C 、D 、(‒10,0)∪ (0,10)(‒10,10)5、在数列中, =-1 ,=0,=+,则等于{a n }a 1 a 2a n +2a n +1a n a 5A 、B 、C 、D 、0 - 1 -2-36、在如图所示的平面直角坐标系中,向量的坐标是 AB A 、 B 、 C 、D 、(2,2)(‒2,‒2)(1,1)(-1,-1)7、圆(x +1)2+(y ‒1)2=1的圆心在A 、第一象限B 、第二象限C 、第三象限D 、第四象限8、已知,则“”是“”的a 、b ∈R a >b 2a >2bA 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9、关于直线,下列说法正确的是l:x ‒3y +2=0A 、直线l 的倾斜角为 B 、向量是直线l 的一个方向向量 60。
v =(3,1)C 、直线l 经过点D 、向量是直线l 的一个法向量(1,3)n =(1,3)10、景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同的走法的种数是A 、6B 、10C 、12D 、2011、在平面直角坐标系中,关于的不等式表示的区域(阴影部分)可能是x,y Ax +By +AB >0(AB ≠0)12、已知两个非零向量a 与b 的夹角为锐角,则 A 、 B 、 C 、D 、a ∙b >0a ∙b <0a ∙b ≥0a ∙b ≤013、若坐标原点到直线的距离等于,则角的取值集合是 (0,0)x -y +sin 2θ=022θA 、{}B 、{} θ|θ=kπ±π4,k ∈Zθ|θ=kπ±π2,k ∈ZC 、{}D 、{}θ|θ=2kπ±π4,k ∈Zθ|θ=2kπ±π2,k ∈Zl e15、在 (x ‒2y )2的展开式中,所有项的系数之和等于A 、32B 、-32C 、1D 、-116、设命题,命题,则下列命题中为真命题的是p:5≥3q:{1}⊑{0,1,2}A 、p B 、 C 、 D 、 ∧q ¬p ∧q p ∧¬q ¬p ∨¬q 17、已知抛物线的焦点为,准线为,该抛物线上的点到轴的距离为,且=7,则焦点到准线距x 2=ay(a ≠0)F l M x 5|MF|F l 离是A 、2B 、C 、D 、34518、某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A 、B 、C 、D 、51415289146719、已知矩形ABCD ,AB=2BC ,把这个矩形分别以AB ,BC 所在直线为轴旋转一周,所围成集合体的侧面积分别记为S 1、S 2 ,则S 1、S 2的比值等于A 、B 、C 、D 、1212420、若由函数图像变换得到的图像,则可以通过以下两个步骤完成:第一步,把y =sin (2x +π2)y =sin(x2+π3)上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把图像沿x 轴y =sin (2x +π2)A 、向右平移个单位B 、向右平移个单位C 、向左平移个单位D 、向左平移个单位π35π12π35π12二、填空题21、已知函数,则的值等于 。
2018年上海卷春季高考真题数学试卷-学生用卷
![2018年上海卷春季高考真题数学试卷-学生用卷](https://img.taocdn.com/s3/m/685e450259fb770bf78a6529647d27284b733766.png)
2018年上海卷春季高考真题数学试卷-学生用卷一、填空题(1~6每小题4分,7~12每小题5分,共54分)1、【来源】 2018~2019学年10月上海闵行区上海市七宝中学高一上学期月考第1题2018年1月高考真题上海卷第1题4分不等式|x|>1的解集为.2、【来源】 2018年1月高考真题上海卷第2题4分计算:limn→∞3n−1n+2=.3、【来源】 2018年1月高考真题上海卷第3题4分设集合A={x|0<x<2},B={x|−1<x<1},则A∩B=.4、【来源】 2018年1月高考真题上海卷第4题4分若复数z=1+i(i是虚数单位),则z+2z=.5、【来源】 2018年1月高考真题上海卷第5题4分已知{a n}是等差数列,若a2+a8=10,则a3+a5+a7=.6、【来源】 2018年1月高考真题上海卷第6题4分已知平面上动点P到两个定点(1,0)和(−1,0)的距离之和等于4,则动点P的轨迹方程为.7、【来源】 2018年1月高考真题上海卷第7题5分如图,在长方体ABCD−A1B1C1D1中,AB=3,BC=4,AA1=5,O是A1C1的中点,则三棱锥A−A1OB1的体积为.8、【来源】 2018年1月高考真题上海卷第8题5分某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩.若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为.9、【来源】 2018年1月高考真题上海卷第9题5分设a∈R,若(x2+2x )9与(x+ax2)9的二项展开式中的常数项相等,则a=.10、【来源】 2020~2021学年上海徐汇区高一下学期期末第9题2018年1月高考真题上海卷第10题5分设m∈R,若z是关于x的方程x2+mx+m2−1=0的一个虚根,则|z|的取值范围是.11、【来源】 2018年1月高考真题上海卷第11题5分设a>0,函数f(x)=x+2(1−x)sin(ax),x∈(0,1),若函数y=2x−1与y=f(x)的图象有且仅有两个不同的公共点,则a的取值范围是.12、【来源】 2018年1月高考真题上海卷第12题5分2019~2020学年12月上海闵行区上海市七宝中学高二上学期月考第12题5分如图,正方形ABCD的边长为20米,圆O的半径为1米,圆心是正方形的中心,点P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲区”中.已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速度从C出发向B移动,则在点P从A移动到D的过程中,点Q在点P的盲区中的时长约为秒.(精确到0.1)二、选择题(每小题5分,共20分)13、【来源】 2018年1月高考真题上海卷第13题5分下列函数中,为偶函数的是().A. y=x−2B. y=x13C. y=x−12D. y=x314、【来源】 2018年1月高考真题上海卷第14题5分2019~2020学年广东深圳罗湖区深圳市美术学校高一下学期开学考试第7题5分如图,在直三棱柱ABC−A1B1C1的棱所在的直线中,与直线BC1异面的直线条数为().A. 1B. 2C. 3D. 415、【来源】 2018~2019学年10月上海宝山区上海市吴淞中学高三上学期月考第15题5分 2018年1月高考真题上海卷第15题5分记S n 为数列{a n }的前n 项和.“{a n }是递增数列”是“{S n }为递增数列”的( ).A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16、【来源】 2018年1月高考真题上海卷第16题5分已知A 、B 为平面上的两个定点,且|AB →|=2.该平面上的动线段PQ 的端点P 、Q ,满足|AP →|⩽5,AP →⋅AB →=6,AQ →=−2AP →,则动线段PQ 所形成图形的面积为( ).A. 36B. 60C. 81D. 108三、解答题(第17题14分,第18题14分,第19题14分,第20题16分,第21题18分)17、【来源】 2018年1月高考真题上海卷第17题14分2017~2018学年上海嘉定区高一下学期期末第18题8分已知y =cosx .(1) 若f(α)=13,且α∈[0,π],求f(α−π3)的值. (2) 求函数y =f(2x)−2f(x)的最小值.18、【来源】 2018年1月高考真题上海卷第18题14分已知a ∈R ,双曲线Γ:x 2a 2−y 2=1.(1) 若点(2,1)在Γ上,求Γ的焦点坐标.(2) 若a=1,直线y=kx+1与Γ相交于A、B两点,且线段AB中点的横坐标为1,求实数k的值.19、【来源】 2018年1月高考真题上海卷第19题14分利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC⊥AB于C,AB=3米,OC=4.5米.(1) 求抛物线的焦点到准线的距离.(2) 在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).20、【来源】 2020~2021学年上海杨浦区上海复旦大学附属中学高一上学期期末第20题16分2018年1月高考真题上海卷第20题16分设a>0,函数f(x)=11+a⋅2x.(1) 若a=1,求f(x)的反函数f−1(x).(2) 求函数y=f(x)⋅f(−x)的最大值(用a表示).(3) 设g(x)=f(x)−f(x−1).若对任意x∈(−∞,0],g(x)⩾g(0)恒成立,求a的取值范围.21、【来源】 2018年1月高考真题上海卷第21题18分若{c n}是递增数列,数列{a n}满足:对任意n∈N∗,存在m∈N∗,使得a m−c na m−c n+1⩽0,则称{an}是{c n}的“分隔数列”.(1) 设c n=2n,a n=n+1,证明:数列{a n}是{c n}的“分隔数列”.(2) 设c n=n−4,S n是{c n}的前n项和,d n=c3n−2,判断数列{S n}是否是数列{d n}的分隔数列,并说明理由.(3) 设c n=aq n−1,T n是{c n}的前n项和,若数列{T n}是{c n}的分隔数列,求实数a、q的取值范围.1 、【答案】(−∞,−1)∪(1,+∞);2 、【答案】3;3 、【答案】(0,1);4 、【答案】2;5 、【答案】15;6 、【答案】x24+y23=1;7 、【答案】5;8 、【答案】180;9 、【答案】4;10 、【答案】(√33,+∞) ;11 、【答案】(11π6,19π6];12 、【答案】4.4;13 、【答案】 A;14 、【答案】 C;15 、【答案】 D;16 、【答案】 B;17 、【答案】 (1) 1+2√66.;(2) −32.;18 、【答案】 (1) (±√3,0).;(2) √5−1.2;19 、【答案】 (1) 1米.4;(2) 9.59°.;(0<x<1).20 、【答案】 (1) f−1(x)=log21−xx;(2) 1.1+2a+a2;(3) (0,√2].;21 、【答案】 (1) 证明见解析.;(2) 不是,理由见解析.;(3) a>0且q⩾2.;。
2018届上海春季高考数学试卷(附解析)
![2018届上海春季高考数学试卷(附解析)](https://img.taocdn.com/s3/m/7f3a308c6bec0975f465e297.png)
2018年上海市春季高考数学试卷2018.01一.填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.不等式||1x >的解集为2.计算:31lim 2n n n →∞-=+3.设集合{|02}A x x =<<,{|11}B x x =-<<,则A B = 4.若复数1i z =+(i 是虚数单位),则2z z+=5.已知{}n a 是等差数列,若2810a a +=,则357a a a ++=6.已知平面上动点P 到两个定点(1,0)和(1,0)-的距离之和等于4,则动点P 的轨迹方程为7.如图,在长方体1111ABCD A B C D -中,3AB =,4BC =,15AA =,O 是11A C 的中点,则三棱锥11A A OB -的体积为(第7题)(第12题)8.某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为(结果用数值表示)9.设a ∈R ,若292()x x +与92()a x x+的二项展开式中的常数项相等,则a =10.设m ∈R ,若z 是关于x 的方程2210x mx m ++-=的一个虚根,则||z 的取值范围是11.设0a >,函数()2(1)sin()f x x x ax =+-,(0,1)x ∈,若函数21y x =-与()y f x =的图像有且仅有两个不同的公共点,则a 的取值范围是12.如图,正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中,已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长约为秒(精确到0.1)二.选择题(本大题共4题,每题5分,共20分)13.下列函数中,为偶函数的是()A.2y x -= B.13y x =C.12y x -= D.3y x =14.如图,在直三棱柱111ABC A B C -的棱所在的直线中,与直线1BC 异面的直线的条数为()A.1 B.2 C.3 D.415.设n S 为数列{}n a 的前n 项和,“{}n a 是递增数列”是“{}n S 是递增数列”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.已知A 、B 为平面上的两个定点,且||2AB = ,该平面上的动线段PQ 的端点P 、Q ,满足||5AP ≤ ,6AP AB ⋅= ,2AQ AP =- ,则动线段PQ 所形成图形的面积为()A.36B.60C.72D.108三.解答题(本大题共5题,共14+14+14+16+18=76分)17.已知cos y x =.(1)若1()3f α=,且[0,]απ∈,求()3f πα-的值;(2)求函数(2)2()y f x f x =-的最小值.18.已知a R ∈,双曲线222:1x y aΓ-=.(1)若点(2,1)在上,求Γ的焦点坐标;(2)若1a =,直线1y kx =+与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值.19.利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).(图1)(图2)(图3)20.设0a >,函数1()12xf x a =+⋅.(1)若1a =,求()f x 的反函数1()f x -;(2)求函数()()y f x f x =⋅-的最大值(用a 表示);(3)设()()(1)g x f x f x =--,若对任意(,0]x ∈-∞,()(0)g x g ≥恒成立,求a 取值范围.21.若{}n c 是递增数列,数列{}n a 满足:对任意*n N ∈,存在*m N ∈,使得10m n m n a c +-≤-,则称{}n a 是{}n c 的“分隔数列”.(1)设2n c n =,1n a n =+,证明:数列{}n a 是{}n c 的分隔数列;(2)设4n c n =-,n S 是{}n c 的前n 项和,32n n d c -=,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;(3)设1n n c aq -=,n T 是{}n c 的前n 项和,若数列{}n T 是{}n c 的分隔数列,求实数a 、q 的取值范围.参考答案一.填空题1.(,1)(1,)-∞-+∞2.33.(0,1)4.25.156.22143x y +=7.58.1809.410.3,)3+∞11.1119(,]66ππ12.4.4二.选择题13.A14.C 15.D 16.B 三.解答题17.(1)1266+;(2)32-.18.(1),(;(2)12.19.(1)14;(2)9.59°.20.(1)121()log x f x x --=(01x <<);(2)max 2112y a a =++(0x =时取最值);(3).21.(1)证明略;(2)不是,反例:4n =时,m 无解;(3)02a q >⎧⎨≥⎩.。
2018年上海春季招生统一文化考试数学(含答案)
![2018年上海春季招生统一文化考试数学(含答案)](https://img.taocdn.com/s3/m/c8ed64cf195f312b3069a50e.png)
C9k x9k
a2k x2k
C9k ak x93k ,k
3,
常数项为C93a3 a 4
10.设 m R ,若 z 是关于 x 的方程 x2 mx m2 1 0 的一个虚根,则 | z | 的取值范围
是__________.
答案:( 3 ,+) 3
解析:
法一:设z a bi,(b 0)代入方程得:(a bi)2 +m(a bi) m2 1 0,即 a2 b2 ma m2 1 0, 2ab mb 0
(B)60
(C)81
(D)108
本题考查向量的投影,因为 AP 5,所以P点在以A为圆心半径为5的圆面上, 又AP AB 6= AB AP cos ,所以 AP cos =3,根据题意作图如下:
三、解答题(本大题共有 5 题,满分 76 分,第 17~19 题每题 14 分,20 题 16 分, 21 题 18 分)
3/7
仅供学习交流、勿做商用!
答案:A
14.如图,在直三棱柱 ABC A1B1C1 的棱虽在的直线中,与直线 BC1
异面的直线条数为( )
(A)1
(B)2
(C)3
(D)4
答案:C
15.记 Sn 为数列{an}的前 n 项和.“{an}是递增数列”是“ Sn 为递增数列”的( )
(A)充分非必要条件
答案: C31C53P33 180
9.设 a R
,若
x2
2 x
9
与
x
a x2
9
的二项展开式中的常数项相等,则 a
2018--2019年上海市春季高考数学试卷(含答案)
![2018--2019年上海市春季高考数学试卷(含答案)](https://img.taocdn.com/s3/m/ed78bd03910ef12d2bf9e7fd.png)
2019年上海市普通高等学校春季招生考试数学试卷一.填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分1 •函数y =log2(x 2)的定义域是 __________________2•方程2x=8的解是____________________3 •抛物线y2 =8x的准线方程是_________________4•函数y=2sin x的最小正周期是__________________5•已知向量a =(1,k) , b =(9, k-6)。
若a//b,则实数k 二__________________6.函数y =4sinx 3cos x的最大值是____________________7•复数2 3i ( i是虚数单位)的模是 _____________________&在ABC中,角A、B、C所对边长分别为a、b c,若a =5, b =8, B =60 •,则b= _9•在如图所示的正方体ABCD-ABQ1D1中,异面直线A,B与B|C所成角的大小为 _________10•从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________________ (结果用数值表示)。
11 •若等差数列的前6项和为23,前9项和为57,则数列的前n项和S n = _____________ 。
12・36的所有正约数之和可按如下方法得到:因为36=2 232,所以36的所有正约数之和为(1 3 32) (2 2 3 2 32) (2222 3 2232) =(1 2 22)(1 3 32) =91 参照上述方法,可求得2000的所有正约数之和为 ______________________________二•选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的。
考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分13•展开式为ad-bc的行列式是()a ba ca db a(A)d c(B)b d (C)b c(D)d c14•设f -1(x)为函数f(X )—、.X 的反函数,下列结论正确的是( )1 1(A) f (2) =2 (B) f (2)=4(C) f ,⑷=2(D)f 」⑷=415.直线2x -3y -1 =0的一个方向向量是()116.函数f(x)的大致图像是()(A )1 1 (B)a bab :: b 2(C)_ab ::-a 2(D)1 118. 若复数召、z ,满足Z | =Z2,则 召、z 2在复数平面上对应的点 Z1、Z2()(A) 关于x 轴对称(B) 关于y 轴对称(C 关于原点对称 (D) 关于直线y - x 对称19. (1 X)10的二项展开式中的一项是 ()(A ) 45x(B ) 90x 2 (C ) 120x 3 (D ) 252x 420•既是偶函数又在区间(0,)上单调递减的函数是( )(A ) y 二 sin x ( B ) y 二 cos x (C ) y = sin 2 x (D ) y = cos 2 x21. 若两个球的表面积之比为 1: 4,则这两个球的体积之比为( ) (A ) 1: 2(B ) 1: 4(C ) 1:8( D ) 1:1622. 设全集U 二R ,下列集合运算结果为 R 的是( ) (A )Z e u N (B ) N e u N(C )痧(u -)(D ) q{0}(A)(2, -3)(B) (2,3) (C) (-3, 2)(D)(3, 2)17.如果a ::: b :::0,那么下列不等式成立的是( )23.已知a、b c己R , “ b2—4ac < 0 ”是“函数f (x) = ax2 +bx + c的图像恒在x轴上方” 的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件24 .已知A、B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N .若■ ■—2MN = AN NB,其中■为常数,则动点M的轨迹不可能是()(A)圆(B)椭圆(C)抛物线(D)双曲线三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤25. (本题满分7分)如图,在正三棱锥ABC-AB J G中,AA =6,异面直线BG与AA所成角的大小为,626. (本题满分7分)如图,某校有一块形如直角三角形ABC的空地,其中.B为直角,AB长40米,BC长50 米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积。
上海市春考数学试卷(含答案)教学提纲
![上海市春考数学试卷(含答案)教学提纲](https://img.taocdn.com/s3/m/8ff0532f4431b90d6d85c72c.png)
2018年上海市普通高校春季招生统一文化考试数学试卷一、填空题(54分)1、不等式1>x 的解集为______________;2、计算:_________213lim=+-∞→n n n ;3、设集合{}20<<=x x A ,{}11<<-=x x B ,则________=B A ;4、若复数i z +=1(i 是虚数单位),则______2=+zz ; 5、已知{}n a 是等差数列,若1082=+a a ,则______753=++a a a ;6、已知平面上动点P 到两个定点()0,1和()0,1-的距离之和等于4,则动点P 的轨迹方程为_________;7、如图,在长方体1111D C B A ABCD -中,3=AB ,4=BC ,51=AA ,O 是11C A 的中点,则三棱锥11OB A A -的体积为_________;第7题图 第12题图8、某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为_____________(结果用数值表示)。
9、设R a ∈,若922⎪⎭⎫ ⎝⎛+x x 与92⎪⎭⎫ ⎝⎛+x a x 的二项展开式中的常数项相等,则_______=a ;10、设R m ∈,若z 是关于x 的方程0122=-++m mx x 的一个虚根,则-z 的取值范围是________;11、设0>a ,函数()()1,0),sin()1(2∈-+=x ax x x x f ,若函数12-=x y 与()x f y =的图像有且仅有两个不同的公共点,则a 的取值范围是__________;12、如图,在正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中,已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长均为_____秒(精确到0.1). 二.选择题(20分)13. 下列函数中,为偶函数的是( )A 2-=x y B 31x y = C 21-=xy D 3x y =14. 如图,在直三棱柱111C B A ABC -的棱所在的直线中,与直线1BC 异面的直线的条数为( ) A 1 B 2 C 3 D 415. 若数列}{n a 的前n 项和,“}{n a 是递增数列”是“}{n S 是递增数列”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 即不充分也不必要条件16、已知A 、B 是平面内两个定点,且2=→AB ,该平面上的动线段PQ 的两个端点P 、Q 满足:5≤→AP ,6=⋅→→AB AP ,→→-=AP AQ 2,则动线段PQ 所围成的面积为( )A 、50B 、60C 、72D 、108三、解答题(14+14+14+16+18=76分) 17、已知x x f cos )(=(1).若31)(=αf ,且],0[πα∈,求)3(πα-f 的值; (2).求函数)(2)2(x f x f y -=的最小值;18、已知R a ∈,双曲线1:222=-Γy ax(1).若点)1,2(在Γ上,求Γ的焦点坐标;(2).若1=a ,直线1+=kx y 与Γ相交于B A ,两点,若线段AB 中点的横坐标为1,求k 的值;19.利用“平行与圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理;某公司用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2投影出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,AB OC ⊥于C ,3=AB 米,5.4=OC 米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到01.0).20.20.设0>a ,函数xa x f 211)(⋅+=(1).若1=a ,求)(x f 的反函数)(1x f -(2)求函数)()(x f x f y -⋅=的最大值,(用a 表示)(3)设=)(x g )1()(--x f x f ,若对任意)0()(],0,(g x g x ≥-∞∈恒成立,求a 的取值范围?21.若}{n c 是递增数列,数列}{n a 满足:对任意*,N m R n ∈∃∈,使得01≤--+n m nm c a a a ,则称}{n a 是}{n c 的“分隔数列”(1)设1,2+==n a n c n n ,证明:数列}{n a 是}{n c 的分隔数列;(2)设n n S n c ,4-=是}{n c 的前n 项和,23-=n n c d ,判断数列}{n S 是否是数列}{n d 的分隔数列,并说明理由;(3)设n n n T aq c ,1-=是}{n c 的前n 项和,若数列}{n T 是}{n C 的分隔数列,求实数q a ,的取值范围?2018年上海市普通高校春季招生统一文化考试数学试卷参考答案:一、填空题:1、()()+∞-∞-,11, ;2、3;3、()1,0;4、2;5、15;6、13422=+y x ;7、5;8、180; 9、4;10、⎪⎪⎭⎫⎝⎛∞+,33;11、⎥⎦⎤⎝⎛619611ππ,;12、4.4; 二、选择题:13、A ;14、C ;15、D ;16、B ; 三、解答题:17、(1)6621+;(2)23-; 18、(1)()()0,30,3-,;(2)215-; 19、(1)41;(2)59.9; 20、解析:(1)()()1,011log )(11log 112212∈⎪⎭⎫ ⎝⎛-=⇒⎪⎪⎭⎫ ⎝⎛-=⇒-=-x x x f y x y x ; (2)()()xx x x x a a a a y 2122211211⋅++=⋅+⋅⋅+=-,设02>=t x, 则()111222+++=+++=a taat at a at ty ,因为0>a ,所以a taat 2≥+,当且仅当1=t 时取等号,所以12122++≥+++a a a t a at ,即()⎥⎦⎤ ⎝⎛+∈211,0a y ; (3)()223222221122+⋅+⋅-=⋅+-⋅+=xx x x a t a a a a x g ,设t x=2,因为()0,∞-∈x , 所以()1,0∈t ,则()att a a t g 322++-=,若a t t t a 222=⇒=,1°当12≥a 时,即20≤<a ,a t t a y 322++=单调递减,所以()+∞++∈,232a a y , 则()⎪⎭⎫⎝⎛++-∈0,232a a a a g ,且()2302++-=a a a g ,故满足()()0g x g ≥,符合题意;2°当120<<a 时,即2>a ,则a a a aa t t a y 322322322+=+⋅≥++=,则()()0,322-∈a g ,因为()()02log 2min g a g x g ≠⎪⎪⎭⎫⎝⎛=,故不符合题意,舍去;综上:(]2,0∈a 。
2018上海春考
![2018上海春考](https://img.taocdn.com/s3/m/e6dcf612a1c7aa00b42acb84.png)
2018上海春考D的半径为1米,圆心是正方形的中心,点P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲区”中,已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速度从C出发向B 移动,则在点P从A移动到D的过程中,点Q在点P的盲区中的时长约为秒(精确到0.1)二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数中,为偶函数的是( )A.2y x -= B. 13y x = C. 12y x -= D. 3y x =14. 如图,在直三棱柱111ABC A B C -的棱所在的直线中,与直线1BC 异面的直线的条数为( )A. 1B. 2C. 3D. 415. 设n S 为数列{}n a 的前n 项和,“{}n a 是递增数列”是“{}nS 是递增数列”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件16. 已知A 、B 为平面上的两个定点,且||2AB =,该平面上的动线段PQ 的端点P 、Q ,满足||5AP ≤,6AP AB ⋅=,2AQ AP =-,则动线段PQ 所形成图形的面积为( )A. 36B. 60C. 72D. 108三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知cos y x =.(1)若1()3f α=,且[0,]απ∈,求()3f πα-的值; (2)求函数(2)2()y f x f x =-的最小值.18. 已知a R ∈,双曲线222:1x y a Γ-=.(1)若点(2,1)在上,求Γ的焦点坐标;(2)若1a=,直线1y kx=+与Γ相交于A、B两点,且线段AB中点的横坐标为1,求实数k的值.19. 利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,OC AB⊥于C ,3AB =米, 4.5OC =米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).(图1) (图2) (图3)20. 设0a >,函数1()12xf x a =+⋅. (1)若1a =,求()f x 的反函数1()fx -;(2)求函数()()y f x f x =⋅-的最大值(用a 表示);(3)设()()(1)g x f x f x =--,若对任意(,0]x ∈-∞,()(0)g x g ≥恒成立,求a 取值范围.21. 若{}n c是递增数列,数列{}n a满足:对任意*∈,m N∈,存在*n N使得1m nmn a ca c +-≤-,则称{}na 是{}nc 的“分隔数列”.(1)设2ncn=,1nan =+,证明:数列{}na 是{}nc 的分隔数列;(2)设4ncn =-,nS 是{}nc 的前n 项和,32nn dc -=,判断数列{}nS 是否是数列{}nd 的分隔数列,并说明理由; (3)设1n ncaq -=,nT 是{}nc 的前n 项和,若数列{}nT 是{}nc 的分隔数列,求实数a 、q 的取值范围.参考答案一. 填空题1. (,1)(1,)-∞-+∞ 2. 3 3.(0,1)4. 25. 156.22143x y += 7. 5 8. 180 9. 410. )+∞11. 1119(,]66ππ 12. 4.4二. 选择题13. A 14. C 15. D 16. B三. 解答题17.(1)16+;(2)32-. 18.(1),(;(219.(1)14;(2)9.59°. 20、解析:(1)()()1,011log )(11log 112212∈⎪⎭⎫ ⎝⎛-=⇒⎪⎪⎭⎫ ⎝⎛-=⇒-=-x x x f y x y x;(2)()()xxxxx a a a a y 2122211211⋅++=⋅+⋅⋅+=-,设02>=t x,则()111222+++=+++=ata at a t a at t y ,因为0>a ,所以a ta at 2≥+,当且仅当1=t 时取等号,所以12122++≥+++a a at a at ,即()⎥⎦⎤ ⎝⎛+∈211,0a y ;(3)()223222221122+⋅+⋅-=⋅+-⋅+=x xxx a t a a a a x g ,设tx=2,因为()0,∞-∈x ,所以()1,0∈t ,则()att a a t g 322++-=,若at tt a 222=⇒=,1°当12≥a时,即20≤<a ,a tt a y 322++=单调递减,所以()+∞++∈,232a a y ,则()⎪⎭⎫⎝⎛++-∈0,232a a a a g ,且()2302++-=a a a g ,故满足()()0g x g ≥,符合题意;2°当120<<a 时,即2>a ,则a a a aa t t a y 322322322+=+⋅≥++=,则()()0,322-∈a g ,因为()()02log 2ming a g x g ≠⎪⎪⎭⎫⎝⎛=,故不符合题意,舍去;综上:(]2,0∈a 。
最新上海市春考数学试卷(含答案)
![最新上海市春考数学试卷(含答案)](https://img.taocdn.com/s3/m/7dd49823b7360b4c2e3f6458.png)
2018年上海市普通高校春季招生统一文化考试数学试卷一、填空题(54分)1、不等式1>x 的解集为______________;2、计算:_________213lim=+-∞→n n n ;3、设集合{}20<<=x x A ,{}11<<-=x x B ,则________=B A ;4、若复数i z +=1(i 是虚数单位),则______2=+zz ; 5、已知{}n a 是等差数列,若1082=+a a ,则______753=++a a a ;6、已知平面上动点P 到两个定点()0,1和()0,1-的距离之和等于4,则动点P 的轨迹方程为_________;7、如图,在长方体1111D C B A ABCD -中,3=AB ,4=BC ,51=AA ,O 是11C A 的中点,则三棱锥11OB A A -的体积为_________;第7题图 第12题图8、某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为_____________(结果用数值表示)。
9、设R a ∈,若922⎪⎭⎫ ⎝⎛+x x 与92⎪⎭⎫ ⎝⎛+x a x 的二项展开式中的常数项相等,则_______=a ;10、设R m ∈,若z 是关于x 的方程0122=-++m mx x 的一个虚根,则-z 的取值范围是________;11、设0>a ,函数()()1,0),sin()1(2∈-+=x ax x x x f ,若函数12-=x y 与()x f y =的图像有且仅有两个不同的公共点,则a 的取值范围是__________;12、如图,在正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中,已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长均为_____秒(精确到0.1). 二.选择题(20分)13. 下列函数中,为偶函数的是( )A 2-=x y B 31x y = C 21-=xy D 3x y =14. 如图,在直三棱柱111C B A ABC -的棱所在的直线中,与直线1BC 异面的直线的条数为( ) A 1 B 2 C 3 D 415. 若数列}{n a 的前n 项和,“}{n a 是递增数列”是“}{n S 是递增数列”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 即不充分也不必要条件16、已知A 、B 是平面内两个定点,且2=→AB ,该平面上的动线段PQ 的两个端点P 、Q 满足:5≤→AP ,6=⋅→→AB AP ,→→-=AP AQ 2,则动线段PQ 所围成的面积为( )A 、50B 、60C 、72D 、108三、解答题(14+14+14+16+18=76分) 17、已知x x f cos )(=(1).若31)(=αf ,且],0[πα∈,求)3(πα-f 的值; (2).求函数)(2)2(x f x f y -=的最小值;18、已知R a ∈,双曲线1:222=-Γy ax(1).若点)1,2(在Γ上,求Γ的焦点坐标;(2).若1=a ,直线1+=kx y 与Γ相交于B A ,两点,若线段AB 中点的横坐标为1,求k 的值;19.利用“平行与圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理;某公司用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2投影出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,AB OC ⊥于C ,3=AB 米,5.4=OC 米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到01.0).20.设0>a ,函数xa x f 211)(⋅+=(1).若1=a ,求)(x f 的反函数)(1x f -(2)求函数)()(x f x f y -⋅=的最大值,(用a 表示)(3)设=)(x g )1()(--x f x f ,若对任意)0()(],0,(g x g x ≥-∞∈恒成立,求a 的取值范围?21.若}{n c 是递增数列,数列}{n a 满足:对任意*,N m R n ∈∃∈,使得01≤--+n m nm c a a a ,则称}{n a 是}{n c 的“分隔数列”(1)设1,2+==n a n c n n ,证明:数列}{n a 是}{n c 的分隔数列;(2)设n n S n c ,4-=是}{n c 的前n 项和,23-=n n c d ,判断数列}{n S 是否是数列}{n d 的分隔数列,并说明理由;(3)设n n n T aq c ,1-=是}{n c 的前n 项和,若数列}{n T 是}{n C 的分隔数列,求实数q a ,的取值范围?2018年上海市普通高校春季招生统一文化考试数学试卷参考答案:一、填空题:1、()()+∞-∞-,11, ;2、3;3、()1,0;4、2;5、15;6、13422=+y x ;7、5;8、180; 9、4;10、⎪⎪⎭⎫⎝⎛∞+,33;11、⎥⎦⎤⎝⎛619611ππ,;12、4.4; 二、选择题:13、A ;14、C ;15、D ;16、B ; 三、解答题:17、(1)6621+;(2)23-; 18、(1)()()0,30,3-,;(2)215-; 19、(1)41;(2)59.9; 20、解析:(1)()()1,011log )(11log 112212∈⎪⎭⎫ ⎝⎛-=⇒⎪⎪⎭⎫ ⎝⎛-=⇒-=-x x x f y x y x ; (2)()()xx x x x a a a a y 2122211211⋅++=⋅+⋅⋅+=-,设02>=t x, 则()111222+++=+++=a taat at a at ty ,因为0>a ,所以a taat 2≥+,当且仅当1=t 时取等号,所以12122++≥+++a a a t a at ,即()⎥⎦⎤ ⎝⎛+∈211,0a y ; (3)()223222221122+⋅+⋅-=⋅+-⋅+=xx x x a t a a a a x g ,设t x=2,因为()0,∞-∈x , 所以()1,0∈t ,则()att a a t g 322++-=,若a t t t a 222=⇒=,1°当12≥a 时,即20≤<a ,a t t a y 322++=单调递减,所以()+∞++∈,232a a y , 则()⎪⎭⎫⎝⎛++-∈0,232a a a a g ,且()2302++-=a a a g ,故满足()()0g x g ≥,符合题意;2°当120<<a 时,即2>a ,则a a a aa t t a y 322322322+=+⋅≥++=, 则()()0,322-∈a g ,因为()()02log 2ming a g x g ≠⎪⎪⎭⎫⎝⎛=,故不符合题意,舍去; 综上:(]2,0∈a 。
2018年春季高考数学真题版
![2018年春季高考数学真题版](https://img.taocdn.com/s3/m/0cf9c6694a7302768e993977.png)
2018年春季高考数学真题版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2018春季高考真题一、选择题1、已知集合,,则等于A、 B、 C、 D、2、函数的定义域是A、 B、C、 D、3、奇函数的布局如图所示,则A、 B、C、 D、4、已知不等式的解集是A B、C、 D、5、在数列中, =-1 ,=0,=+,则等于A、 B、 C、 D、6、在如图所示的平面直角坐标系中,向量的坐标是A、 B、 C、 D、7、圆A、第一象限B、第二象限C、第三象限D、第四象限8、已知,则“”是“”的A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件9、关于直线,下列说法正确的是A、直线l的倾斜角为B、向量是直线l的一个方向向量C、直线l经过点D、向量是直线l的一个法向量10、景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同的走法的种数是A、6B、10C、12D、2011、在平面直角坐标系中,关于的不等式表示的区域(阴影部分)可能是12、已知两个非零向量a与b 的夹角为锐角,则A、 B、 C、 D、13、若坐标原点到直线的距离等于,则角的取值集合是A、{}B、{}C、{}D、{}14、关于的方程,表示的图形不可能是15、在A、32B、-32C、1D、-116、设命题,命题,则下列命题中为真命题的是A、pB、C、D、17、已知抛物线的焦点为,准线为,该抛物线上的点到轴的距离为,且=7,则焦点到准线距离是A、2B、C、D、18、某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A、 B、 C、 D、19、已知矩形ABCD,AB=2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所围成集合体的侧面积分别记为S1、S2 ,则S1、S2的比值等于A、 B、 C、 D、20、若由函数图像变换得到的图像,则可以通过以下两个步骤完成:第一步,把上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,可以把图像沿x轴A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位二、填空题21、已知函数,则的值等于。
高三数学-【数学】上海市普通高等学校2018年高三春季
![高三数学-【数学】上海市普通高等学校2018年高三春季](https://img.taocdn.com/s3/m/da7c7369a417866fb84a8e68.png)
上海市普通高等学校2018年高三春季招生考试数 学 试 题考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分. 1.函数)2lg(-=x y 的定义域为__________________。
2.若集合}4|{},1|{2≤≥=x x B x x A ,则B A ⋂=_____________。
3.在△ABC 中,32tan =A ,则A sin =_______________。
4.若行列式02142=x,则x =____________。
5.若]2,2[,31sin ππ-∈=x x ,则x =____________。
(结果用反三角函数表示) 6.6)1(xx +的二项展开式的常数项为_______。
7.两条直线023:1=+-y x l 与02:2=+-y x l 的夹角的大小是________。
8.若n S 为等比数列}{n a 的前n 项的和,0852=+a a ,则36S S =_________________。
9.若椭圆C 的焦点和顶点分别是双曲线14522=-y x 的顶点和焦点,则椭圆C 的方程是_____________。
10.若点O 和点F 分别为椭圆1222=+y x 的中心和左焦点,点P 为椭圆上的任意一点,则22||||PF OP +的最小值为___________。
11.根据如图所示的程序框图,输出结果i =___________。
12.2018年上海春季高考有8所高校招生,如果某3位同学恰好被其中2所高校录取,那么录取方法的种数为____________。
13.有一中多面体的饰品,其表面右6个正方形和8各正三角形组成(如图),AB 与CD 所成的角的大小是_______________。
2018--2019年上海市春季高考数学试卷(含答案)
![2018--2019年上海市春季高考数学试卷(含答案)](https://img.taocdn.com/s3/m/ce940b3155270722192ef7bd.png)
2019年上海市普通高等学校春季招生考试数 学 试 卷一. 填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分1.函数2log (2)y x =+的定义域是 2.方程28x=的解是 3.抛物线28y x =的准线方程是 4.函数2sin y x =的最小正周期是5.已知向量(1 )a k =,,(9 6)b k =-,。
若//a b ,则实数 k = 6.函数4sin 3cos y x x =+的最大值是 7.复数23i +(i 是虚数单位)的模是8.在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B ===,,,则b= 9.在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为10.从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为 (结果用数值表示)。
11.若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n =S 。
12.36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的。
考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分13.展开式为ad-bc 的行列式是( )D 1 C 1B 1A 1D C AB(A )a bd c (B)a cb d (C)a db c (D)b ad c14.设-1()f x 为函数()f x x =的反函数,下列结论正确的是( )(A) 1(2)2f-= (B) 1(2)4f -= (C) 1(4)2f-= (D) 1(4)4f -=15.直线2310x y -+=的一个方向向量是( )(A) (2 3)-, (B) (2 3), (C) (3 2)-, (D) (3 2), 16.函数12()f x x -=的大致图像是( )17.如果0a b <<,那么下列不等式成立的是( ) (A)11a b < (B) 2ab b < (C) 2ab a -<- (D) 11a b-<- 18.若复数12 z z 、满足21z z =,则12 z z 、在复数平面上对应的点12 Z Z 、( ) (A) 关于x 轴对称 (B)关于y 轴对称(C) 关于原点对称 (D)关于直线y x =对称 19. 10(1)x +的二项展开式中的一项是( )(A )45x (B )290x (C ) 3120x (D )4252x 20.既是偶函数又在区间(0 )π,上单调递减的函数是( )(A )sin y x = (B )cos y x = (C )sin 2y x = (D )cos 2y x = 21.若两个球的表面积之比为1:4,则这两个球的体积之比为( ) (A )1:2 (B )1:4 (C )1:8 (D )1:16 22.设全集U R =,下列集合运算结果为R 的是( ) (A )u ZN (B )uNN (C )()u u ∅ (D ){0}u23.已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”0x yxyBA0 x yC0 x yD的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 24.已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是( )(A )圆 (B ) 椭圆 (C ) 抛物线 (D )双曲线三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤 25.(本题满分7分)如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积。
2017-2018学年上海市春季高考数学模拟试卷一Word版含答案
![2017-2018学年上海市春季高考数学模拟试卷一Word版含答案](https://img.taocdn.com/s3/m/35ef7877e55c3b3567ec102de2bd960590c6d9ef.png)
2017-2018学年上海市春季高考数学模拟试卷一Word版含答案2017-2018学年上海市春季高考模拟试卷一一、填空题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)1、函数的定义域是.2、已知全集,集合,则= .3、已知函数是函数的反函数,则(要求写明自变量的取值范围).4、双曲线的渐近线方程是.5、若函数与函数的最小正周期相同,则实数a= .6、已知数列是首项为1,公差为2的等差数列,是数列的前n项和,则= .7、直线,,则直线与的夹角为= .8、已知,是方程的根,则= .9、的二项展开式中的常数项是(用数值作答) .10、已知是平面上两个不共线的向量,向量,.若,则实数m= .11、已知圆柱M的底面圆的半径与球O的半径相同,若圆柱M 与球O的表面积相等,则它们的体积之比= (用数值作答).12、已知角的顶点在坐标原点,始边与x轴的正半轴重合,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则= .二、选择题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)13、已知,.若是的必要非充分条件,则实数a的取值范围是( )A.B.C.D..14、已知直线,点在圆C:外,则直线与圆C的位置关系是( )A .相交 B.相切 C.相离 D.不能确定15、现给出如下:①若直线与平面内无穷多条直线都垂直,则直线;②空间三点确定一个平面;③先后抛两枚硬币,用事件A表示“第一次抛出现正面向上”,用事件B表示“第二次抛出现反面向上”,则事件A和B相互独立且=;④样本数据的标准差是1.则其中正确的序号是( )A.①④B.①③C.②③④D.③④16、在关于的方程,,中,已知至少有一个方程有实数根,则实数的取值范围为()A. B. 或 C. 或 D.17、不等式的解集是()A.B.C.D.18、已知α,β表示两个不同的平面,m为平面α内的一条直线,则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19、已知是椭圆的两个焦点,是椭圆上的任意一点,则的最大值是()A.、9B.16C.D.20、函数与在同一坐标系的图像有公共点的充要条件是()A. B. C. D.21、设函数,则的值为()A.0 B.1 C.10 D.不存在22、已知,则()A.B.C.D.23、将正三棱柱截去三个角(如图1所示A、B、C分别是三边的中点)得到的几何体如图2,则按图2所示方向侧视该几何体所呈现的平面图形为()24、已知方程的根大于,则实数满足()A.B.C.D.三、解答题25、(本题满分7分)在中,记(角的单位是弧度制),的面积为S,且,.求函数的最大值、最小值.26、(本题满分7分)已知正方体的棱长为a.求点到平面的距离.27、(本题满分8分)用行列式讨论关于的二元一次方程组的解的情况,并说明各自的几何意义.28、(本题满分13分)已知函数是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).(1)求实数m的值,并写出区间D;(2)若底数,试判断函数在定义域D内的单调性,并说明理由;(3)当(,a是底数)时,函数值组成的集合为,求实数的值.。
高三数学-2018年春季高考题(上海)02018 精品
![高三数学-2018年春季高考题(上海)02018 精品](https://img.taocdn.com/s3/m/f554cd6531b765ce05081464.png)
2018年上海市普通高等学校春季招生考试数学试题考试时间:2018.12.21——(15:00—17:00)一、 填空题(每小题4分,共48分) 1. 已知函数1)(+=x x f ,则)3(1-f = .2. 直线1=y 与直线33+=x y 的夹角为 .3. 已知点)cos ,(tan ααP 在第三象限,则角α的终边在第 象限 .4. 直线1-=x y 被抛物线x y 42=截得线段的中点坐标是 .5. 已知集合},2{R x x x A ∈≤=,}{a x x B ≥=且B A ⊆,则实数a 的取值范围是 .6. 已知z 为复数,则2>+z z 的一个充要条件是z 满足 .7. 若过两点)0,1(-A 、)2,0(B 的直线l 与圆1)()1(22=-+-a y x 相切,则a = . 8. 不等式)),0((1)20(lg cos 2π∈>x x 的解为 .9. 八名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第三、四名,则该大师赛共有 场比赛 .10. 若正三棱锥底面边长为4,体积为1,则侧面和底面所成二面角的大小等于 . (结果用反三角函数值表示)11. 若函数],[,3)2(2b a x x a x y ∈+++=的图象关于直线1=x 对称,则=b .12. 设221)(+=xx f ,利用课本中推导等差数列前n 项和的公式的方法,可求得)6()5()0()4()5(f f f f f +++++-+- 的值为 .二、 选择题(每小题4分,共16分)13. 关于直线l b a ,,以及平面N M ,,下列命题中正确的是( ).(A) 若M b M a //,//,则b a // (B) 若a b M a ⊥,//,则M b ⊥(C) 若M b M a ⊂⊂,,且b l a l ⊥⊥,,则M l ⊥ (D) 若N a M a //,⊥,则N M ⊥14. 复数iim z 212+-=(i R m ,∈为虚数单位)在复平面上对应的点不可能位于( ). (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 15. 把曲线012cos =-+y x y 先沿x 轴向右平移2π个单位,再沿y 轴向下平移一个单位,得到的曲线方程是( ).(A) 032sin )1(=-+-y x y (B) 032sin )1(=-+-y x y (C) 012sin )1(=+++y x y (D) 012sin )1(=+++-y x y 16. 关于函数21)32()(sin )(2+-=xx x f ,有下面四个结论: (1) )(x f 是奇函数 (2)当2003>x 时, 21)(>x f 恒成立(3) )(x f 的最大值是23 (4) )(x f 的最小值是21-其中正确结论的个数为( ).(A) 1个 (B)2个 (C)3个 (D)4个三、 解答题(共86分) 17. (本题满分12分)解不等式组 ⎪⎪⎩⎪⎪⎨⎧>-+>+-.213,0862x x x x18. (本题满分12分)已知函数),0,0)(sin()(R x w A wx A x f ∈>>+=φ在一个周期内的图象如图所示,求直线3=y 与函数)(x f 图象的所有交点的坐标.1C 19. (本题满分14分,第一小题满分8分,第二小题满分6分)已知三棱柱111C B A ABC -,在某个空间直角坐标系中, 1A 1B}.,0,0{},0,0,{},0,23,2{1n AA m m m ==-= 其中0,>n m C(1) 证明:三棱柱111C B A ABC -是正三棱柱; A B (2) 若n m 2=,求直线1CA 与平面11ABB A 所成角的大小.20. (本题满分14分,第一小题满分7分,第二小题满分7分)已知函数.5)(,5)(31313131--+=-=x x x g x x x f(1) 证明)(x f 是奇函数;并求)(x f 的单调区间(2) 分别计算)2()2(5)4(g f f -和)3()3(5)9(g f f -的值,由此概括出涉及函数)(x f 和)(x g 的对所有不等于零的实数x 都成立的一个等式,并加以证明.21. (本题满分16分,第一小题满分4分,第二小题满分6分,第三小题满分6分)设21,F F 分别为椭圆)0(1:2222>>=+b a by a x C 的左、右两个焦点.(1) 若椭圆C 上的点)23,1(A 到21,F F 两点的距离之和等于4,写出椭圆C 的方程;(2) 设K 是(1)中所得椭圆上的动点,求线段K F 1的中点的轨迹方程;(3) 已知椭圆具有性质:若N M ,是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为PN PM K K ,时,那么PN PM K K ⋅是与点P 位置无关的定值. 试对双曲线12222=-by a x 写出具有类似特性的性质,并加以证明.22. (本题满分18分,第一小题满分4分,第二小题满分6分,第三小题满分8分)在一次人才招聘会上,有B A ,两家公司分别开出了它们的工资标准:A 公司允诺第一个月工资为1500元,以后每年月工资比上一年月工资增加230元;B 公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被B A ,两家公司同时录取.试问:(1) 若该人分别在A 公司或B 公司连续工作n 年,则他在第n 年的月工资收入分别是多少? (2) 该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不记其它因素),该人应该选择哪家公司,为什么?(3) 在A 公司工作比在B 公司工作的月工资收入最多可以多多少元?(精确到1元),并说明理由.答案:一、1、4 2、3π3、二4、(3,2)5、2a ≤-6、Rez>1 7、4 8、(0,)2π 9、16 10、3arctan 811、6 12、二、13、D 14、A 15、C 16、A 三、17、(1,2)(4,5) 18、2(2(1))32kk k Z πππ+--∈ 19、(2)4π20、(1)在(0,),(,0)+∞-∞上都是增函数;(2)2()5()()0f x f x g x -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年上海市春季高考数学试卷
2018.01
一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 不等式1x >的解集为 2. 计算:31
lim
2
n n n →∞-=+
3. 设集合{}|02A x x =<<,{}|11B x x =-<<,则A B =
4. 若复数1i z =+(i 是虚数单位),则2
z z
+
= 5. 已知{}n a 是等差数列,若2810a a +=,则357a a a ++=
6. 已知平面上动点P 到两个定点()1,0和()1,0-的距离之和等于4,则动点P 的轨迹方程
为
7. 如图,在长方体1111ABCD A B C D -中,3AB =,4BC =,15AA =,O 是11A C 的中
点,则三棱锥11A AOB -的体积为
8. 某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中甲必
须参赛且不担任四辩,则不同的安排方法种数为 (结果用数值表示)
9. 设a R ∈,若922x x ⎛
⎫+ ⎪⎝
⎭与9
2a x x ⎛⎫+ ⎪⎝⎭的二项式展开式种的常数项相等,则a =
10. 设m R ∈,若z 是关于x 的方程22
10x mx m ++-=的一个虚根,则z 的取值范围是
11. 设0a >,函数()()()21sin f x x x ax =+-,()0,1x ∈,若函数21y x =-与()y f x =的图像有且仅有两个不同的公共点,则a 的取值范围是
12. 如图,正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P Q
、分别在线段AD CB 、上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中,已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长约为 秒(精确到0.1)
二. 选择题(本大题共4题,每题5分,共20分) 13. 下列函数中,为偶函数的是( )
A. 2
y x -= B. 13
y x = C. 12
y x -= D. 3
y x =
14. 如图,在直三棱柱111ABC A B C -的棱所在的直线中,与直线
1BC 异面的直线的条数为( )
A. 1
B. 2
C. 3
D. 4
15. 设n S 为数列{}n a 的前n 项和,“{}n a 是递增数列”是“{}n S 是递增数列”的( ) A. 充分非必要条件 B. 必要非充分条件
C. 充要条件
D. 既非充分又非必要条件
16. 已知A B 、为平面上的两个定点,且2AB =,该平面上的动线段PQ 的端点P Q 、,
满足5AP ≤,6AP AB ⋅=,2AQ AP =-,则动线段PQ 所形成图形的面积为( ) A. 36 B. 60 C. 81 D. 108
三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 已知cos y x =. (1) 若()1
3
f α=
,且[]0,απ∈,求3f πα⎛
⎫- ⎪⎝
⎭的值;
(2) 求函数()()22y f x f x =-的最小值。
18. 已知a R ∈,双曲线2
22:1x y a
Γ-=.
(1) 若点()2,1在Γ上,求Γ的焦点坐标;
(2) 若1a =,直线1y kx =+与Γ相交于A B 、两点,且线段AB 中点的横坐标为1,求实
数k 的值。
19. 利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用
两个射灯(射出的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O A B 、、在抛物线上,OC 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米。
(1) 求抛物线的焦点到准线的距离;
(2) 在图3中,已知OC 平行于圆锥曲线的母线SD ,AB DE 、是圆锥底面的直径,求圆锥
的母线与轴的夹角的大小(精确到0.01°)
20. 设0a >,函数()1
12x
f x a =
+⋅.
(1) 若1a =,求()f x 的反函数()1
f x -;
(2) 求函数()()y f x f x =⋅-的最大值(用a 表示);
(3) 设()()()1g x f x f x =--,若对任意(],0x ∈-∞,()()0g x g ≥恒成立,求a 的取值
范围。
21. 若{}n c 是递增数列,数列{}n a 满足:对任意*
n N ∈,存在*
m N ∈,使得
1
0m n
m n a c a c +-≤-,
则称{}n a 是{}n c 的“分隔数列”.
(1) 设2n c n =,1n a n =+,证明:数列{}n a 是{}n c 的分隔数列;
(2) 设4n c n =-,n S 是{}n c 的前n 项和,32n n d c -=,判断数列{}n S 是否是数列{}n d 的分
隔数列,并说明理由; (3) 设1
n n c aq
-=,n T 是{}n c 的前n 项和,若数列{}n T 是{}n c 的分隔数列,求实数a q 、的
取值范围。