对数函数及其性质ppt

合集下载

4.4 对数函数及其性质 课件【共13张PPT】

4.4 对数函数及其性质 课件【共13张PPT】

x
a)
是奇函数,
求f(x)<0的解集.
{x | 1 x 0}
巩固练习
5.已知 loga(3a-1)恒为正,求 a 的取值范围.
解:由题意知 loga(3a-1)>0=loga1. 当 a>1 时,y=logax 是增函数, ∴33aa--11>>10,, 解得 a>23,∴a>1; 当 0<a<1 时,y=logax 是减函数, ∴33aa--11<>10,, 解得13<a<23.∴13<a<23. 综上所述,a 的取值范围是13,32∪(1,+∞).
(2)若函数 f(x)的最小值为-4,求 a 的值.
解:(1)要使函数有意义,则有1x-+x3>>00,, 解得-3<x<1,所以函数的定义域为(-3,1).
(2)函数可化为:f(x)=loga(1-x)(x+3)=loga(-x2-2x+3) =loga[-(x+1)2+4],
因为-3<x<1,所以 0<-(x+1)2+4≤4.
[解] (1)由 loga12>1 得 loga12>logaa. ①当 a>1 时,有 a<21,此时无解; ②当 0<a<1 时,有12<a,从而12<a<1.∴a 的取值范围是12,1.
(2)∵函数 y=log0.7x 在(0,+∞)上为减函数,
2x>0, ∴由 log0.7(2x)<log0.7(x-1),得x-1>0,
则x1+ -1x> >00, , 即-1<x<1,所以 F(x)的定义域为{x|-1<x<1}. (2)F(x)=f(x)-g(x),其定义域为(-1,1),且 F(-x)=f(-x)-g(-x) =loga(-x+1)-loga(1+x)=-[loga(1+x)-loga(1-x)]=-F(x),所 以 F(x)是奇函数.

对数函数的图象及性质 课件

对数函数的图象及性质 课件

[答案]
3
π
1 3
1 2
探究三 与对数函数有关的定义域问题
[典例 4] 求下列函数的定义域.
(1)y=lg(x-2)+x-1 3;(2)y=log(x+1)(16-4x);
(3)y=
6-5x-x2 lgx+3 .
[解析] (1)由xx--23>≠00,, 得 x>2 且 x≠3, ∴定义域为(2,3)∪(3,+∞).
[解析] 只有(5)为对数函数. (1)中真数不是自变量 x,∴不是对数函数; (2)中对数式后减 1,∴不是对数函数; (3)中 log7x 前的系数是 2,而不是 1, ∴不是对数函数; (4)中底数是自变量 x,而非常数 a,∴不是对数函数.
对数函数的判断: 判断一个函数是否是对数函数,必须严格符合形如 y=logax(a>0 且 a≠1)的形式, 即满足以下条件: (1)系数为 1. (2)底数为大于 0 且不等于 1 的常数. (3)对数的真数仅有自变量 x.
(2)由1x6+-14>x0>,0, x+1≠1,
即xx<>4-,1, x≠0,
解得-1<x<0 或 0<x<4.
∴定义域为(-1,0)∪(0,4).
6-5x-x2≥0, (3)要使函数有意义,则有x+3>0,
lgx+3≠0,
即-x>6-≤3x,≤1, x+3≠1,
即-x>6-≤3x,≤1, x≠-2.
解法二:在图中作 y=1,分别与 C3、C4、C1、C2 交于
A,B,C,D 四点,则 A(a1,1),B(a2,1),C(a3,1),D(a4,1)
(其中 a1,a2,a3,a4 分别为对数函数的底).由图可知

《对数函数及其性质》课件

《对数函数及其性质》课件

THANK YOU
对数函数的定义域和值域
理解对数函数的定义域和值域,并能够判断特定函数的定义域和值 域。
对数函数的单调性
理解对数函数的单调性,并能够判断特定函数的单调性。
进阶题目
01
02
03
复合对数函数
理解复合对数函数,并能 够求解复合对数函数的值 。
对数函数的图像
理解对数函数的图像,并 能够根据图像判断函数的 性质。
分析对数函数的值域和定义域。对于自然对数函数y=log(x) ,其值域为R;对于以a为底的对数函数y=log(x),其定义域 为(0, +∞)。对于复合对数函数y=log(u),其值域和定义域取 决于u的取值范围。
03
对数函数的应用
实际应用场景
金融计算
在复利、折旧等计算中 ,对数函数有广泛应用

《对数函数及其性质》ppt课件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他知识点的联系 • 习题与练习
01
对数函数的定义与性质
定义与表示
总结词
对数函数是一种特殊的函数,其 定义域为正实数集,值域为全体 实数集。常用对数函数以10为底 ,自然对数函数以e为底。
么以a为底N的对数等于b。
对数函数和指数函数在解决实际 问题中经常一起出现,例如在计 算复利、解决声学和光学问题时

对数函数与三角函数的联系
对数函数和三角函数在形式上有些相似,特别是在自然对数函数和正弦函数中。
在复数域中,对数函数和三角函数有更密切的联系,它们都可以用来表示复数的幂 。
在解决一些物理问题时,例如波动和振动问题,可能需要同时使用对数函数和三角 函数。

对数函数的性质与图像ppt课件

对数函数的性质与图像ppt课件

log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n
log2 0.6 > log 2 0.8 log2 m > log2 n 则 m < n
3
3
3
3
log1.5 6 < log1.5 8
log1.5 m < log1.5 n 则 m < n
比较下列各组中两个值的大小:
o
x
y=log1/2x
y
x … 1/8 1/4 1/2 1 2 4 8 … y … 3 2 1 0 -1 -2 -3 …
o
x
画出函数 y log 2 x与 y log 1 x的图像.
y
2
y log 2 x
o
x
y log 1 x
2
对数函数y=logax 0,a≠1)
性质a > 1
图y
(a> 的图象与
4.2.3 对数函数的性质与 图像
引例:对数函数的引入:
问题1:某种细胞分裂时,由1个分裂为2个,2个 分裂为4个……1个这样的细胞分裂x次后,得到的
细胞个数设为y,则y与x的函数关系式为:Y=2x
问题2:某种细胞分裂时,由1个分裂为2个,2个分 裂为4个……如果要求这种细胞经过多少次分裂,大约 可以得到1万个,10万个……细胞,那么分裂次数x就 是要得到的细胞个数y的函数。由对数的定义,这个
对数函数 y log 3 x和y log 1 x的图象。
3
y 2
1 11 42
0 1 23 4 -1 -2
y log 2 x
y log 3 x
x
y log 1 x
3
y log 1 x
2
y
y log a1 x y log a2 x

对数函数及其性质课件ppt

对数函数及其性质课件ppt

统计学
决策理论
在决策理论中,对数函数用于构建效 用函数,以评估不同选项的风险和收 益。
在统计学中,对数函数用于描述概率 分布,如泊松分布和二项分布。
05 练习与思考
基础练习题
01
02
03
04
基础练习题1
请计算以2为底9的对数。
基础练习题2
请计算以3为底8的对数。
基础练习题3
请计算以10为底7的对数奇函数也不是偶 函数。
周期性
• 无周期性:对数函数没有周期性,因为其图像不会重复出 现。
03 对数函数的运算性质
换底公式
总结词
换底公式是用来转换对数的底数的公 式,它对于解决对数问题非常有用。
详细描述
换底公式是log_b(a) = log_c(a) / log_c(b),其中a、b、c是正实数,且b 和c都不等于1。通过换底公式,我们可 以将对数函数转换为任意底数的对数函 数,从而简化计算过程。
图像绘制
对数函数的图像通常在直角坐标系 中绘制,随着底数$a$的取值不同, 图像的形状和位置也会有所变化。
单调性
单调递增
当底数$a > 1$时,对数函数是单调递增的,即随着$x$的增 大,$y$的值也增大。
单调递减
当$0 < a < 1$时,对数函数是单调递减的,即随着$x$的增 大,$y$的值减小。
对数函数的乘法性质
总结词
对数函数的乘法性质是指当两个对数 函数相乘时,其结果的对数等于两个 对数函数分别取对数后的积。
详细描述
对数函数的乘法性质公式为log_b(m) * log_b(n) = log_b(m * n),其中m 和n是正实数。这个性质在对数运算 中也非常有用,因为它可以简化对数 的计算过程。

对数函数的性质与图象ppt课件

对数函数的性质与图象ppt课件

D)
C. (1, 4)
D. (4, )
解析:令 t x2 3x 4 0 ,解得 x 4 或 x 1 .由于函数 t x 2 3x 4 在 (, 1)
上单调递减,在 (4, ) 上单调递增,且 y ln t 在 (0, ) 上单调递增,所以
2
> 0 ,即 ≠ 0,
在 GeoGebra 中,只要输入对数函数的表达式,就可以得到对应的图象,如图
所示是用 GeoGebra 作出的 ( ) = log2 , ( ) = log1 ,
ℎ( ) = log0.3 , ( ) = ln ,
2
( ) = lg 的图象,你能从中得出什么规律吗?
事实上 ,利用指 数运算和对 数运算的关 系,可以把 上述关系式 改写为
x log
1
1 5 730

2
示为 y log
y ,如果仍用 x 表示自变量,y 表示因变量,那么这一函数关系可以表
1
1 5 730

2
x ,其中自变量在真数的位置上,我们称这样的函数为对数函数.
.
根据以上信息可知,函数 y=log2x 的图
象都在 y 轴右侧,而且从左往右图象是逐渐
上升的. 通过描点,可以作出函数 y=log2x
的图象,如图所示.
下面我们来研究对数函数 y log 1 x 的性质与图象.
2
注意到 y log 1 x log 21 x log 2 x ,因此不难看出 y log 1 x 和 y log 2 x 之间
1
log2 a 2 ,即 2 log 2 a 2 ,解得 a 4 .故选 D.

对数函数PPT课件

对数函数PPT课件

04 对数函数与其他函数的比 较
与指数函数的比较
指数函数和对数函数是互为反函数, 它们的图像关于直线y=x对称。
当a>1时,指数函数和对数函数都是 增函数,但它们的增长速度不同,对 数函数的增长速度更慢。
指数函数y=a^x(a>0且a≠1)的图 像总是经过点(0,1),而对数函数 y=log_a x(a>0且a≠1)的图像则 总是经过点(1,0)。
对数函数和三角函数的应用领域也不同。对数函数主要用于解决与对数运算相关的问题,如 对数的换底公式、对数的运算性质等;而三角函数则主要用于解决与三角形的边角关系、周 期性等问题相关的问题。
05 对数函数的学习方法与技 巧
学习方法
1 2 3
理解对数函数的定义
首先需要理解对数函数的基本定义,包括对数函 数的定义域、值域以及其变化规律。
对数函数ppt课件
目录
• 对数函数的定义与性质 • 对数函数的运算性质 • 对数函数的应用 • 对数函数与其他函数的比较 • 对数函数的学习方法与技巧
01 对数函数的定义与性质
定义
自然对数
以e为底的对数,记作lnx,其中e是自然对数的底数,约等于 2.71828。
常用对数
以10为底的对数,记作lgx。
当0<a<1时,指数函数和对数函数都 是减函数,但它们的下降速度也不同, 对数函数的下降速度更快。
与幂函数的比较
幂函数y=x^n(n为实数)的图像在 第一象限和第三象限都存在,而对数 函数y=log_a x(a>0且a≠1)的图像 只存在于第一象限。
幂函数的增长速度与指数和对数函数 不同,当n>0时,幂函数的增长速度 比对数函数更快;当n<0时,幂函数 的增长速度比对数函数更慢。

《对数函数及其性质》课件

《对数函数及其性质》课件

三、指数函数与对数函数的关系
1
指数函数与对数函数的反函数关系
阐述指数函数和对数函数之间的反函数关系及其重要性。
2
指数函数与对数函数的图像及性质
比较指数函数和对数函数的图像特征和性质。
四、对数方程与指数方程
对数方程及其求解方法
介绍对数方程的形式、求解方法和实际应用。
指数方程及其求解方法
解释指数方程的基本概念、求解技巧和实例演练。
对数方程与指数方程的联系
探究对数方程和指数方程之间的关系及其应用。
五、对数函数的应用
1
对数函数在生活和科学中的应用
展示对数函数在生活和科学领域中的实际应用案例。
2
对数函数在各行各业的应用案例
介绍对数函数在不同行业中的具体应用案例。
六、小结与思考
1 对数函数的基本概念和性质的总结
归纳总结对数函数的基本概念和性质,加深理解。
列举和解释对数函数的常见 记法和符号。
对数函数的图像
展示并分析对数函数的图像及其特性。
对数函数的性质
探讨对数函数的一些基本性质和规
讲解对数函数加法公式的推导 和应用。
对数函数的减法公式
说明对数函数减法公式的用法 和示例。
对数函数的乘法公式
详细介绍对数函数乘法公式的 原理和应用。
2 对数函数和指数函数的联系和应用的思考
思考对数函数和指数函数之间的联系以及更广泛的应用领域。
3 对数函数的拓展知识和深入研究方法的思路
提供对数函数拓展知识和深入研究的思路和方向。
《对数函数及其性质》 PPT课件
本PPT课件将介绍对数函数的定义、基本特点、运算法则,以及与指数函数的 关系,对数方程与指数方程,对数函数的应用等内容。

对数函数及其性质ppt

对数函数及其性质ppt
符号
常用对数函数记作f(x) = lgₐx,以10 为底;自然对数函数记作f(x) = lnₐx, 以e为底。源自对数函数的性质定义域
对数函数的定义域为(0, +∞),这是因为对数函数的底数必须大于0且不等于1。
值域
对数函数的值域为R,即所有实数。
单调性
当a > 1时,对数函数是增函数;当0 < a < 1时,对数函数是减函数。
对数函数的除法性质
总结词
对数函数的除法性质是指当两个对数相除时,其结果等于将被除数的底数取倒数后再取对数。
详细描述
对数函数的除法性质可以表示为log_b(m) / log_b(n) = log_b(1/n) / log_b(1/m) = log_b(m/n),其中 m和n是正实数,且n不等于1。这个性质在对数运算中也非常重要,因为它简化了多个对数项的除法运算。
对数函数,我们可以更好地理解放射性物质在环境中的行为和影响。
THANKS
感谢观看
对数函数及其性质
• 对数函数的定义与性质 • 对数函数的运算性质 • 对数函数的应用 • 对数函数与其他函数的比较 • 对数函数在实际问题中的应用案例
01
对数函数的定义与性质
定义与符号
定义
对数函数是指数函数的反函数,记作 f(x) = logₐx (a > 0, a ≠ 1),其定义 域为(0, +∞)。
对数运算法则
对数函数具有对数运算法则,包括换底公式、对数乘法公式、对数除法公式等。
对数函数的图象
01
图像形状
对数函数的图像通常为单调递增或递减的曲线,随着x的增大而无限接
近y轴。
02
图像特点
对数函数的图像具有垂直渐近线,即x=1和x=0。此外,当a>1时,图

对数函数及其性质(优质课)ppt

对数函数及其性质(优质课)ppt
应注意,必须是两个函数才可以互为反函数,即定 义域内的任意一个自变量x有且仅有1个与之对应的 函数值y。
反函数的性质:一个函数的定义域就是它反函数的 值域,值域就是它反函数的定义域。
1 、对数函数的概念 2 、对数函数的图像和性质 3 、会求定义域 4 、会用单调性比较大小
作业:
P73 练习 2、3 P74 习题A组 7、8
解:①因为x2 >0,即x≠0,
所以函数y=logax2 的定义域是{x│x≠0}
②因为4-x>0,即x<4, 所以函数y=loga(4-x)的定义域是{x│x<4}
③因为9-x2>0,即-3<x<3, 所以函数y=loga(9-x2)的定义域是{x│-3<x<3}
例2 比较下列各组数中两个值的大小:
解:
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 )
⑴考察对数函数 y = log 2x,因为 它的底数2>1,所以它在(0,+∞) 上
y
log28.5 log23.4
是增函数,于是log 23.4<log 28.5
线 -2
对数函数:y = loga x (a>0,且a≠ 1) 图象与性质
x … 1/4 1/2 1
列 表
y
y
log 2
log 1
x…
x…
2
-2 2
-1 1
0 0
y

2

1 11
42
0 1 23 4
x
24 …
1 2… -1 -2 …

对数函数ppt课件

对数函数ppt课件
金融计算
对数函数在金融领域中常用于计 算复利、折现等,以及对股票价
格的分析和预测。
物理学
在物理学中,对数函数经常用于描 述声学、光学、电磁学等领域的现 象,例如声压级、分贝的计算,以 及光谱分析等。
化学
在化学中,对数函数用于描述化学 反应速率、pH值、电离常数等,帮 助科学家更好地理解和预测化学反 应过程。
总结词
对数函数的除法性质是指当一个对数除以另一个对数时,其结果等于前一个对数 的底数除以后一个对数的底数。
详细描述
如果log_b(m) / log_b(n) = log_n(m)。例如,log_2(4) / log_2(2) = log_2(2) = 1。
05
CHAPTER
对数函数与其他函数的关系
值域
对数函数的值域为R,即所有实数。
换底公式
log_bx=c/d=log_a(b^c)/log_a(b^d), 其中b>0且b≠1,a>0且a≠1。
单调性
当底数a>1时,函数在(0, +∞)上单调递 增;当0<a<1时,函数在(0, +∞)上单调 递减。
对数函数与指数函数的关系
对数函数和指数函数 互为反函数,即如果 y=log_ax(a>0且 a≠1),则x=a^y。
函数转化为反三角函数或反之来解决。
THANKS
谢谢
对数函数和指数函数 的性质有许多相似之 处,如单调性、奇偶 性等。
对数函数和指数函数 的图像关于直线y=x 对称。
02
CHAPTER
对数函数的图像与性质
对数函数的图像
图像形状
对数函数的图像在坐标系 中呈现出先减后增的单调 性,随着x的增大,y的值 先减小后增大。

对数函数的图像和性质课件

对数函数的图像和性质课件
奇函数,a 为常数.
(1)求 a 的值;
(2)试说明 f(x)在区间(1,+∞)内单调递增;
(3)若对于区间[3,4]上的每一个 x 值,不等式
f(x)>(12)x+m 恒成立,求实数 m 的取值范围.
又∵对任意x∈[3,4]时,gx>m, 即log12xx+-11-12x>m恒成立, ∴m<-98,即所求m的取 值范围是(-∞,-98).12 分
3分类讨论当a>1时,函数y=logax在定义域 上是增函数,则有logaπ>loga3.141; 当0<a<1时,函数y=logax在定义域上是减
函数,则有logaπ<loga3.141.
综上所得,当a>1时,logaπ>loga3.141; 当0<a<1时,logaπ<loga3.141.
题型二 对数函数的图像
5.3 对数函数的图像和性质
学习目标
学习导航
重点难点
重点:对数函数y=logax的图像性质.
难点:对数函数图像的变化及应用,指数函 数与对数函数之间的关系.
新 知 初 探 ·思 维 启 动
对数函数的图像和性质
研究对数函数y=logaxa>0且a≠1的图像
和性质,底数要分为_________和______a_>__1两种
变式训练 1.比较下列各组中两个值的大小; 1log31.9,log32; 2log23,log0.32; 3logaπ,loga3.141.
解:1单调性法因为y=log3x在0,+∞上是增
函数,所以log31.9<log32.
2中间量法因为log23>log21=0,log0.32<0, 所以log23>log0.32.
3.求下列函数的单调区间.
1y=log0.3x2-2x-8; 2y=log0.4x2-2log0.4x+2. 解:1令t=x2-2x-8,则y=log0.3t在0,+∞

对数函数的图像及性质ppt课件

对数函数的图像及性质ppt课件
“同正异负”
> ① log35.1 0 < ③log20.8 0
< ② log0.12
0
> ④log0.20.6 0
思考:4、解对数不等式
log a f (x) log a g(x)
1.a 1
f (x) 0 g(x) 0 f (x) g(x)
2.0 a 1
f (x) 0 g(x) 0 f (x) g(x)
y log 2 x和y log 1 x 的图象。
作图步骤: ①列表, 2
②描点, ③用平滑曲线连接。
x…
列 表
y
y
log 2
log 1
x
x
… …
2
y

2

1 11
42
0 12

-1
线
-2
1/4 1/2 1
-2 -1 0 2 10
y=log2x
34
x
y=log1/2x
24 …
1 2… -1 -2 …
y
logc x logd x
loga x logb x
o
x
0< c< d < 1< a < b
三.对数函数的图性质:
函数
y = log a x ( a>0 且 a≠1 )
底数
a>1
y
0<a<1
y
图象
o
1
x
1
o
x
定义域 值域 奇偶性 定点 单调性 函数值 符号
(0,+∞)
R 非奇非偶函数 ( 1 , 0 ) 即 x = 1 时,y = 0 在 ( 0 , + ∞ ) 上是增函数 在 ( 0 , + ∞ ) 上是减函数

对数函数及性质课件

对数函数及性质课件

对数函数在测量和描述生命 现象方面有广泛的应用。例 如在描述剂量响应曲线时。
对数函数被应用于广泛的领 域,如在测量和控制光线、 声音和电信号方面。
结论
重要性
对数函数是现代数学和科学中不可或缺的基础,为 各行各业中的问题提供解决方案。
应用前景
随着科学和技术的不断进步,对数函数在未来会有 更广泛和更深入的应用。
对数函数的性质
变换规律
对数函数的图像可以被平移、伸缩 和反转。
导数
对数函数的导数公式为 (ln a)/x,导 函数的图像为一条正比于 y/x 的直 线。
级数展开
对数函数可以用麦克劳林级数和泰 勒级数进行展开。
应用实例
1 数学、物理和统计
2 生命科学
3 工程
对数函数被运用于求解方程、 计算统计数据以及研究复杂 物理现象。
参考资料
教材或论文
高等数学、微积分学等相关的 教材或论文。
研究报告或实验数据
对数函数在具体领域中的研究 报告或实验数据。
网站或应用程序
在线的对数函数计算工具、应 用程序或网站。
对数函数及性质Leabharlann pt课件欢迎来到对数函数及性质的ppt课件!这个课程将会介绍对数函数的相关性质, 并探索对数函数在不同领域中的应用。
概述
定义
对数函数是用对数运算表示的函数。
表述
对数函数的表示公式为 y = loga(x),其中 x、y 是变数,a 是底数。
常用与自然对数函数
对数函数按底数可以分为常用对数函数和自然对数函数两种。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
图 形
y=log x
2
y=log x
3
0
1
y=log y=log 1/2 x
1/3
x
x
补充 底数互为倒数的两个对数 性质 函数的图象关于x轴对称。 一
底数a>1时,底数越大,其图象 补充 越接近x轴。 性质 底数0<a<1时,底数越小,其图 二 象越接近x轴。
y 3
x
y2
x
y log2 x
例1 求下列函数的定义域: (1) y (2)y
log a x
2
log a (4 x)
2
x x 0 x x 4
x x 4
1,2
(3)y log ( x 3) ( x 6 x 8) (4) y (5) y
log 1 ( x 1)
log a (log a x)
y log3 x
练一练: 比较a、b、c、d、1的大小。
y
y=log a x y=log b x
0
1
x
y=log c x
y=log d x
答:b>a>1>d>c
思考:logab>0 时 a、b 的范围是____________, logab<0 时 a、b 的范围是____________。
log 0.7
0.8
log
1 0.7
0
∴ log
0.9 1.1
log 0.7
0.8
log 0.7 0.8 log 0.7 0.7 1 又
由指数函数的单调性可知: 0.8 0.9 0.9 0 1.1 1.1 1 ∴ log 0.7 1.1
∴从小到大的排列是:log1.10.9 log 0.7 0.8 1.10.9
2
思考题:
已知函数f ( x) lg (a 1) x ( a 1) x 1
2 2


(1) 若f ( x)的定义域为R,求实数a的取值范围; (2)若f ( x)的值域为R,求实数a的取值范围
我们研究函数的基本步骤
提出函数概念 → 画出函数图像 ↓ 应用函数性质 解决问题 根据图像特征 得出函数性质

对数函数的概念:
函数 y log a x (a 0, 且a 1)叫做对数函数. 其中x是自变量,函数的定义域是(0,+∞).
反函数
象指数函数与对数函数这样,其中一个函数是一一映 射,可以把这个函数的因变量作为一个新的函数自变量, 而把这个函数的自变量作为新的函数的因变量,我们称新 函数与原函数互为反函数.
2.比较下列各数的大小,并用“<”将各数连接
起来:2.3 , log 4, log 5 3 2.5 0.7
3.已知函数 y log 0.5 ( x 2 x 63) (1)求函数的定义域和值域; (2)求函数的单调区间;
2
4.解方程 ① lg x lg( x 3) 1 ② (log 2 x) log 2 x 12 0
2
奇偶性。
例6 已知函数y log 4 (2 x 3 x )
2
(1) 求定义域; (2)求函数单调区间; (3)求值域.
例7 下列四个数中最大的是 ______ A.ln 2
2
B. ln(ln 2)
C. ln 2
a
D. ln 2
例8设a,b,c为正数,较大小的方法及规律)
1.底数相同时:①先看底数判断单调性;
②后看真数比大小.
2.底数不同时:通常用1,0,-1作为参照数,
对参与比较的数进行分类,再进行大小比较.
例4 解下列不等式: (1) 1 (3 x 4) log 1 (3 x ) log
2 2
(2)log a (3x 4) log a (3 x) 3 x 4 0 1 (2)解:当a>1时, 3 x 0 x3 4 3 x 4 3 x
对数函数的图象与性质
画出函数y log 2 x, y log 3 x, y log 1 x,
2
y log 1 x的图象
3
对数函数的性质 a>1
3
0<a<1
3 2.5 2 1.5
2.5
2
1.5
图 象
1
-1
1
1
1
1
0.5
0.5
0
-0.5
1
2
3
4
5
6
7
8
-1
0
1
-0.5
1
2
3
4
5
6
7
8
-1
-1
-1.5
-1.5
-2
-2
-2.5
-2.5
定义域: 值域:
(0,+∞)
R
y0
(1,0) (a,1) 性 过点 y0 x (0,1) y 0 质 x (0,1)
x (1,)
x (1,) y 0 在(0,+∞)上是 增 函数 在(0,+∞)上是 减 函数
2
归纳:求函数的定义域应从以下几个方面入手 (1)分母不能为0;
(2)函数含有开偶次方运算时,被开方式必须大 于等于0; (3)有对数运算时,真数必须大于0.底数必须大 于0且不为1. (4) 0次幂的底数不能为零.
例2、比较下列各组数中两个数的大小: (1)log 2 3 . 4 与 log 2 8 . 5 (2)loga5.1 , loga5.9
2
1 1 log 1 b, log 2 c.则a, b, c的 2 2 2 大小关系.
b
c
1.求下列函数的定义域:
1 (1) y log 5 (1 x); (2) y ; log 2 x 1 (3) y log 7 ; (4) y log 3 x . 1 3x
回顾指数函数 y a (a 0且a 1) 的图象和性质
x
a>1 图 象
y=ax (a>1)
y
0<a<1
y
y=ax (0<a<1)
1
O
1 1 x
O
1
x
R ◆定义域: 函 ◆值域: (0,+∞) 数 ◆经过点 (0,1) 性 ◆a>1时,在R上是 0<a<1时,在R上是 质 增函数; 减函数.
(3)log 6 7 与 log 7 6 (4) log 3π 与 log 20.8
(5) log 2 3与 log3 4
y 3
x
y2
x
y log2 x
y log3 x
例3 将log 0.7 , log
0.8
0.9 1.1
,1.1
0.9
由小到大排列
解:利用对数函数的单调性可知:
log1.10.9 log1.11 0
3 x 4 0 4 1 当0<a<1时, 3 x 0 x 3 4 3 x 4 3 x
归纳:解对数型函数不等式的规律
(1)首先考察函数的定义域; (2)利用对数函数的单调性将对数不等式转 化为一元一次不等式或一元二次不等式.
例 5.判断函数 f ( x) log 2 ( x 1 x) 的
相关文档
最新文档