由废催化剂制备加氢精制催化剂的方法

合集下载

加氢精制催化剂的制备及在石油化工中的应用

加氢精制催化剂的制备及在石油化工中的应用

加氢精制催化剂的制备及在石油化工中的应用【摘要】目前,加氢精制催化剂在化工业是比较常用的催化剂,但其大多数为负载型催化剂。

负载型催化剂的活性在随着相关理论及制备技术的进步而日益提高。

但是,负载型催化剂也有自身的局限性,载体比表面积和孔体积是影响其有效活性的金属负载量的主要原因,因此催化剂活性的提高受到一定的约束。

非负载型催化剂的活性组分含量高,原因是其不用载体,它具有活性密度大,加氢脱硫、脱氮和芳烃饱和能力强的优点。

本文先对非负载型加氢精制催化剂的制备进行了分析,然后对非负载型加氢精制催化剂在石油化工中的应用进行了探讨。

【关键词】非负载型加氢精制催化剂石油化工制备应用活性分组的选择、活性组分的结合方式的状态决定了催化剂性能的好坏。

要使催化剂活性高,就必须有较大的比表面积和孔容以及适宜的孔径,活性组分的利用率与比表面积和孔容息息相关;适宜的孔径可以提高催化剂的反应活性,因为其可以提高反应物在催化剂中的扩散能力;催化剂的抗积碳能力依赖于高的比表面积和较大的孔容,这样可以使催化剂的寿命延长。

传统的负载型催化剂靠载体提供较大的表面积和孔容。

而制备非负载型催化剂的难点在于催化剂自身的高的比表面积、适宜的孔径和孔容。

1 非负载型加氢精制催化剂的制备与传统的负载型催化剂区别不大,氧化态非负载型加氢精制催化剂也是要预硫化的,其材料是钼酸铵、钨酸铵。

它的制作方法有沉淀法和固定相反应法两种,并且其制备工艺较简单,成本也比较低,在工业上已得到应用。

1.1 共沉淀法domokos等制备非负载催化剂的原理是通过过度金属组分盐溶液共沉淀,先配备一定量的混合溶液,这个溶液是可溶性钼酸盐(如钼酸铵)和镍盐(如硝酸镍)的混合体,然后对其进行加热,温度至80℃即可,而后用硝酸调节其ph值,调节到2.8即可,在得到澄清溶液的基础上,在该溶液里加入二氧化硅,与此同时,缓慢加入氨水溶液,使之ph值达到6.8,待溶液沉淀后,进行过滤和干燥,催化剂前提由此生成。

加氢催化剂及其设备制作方法和应用与制作流程

加氢催化剂及其设备制作方法和应用与制作流程

本技术提供了一种加氢催化剂及其制备方法和应用。

所述方法包括将成型的载体先负载活性金属镍得到载体S1,再负载磷源得到载体S2,然后将载体S2在氢氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为1:31:7;载体占所述加氢催化剂总重量的60%80%;优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:31:7。

该催化剂适用于缓和条件下柴油的加氢脱硫和加氢脱氮反应,其主要特点是在反应过程中具有较高的直接脱硫和/或脱氮选择性。

权利要求书1.一种加氢催化剂的制备方法,其中,所述方法包括将成型的载体先负载活性金属镍得到载体S-1,再负载磷源得到载体S-2,然后将载体S-2在氢气氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为(1:3)-(1:7);在制备得到的加氢催化剂中,载体占所述加氢催化剂总重量的60%-80%;(优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:3-1:7)。

2.根据权利要求1所述的制备方法,其中,所述方法中负载活性金属镍的步骤包括,将镍的前驱体与水配制成溶液A,通过等体积浸渍方法将镍负载到载体上,干燥后得到负载了活性金属镍的载体S-1;其中优选是在80-120℃下干燥;其中还优选干燥3-7h;优选通过等体积浸渍将镍负载到载体后,先室温放置8-16h,再干燥得到载体S-1。

3.根据权利要求1所述的制备方法,其中,所述方法中负载磷源的步骤包括,将磷的前驱体与水配制成溶液B,通过等体积浸渍方法将磷负载到载体S-1上,干燥后得到负载了磷的载体S-2;其中优选是在80-120℃下干燥;其中还优选干燥3-7h。

4.根据权利要求1所述的制备方法,其中,所述方法中活化的步骤包括,先将载体S-2在氢气气氛中,在750-900℃下活化,活化结束后降温至室温,在2%的O2/N2条件下钝化得到所述的加氢催化剂;优选氢气体积空速为600-3000h-1;优选载体S-2在氢气气氛中,以1-10℃/min 升温至300℃,保温10-60min后,再以1-10℃/min的速度升温至750-900℃进行活化;优选钝化的持续时间为1-10h。

废弃钴钼加氢催化剂碱性浸出规律研究

废弃钴钼加氢催化剂碱性浸出规律研究

第36卷第3期化学反应工程与工艺V ol 36, No 3 2020年6月 Chemical Reaction Engineering and Technology June 2020文章编号:1001—7631 ( 2020 ) 03—0276—07 DOI: 10.11730/j.issn.1001-7631.2020.03.0276.07 废弃钴钼加氢催化剂碱性浸出规律研究孙晓雪,齐升东,王杰,王德举中国石油化工股份有限公司上海石油化工研究院绿色化工与工业催化国家重点实验室,上海201208摘要:采用氨水和碳酸铵两种弱碱性试剂浸出处理废弃钴钼加氢催化剂,研究了影响金属元素Mo和Co浸出的因素。

结果表明,单一浸出剂处理催化剂过程中会伴随Al的浸出,影响浸出液后续纯化处理,而复合浸出剂能有效抑制Al的浸出,可以直接进行浓缩回用。

在氨水浓度为8.0 mol/L,碳酸铵浓度为0.5 mol/L,温度为70 ℃,固液比1:25的条件下连续浸出3次,Mo的浸出率达到90.21%,Co的浸出率达到69.22%。

采用复合碱性浸出剂实现废弃加氢催化剂中钴钼元素回收,浸出剂可循环利用,效果良好。

关键词:废弃钴钼催化剂混合浸出剂钴钼元素固渣中图分类号:TQ426. 95 文献标识码:A现代炼油工业中,加氢处理作为重要技术之一发挥着其他炼油技术无法替代的作用[1]。

在使用过程中加氢催化剂活性会下降,最终失活,据统计仅有不到50%的催化剂进行再生重复使用。

全球的废弃加氢催化剂总量以每年150~170 kt的速度在增长[2],这导致加氢催化剂固体废弃物大量增加,不加以处理会对土壤、水体和大气造成一系列的环境危害,因此废弃加氢催化剂无害化处理及资源化利用已引起广泛重视[1-3]。

加氢精制催化剂广泛用于石油化工和煤化工领域,活性组分一般采用过渡金属元素,如Mo,W,Co和Ni等,载体一般为含Al和Si的氧化物,钴钼加氢催化剂是其中重要的品种之一。

加氢精制催化剂的组成、制备及其性能评价

加氢精制催化剂的组成、制备及其性能评价

加氢精制催化剂的组成、制备及其性能评价前言:加氢精制是石油加工的重要过程之一,它主要是通过催化加氢脱除原油和石油产品中的S、N、O以及金属有机化合物等杂质[1]。

加氢精制主要包括加氢脱硫(HDS)、加氢脱氮(HDN)和加氢脱金属(HDM)等工艺,一般在催化加氢过程中是同时进行的。

其具体流程图[1]如下所示:近年来,由于原油的质量逐渐变差以及对重油的加工利用的比例逐渐增大,给加氢精制过程提出了更高的要求。

出于对环保的重视,世界各国普遍制订了严格的环保法规,对汽油、柴油等燃料油中N和S含量作出了严格的限制。

此外,又对汽油中的苯、芳烃、烯烃含量、含氧化合物的加入量以及柴油十六烷值和芳烃含量等也有严格的限制指标。

这些清洁燃料的生产均与加氢技术的发展密切相关[2]。

因而加氢精制技术已成为石油产品改质的一项重要技术,其核心又在于加氢精制催化剂的性能。

一、催化加氢催化剂的组成及其制备方法1.加氢催化剂的组成加氢精制催化剂一般都是负载型的,是有载体浸渍上活性金属组分而制成[3]。

载体一般均是Al2O3。

(1)活性组分其活性组分主要是由钼或钨以及钴或镍的硫化物相结合而成[4]。

目前工业上常用的加氢精制催化剂是以钼或钨的硫化物为主催化剂,以钴或镍的硫化物为助催化剂所组成的。

对于少数特定的较纯净的原料,以加氢饱和为主要目的时,也有选用含镍、铂或钯金属的加氢催化剂的。

钼或钴单独存在时其催化活性都不高,而两者同时存在时互相协合,表现出很高的催化活性。

所以,目前加氢精制的催化剂几乎都是由一种VIB族金属与一种VIII族金属组合的二元活性组分所构成。

(2)载体γ-Al2O3是加氢精制催化剂最常用的载体。

一般加氢精制催化剂要求用比表面积较大的氧化铝,其比表面积达200~400m2/g,孔体积在0.5~1.0cm3/g之间。

[1]氧化铝中包含着大小不同的孔。

不同氧化铝的孔径分布是不同的,这取决于制备的方法和条件。

此外,加氢精制催化剂用的氧化铝载体中有时还加入少量的SiO2,SiO2可抑制γ-Al2O3晶粒的增大,提高载体的热稳定性。

由废催化剂制备加氢处理催化剂的方法

由废催化剂制备加氢处理催化剂的方法

一种由废催化剂制备加氢处理催化剂的方法技术领域[0001] 本发明涉及一种由废催化剂制备加氢处理催化剂的方法,特别是由废加氢催化剂制备的渣油沸腾床加氢处理催化剂的方法。

技术背景[0002] 在石油化学工业中需要大量的催化剂,催化剂在使用过程中,由于失去其原有活性而成为废弃物,这些富含金属的废催化剂弃之不用,不仅是资源上的浪费,而且污染环境。

最近,环保法规对废催化剂的丢弃越来越严格。

废加氢催化剂被美国环境保护机构(USEPA)认为是危险废弃物。

废催化剂有几种处理方法,如填埋处置、回收金属,再生或重复使用,利用其作为原材料生成其它有用产品来解决废催化剂问题。

从环境和经济的观点,利用废催化剂为原料来生成其它有价值的产品是一个理想的选择。

[0003] USP7335618公开了一种生成加氢处理催化剂及金属回收的方法。

该方法是将加氢处理工艺中的废催化剂经过热处理,研磨后得到再生粉末。

再生粉末根据金属含量进行筛分、成型、干燥和焙烧得到再生催化剂,该再生催化剂中直径5-200nm的孔所占孔容至少为0.2mL/g,直径>200nm的孔所占孔容小于0.1mL/g。

该工艺中要求再生后金属含量(Ni+V)总和为1.5~10wt%,同时对废催化剂粉末进行筛分,原料范围较窄且工艺过程较为复杂。

[0004] USP6030915公开了一种大孔加氢处理催化剂的制备工艺。

该工艺包括废加氢处理催化剂通过热处理除去部分碳和硫,研磨热处理后的催化剂,把研磨后催化剂与至少一种添加剂混合,混合物料成型形成新的加氢催化剂。

催化剂中氧化铝作为粘结剂,添加剂为铝矾土、硅藻土、高岭土及海泡石等。

该工艺特别适用于制备沸腾床催化剂。

该专利仅仅解决了催化剂孔结构和酸性质的改变,没有对活性金属进行恢复,来提高其加氢活性。

并且处理过程复杂,能耗较高。

[0005] CN03133558.6公开了一种废催化剂制备加氢精制催化剂的方法。

该方法是将废的加氢催化剂研磨后,加入加氢活性金属氧化物或活性金属盐类,加入粘结剂混捏成型。

催化剂制备原理 第五六七章 加氢、脱氢、氧化催化剂的制备

催化剂制备原理 第五六七章  加氢、脱氢、氧化催化剂的制备
Reduction of nitroarenesus ing hydrazine hydrate over nickel-iron mixed oxide catalyst prepared from a nickel-iron hydrotalcite-like precursor.
腈的还原
OH
O
Pd
Ni, Pt
Rh, Ru OH
苯酚加氢 OH
OH
OH
OH
OH
+ 3 H2 phenol
+ 2 H2
+
+
cyclohex-1-enol cyclohex-2-enol cyclohex-3-enol
O OH
+ 2 H2
+ H2
OH
+ 2 H2O
cyclohexanol
cyclohexanone
Regioselective hydrogenation of p-phenylphenol (p-PP) to p-cyclohexylphenol (p-CP) was performed over 10 wt.% Pd/C catalyst in THF solvent. The selectivity of pCP was up to 92.3% at 413 K under 3.5 MPa with 100% conversion of p-PP. The desired product could be easily separated from the reaction mixture by washing with aqueous NaOH following extraction by toluene.

炼油过程中的废催化剂处理【建筑工程类独家文档首发】

炼油过程中的废催化剂处理【建筑工程类独家文档首发】

炼油过程中的废催化剂处理【建筑工程类独家文档首发】90%以上的石油化学反应是通过催化剂来实现的。

催化剂再生后原有的活性受损,多次再生后,活性低于可接受的程度时,就成为废催化剂。

随着石油化工业的迅速发展,石油化工废催化剂的产量也迅猛增长。

石油化工废催化剂中往往含有一些有毒成分,主要是重金属和挥发性有机物,具有很大的环境风险,对其进行无害化处理处置显得尤为重要。

此外,石油化工废催化剂中有较高含量的贵金属或其他有价金属,有些甚至远高于某些贫矿中的相应组分的含量,金属品位高,可将其作为二次资源回收利用。

对石油化工废催化剂进行综合利用既可以提高资源利用率,更可以避免废催化剂带来的环境问题,实现可持续发展。

1、废催化剂有多少?据报道,全球每年产生废催化剂50万~70万吨,其中,废炼油催化剂占很大的比例。

随着我国炼油催化剂销量的逐年递增,废炼油催化剂的产生量也逐年增加。

如果不对废炼油催化剂加以科学管理,其中的有毒有害成分会污染环境并危害人体健康,并且其中的一些贵重金属资源也会流失。

因此,对废炼油催化剂进行有效的处理和利用已成为一个十分重要的课题。

目前,FCC催化剂的使用量占据了较大的市场份额,约为炼油催化剂总使用量的68.9%;加氢精制、加氢裂化和催化重整催化剂所占比例分别为9.4%,6.2%,3.3%;其他种类的炼油催化剂所占比例约为12.2%。

2015年我国石油消费量达到5.85亿吨(估算值),废炼油催化剂的产生量也达到20.7万吨(估算值)。

2、主要成分及含量几种催化裂化、加氢精制、加氢裂化和催化重整新鲜催化剂的主要成分及含量见表2。

由于催化剂反应活性的需要,有些新鲜催化剂本身就含有有毒有害成分。

如加氢精制与加氢裂化催化剂中含有NiO,属于致癌性物质。

炼油过程中,原油中的一些有毒有害成分会进入到催化剂中,废炼油催化剂的主要成分及含量见表3~4。

由表3可见,废FCC催化剂表面可能沉积有Ni,V,Fe等重金属,少量的Na,Mg,P,Ca,As,Cu等元素也会沉积在废催化剂上。

石油加工概论(第二部分第6章 加氢精制,加氢处理)

石油加工概论(第二部分第6章 加氢精制,加氢处理)
装置
◆1977年出现了固定床渣油加氢脱硫装置,1984年
出现了沸腾床渣油高转化率加氢裂化装置。
◆近几年加氢技术的发展很快,无论是加氢催化
剂,还是加氢工艺流程及专用设备都有了长足的
进步。对环保要求越来越高的今天,加氢技术已
成为21世纪炼油厂的核心技术。
●加氢技术国内外发展现状
◆全世界加氢能力(加氢精制、加氢裂化、重油加
●催化裂化汽油加氢脱硫技术 ◆加氢脱硫和辛烷值恢复组合技术 FCC汽油经加氢脱硫后,烯烃饱和,辛烷值降低。 将加氢脱硫后的产物再通过一种含酸性分子筛的催化 剂进行选择性异构化和裂化,将低辛烷值的直链烷烃
和重烷烃转化为高辛烷值的烃类,使在加氢脱硫过程
中因烯烃饱和而造成的辛烷值损失得到补偿。 美国EXXON Mobil开发OCTGAIN、美国UOP公司开发
加氢过程中的氢油比是指进到反应器中的标准状态
下的氢气与冷态(20℃)进料的体积比(m3/m3)。
◆较高的氢油比使原料的气化率提高,同时也增大氢
分压,有利于提高加氢反应速率的。
◆氢油比增大,即意味着反应物分压降低和反应物与
催化剂实际接触时间的缩短,这些又是对加氢反应

不利的。
氢油比要选择适当
第四节 馏分油加氢精制(处理)工艺技术
0.845 1.2 0.03
0.942 2.76 0.063
0.820 0.002 0.0005
0.860 2.7 0.06
0.857 0.45 0.04
0.936 3.8 0.1
十六烷值
溴价/g/100g 烷烃/v% 环烷烃/v% 芳烃/v%
55
0.5 34 41 25
21
15 14 9 77
60

第2讲 加氢催化剂及技术进展

第2讲 加氢催化剂及技术进展

浸渍法分类
按活性组分浸渍顺序分: (1)分步浸渍法:现浸渍Mo或W,再浸渍Co或Ni (2)共浸渍法:Ni或Co和Mo或W制成均匀溶液,一同浸渍
有利于活性组分的分散, Ni或Co和Mo或W的相互作用 按浸渍溶液的体积分: (1)饱和浸渍:浸渍溶液的体积刚好达到完全充满载体孔 道所需的量,又叫润湿浸渍。实验室和较小量催化剂制备常 用。 (2)过饱和浸渍:浸渍溶液的体积超过完全充满载体孔道 所需的量。工业大量催化剂制备常用。
S原子的键合强度不同,交换能力不同 (4) MoS2 有A和B两种结构共存
三、金属硫化物的催化作用机理
1、MoS2的结构 在Mo/Al2O3催化剂上 MoS2的2种结构
TRICAT器外预硫化:开工曲线 说明:预硫化催化剂的开工过程无明显的温升
四、金属硫化物的催化作用机理
催化剂使用过程中金属化合物的转化
催化剂使用过程中金属化合物的转化
a. 氧化态催化剂,与Al2O3 健合的Mo、Ni、Co的金属氧化物 b. 部分硫化的催化剂, Ni、Co的金属硫化物不再与Al2O3 健合 c. 部分硫化的催化剂, Mo的金属硫化物不再与Al2O3 健合 d. 部分硫化的催化剂,Ni、Co修饰的MoS2微晶片形成 e. 完全硫化的催化剂,硫化Ni和Co修饰的MoS2微晶片形成,并 具有可移动性 f. 催化剂的失活,MoS2微晶片的堆砌和形成大的晶粒,Ni、Co 硫化物晶粒形成 g. 再生,MoS2晶粒的再分散 h. 再生,大的MoS2晶粒表面氧化 i. 再生,完全氧化 j. 高温硫化,Mo完全硫化 k. NTA制备方法,络合物硫化,不形成金属化合物与载体的强 相互作用
技术路线: (1)预硫化催化剂+保护剂 (2)催化剂预处理+预硫化剂+保护剂 国内:石科院、抚顺院、石油大学 正在研究 国外:Eurecat、CRI、TRICAT、埃勒夫 已工业化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档