分子影像学在医学影像中的应用进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子影像学在医学影像中的应用进展

发表时间:2012-05-24T08:14:56.740Z 来源:《医药前沿》2012年第1期供稿作者:郭正义1 刘春丽2

[导读] 随着分子生物学和计算机应用技术的发展,分子影像学技术已成为医学影像学以及相关临床和基础研究的一个新趋势。

郭正义1 刘春丽2

( 1 山东省泰安市中心医院放射科山东泰安 2 7 1 0 0 0 )

( 2 山东省泰安市中心医院妇产科山东泰安 2 7 1 0 0 0 )

【摘要】随着分子生物学和计算机应用技术的发展,分子影像学技术已成为医学影像学以及相关临床和基础研究的一个新趋势。随着人类基因组测序的完成和后基因组时代的到来,从核酸—蛋白质、蛋白质—蛋白质分子间的相互作用关系分析疾病的发病机理、疾病早期的生物学特征,为疾病发生的早期检测、预警、诊断和疗效评估提供新的方法与手段。它的研究成果将为肿瘤和其他疾病的发病机理、临床诊断、病情监测和疗效评估的研究提供有效的新方法和新手段。

【关键词】分子影像学分子生物学人类基因

【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2012)01-0064-02

近年来,分子影像学的出现与迅速进展,是现代医学影像学发展的里程碑式的事件[1-3].作为一种技术手段,分子影像学在生物体完好无损的环境下,在分子或细胞水平对生物过程进行可视化、定性、定量研究,所获得的数据,与常规研究手段所得到的数据比较,更加接近机体的真实情况[2]。对病理过程的分子影像学研究,有望在早期疾病诊断和发现,从分子水平评价治疗效果等方面发挥重要作用。分子影像学能够帮助我们在分子水平真正早期发现病变,及时干预,而不是在患者出现临床症状与体征之后。传统医学影像诊断显示的是生物组织细胞病变的解剖变化,而分子影像学则着眼于生物组织细胞或分子水平的生理和病理变化,它不仅可以提高临床诊治疾病的水平,更重要的是有望在分子细胞水平发现疾病,真正达到早期诊断。

1 分子影像学成像原理及核心

分子影像学融合了分子生物化学、数据处理、纳米技术、图像处理等技术,因其具高特异性、高灵敏度和图像的高分辨率,因此今后能够真正为临床诊断提供定性定位、定量的资料。由此可见,分子影像学不再是一个单一的技术变革,而是各种技术的一次整合。分子影像技术有三个关键因素,第一是高特异性分子探针,第二是合适的信号放大技术,第三是能灵敏地获得高分辨率图像的探测系统。它将遗传基因信息、生物化学与新的成像探针综合输入到人体内,用它标记所研究的“靶子”(另一分子),通过分子影像技术,把“靶子”放大,由精密的成像技术来检测,再通过一系列的图像后处理技术,达到显示活体组织分子和细胞水平上的生物学过程的目的,从而对疾病进行亚临床期诊断和治疗。其中分子特异性探针构建是分子影像学研究的核心内容。在实际研究工作中,成像对象——“靶”的选择尤其重要[5-7]。由于靶向探针的构建与生物学特性研究耗费巨大,“靶”的选择可能决定研究最终科研成果与临床应用价值,需要慎之又慎。根据基础医学研究成果,考察“靶”的生物学功能,尤其在病理过程中的作用,是选择合适成像“靶”的依据。一般的选择标准:该“靶”与某种疾病发生、发展、转移紧密有关;或者其变化过程反映治疗效果。另外,还需要考虑分子靶标的位置(在细胞上或者细胞内)以及表达量。比如血管生成中的整αv β3,上皮细胞上的黏蛋白-1(mucin-1),细胞凋亡过程中的磷脂酰丝氨酸(phosphatidylserine,PS)以及多药耐药相关蛋白(multidrug resistanceMDR1 P-glycoprotein, Pgp)等,均是理想的靶标。常用的分子特异性探针多由2部分构成:信号组件(s i g n a l i n gcomponent)与亲和组件(affinity component)。应用化学或生物物理方法优化探针,使之具有合理的体内生物学行为,包括稳定性、高信噪比等,是探针构建中必须考虑的重要课题。

2分子影像学对影像医学的影响

影像医学发展逐渐形成了3个主要的阵营:经典医学影像学:以X线、C T、M R、超声成像等为主,显示人体解剖结构和生理功能;以介入放射学为主体的治疗学阵营;分子影像学:以MR、P E T、光学成像及小动物成像设备等为主,可用于分子水平成像。三者是紧密联系的一个整体,相互印证,相互协作,以介入放射学为依托,使目的基因能更准确到达靶位,通过分子成像设备又可直接显示治疗效果和基因表达。因此,分子影像学对影像医学的发展有很大的推动作用,使影像医学从对传统的解剖、生理功能的研究,深入到分子水平的成像,去探索疾病的分子水平的变化,将对新的医疗模式的形成和人类健康有着深远的影响。随着人类基因组测序的完成和后基因组时代的到来,人们迫切需要从细胞、分子、基因水平探讨疾病(尤其是恶性疾病)发生发展的机理,在临床症状出现之前就监测到病变的产生,从而实现疾病的早期预警和治疗,提高疾病的治疗效果。因此,1999年美国哈佛大学Weissleder等提出了分子影像学(Molecular Imaging)的概念:应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。它是以体内特定分子作为成像对比度的医学影像技术,能在真实、完整的人或动物体内,通过图像直接显示细胞或分子水平的生理和病理过程。它在分子生物学与临床医学之间架起了相互连接的桥梁,被美国医学会评为未来最具有发展潜力的十个医学科学前沿领域之一,是二十一世纪的医学影像学。

传统影像学主要依赖非特异性的成像手段进行疾病的检查,如不同组织的物理学特性(如组织的吸收、散射、质子密度等)的不同,或者从生理学角度(如血流速度的变化)来鉴定疾病,显示的是分子改变的终效应,不能显示分子改变和疾病的关系。因此,只有当机体发生明显的病理或解剖结构的改变时才能发现异常。虽然图像分辨率不断提高,但是若此时发现疾病,已然错过了治疗的最佳时机。然而,在特异性分子探针的帮助下,分子影像偏重于疾病的基础变化、基因分子水平的异常,而不是基因分子改变的最终效应,不仅可以提高临床诊治疾病的水平,更重要的是有望在分子水平发现疾病,真正达到早期诊断。分子影像学不再是一个单一的技术变革,而是各种技术的一次整合,它对现代和未来医学模式可能会产生革命性的影响。

分子影像学的优势,可以概括为三点:其一,分子影像技术可将基因表达、生物信号传递等复杂的过程变成直观的图像,使人们能更好地在分子细胞水平上了解疾病的发生机制及特征;其二,能够发现疾病早期的分子细胞变异及病理改变过程;其三,可在活体上连续观察药物或基因治疗的机理和效果。通常,探测人体分子细胞的方法有离体和在体两种,分子影像技术作为一种在体探测方法,其优势在于可以连续、快速、远距离、无损伤地获得人体分子细胞的三维图像。它可以揭示病变的早期分子生物学特征,推动了疾病的早期诊断和治疗,也为临床诊断引入了新的概念

3影像学的难点

目前最为常用的分子影像学技术有核医学成像技术,尤以PET的分子显像研究最具活力分子。另外,MR成像及MR波谱成像(MRS)、光学成像以及红外线光学体层亦颇多使用,而这些影像技术均有各自的利弊。就单从基因治疗来看,有许多问题没有解决,基

相关文档
最新文档