第三章矩阵与线性代数计算

合集下载

线性代数 第三章 矩阵 第五节

线性代数 第三章  矩阵 第五节

定义
矩阵A中不等于零的子式的最高阶数
称为矩阵 A 的秩。记为 R(A) 也就是说:
R(A)= r A中存在非零的r 阶子式,且所
有的r+1 阶子式全为零。
3
例如对 A 1
1 3
1 2
A 0, 3 1
1 0 R( A) 2
3
4 2 3
矩阵 的秩与向量 组的秩的关系
若R(A)=r,不妨设A的左上角r阶子式不为0,则它的 r个列向量组线性无关,添加n-r个分量后得到A的
前r个n维列向量也线性无关,可以证明这r个向量是A的 列向量组的最大无关组,因此A的列向量组的秩为r,
与A的秩相等.同理可说明A的行向量组的秩也为r.
注意:
(1)若矩阵 A 中没有不等于零的子式,则 R(A) 0 (2)秩为r 的矩阵可能有等于零的r及r-1 阶子式。
(3) 若A中有一个r阶子式不为0,则R(A) r;
(4)若A中所有r阶子式都为0,则R(A)<r
(5) R( AT ) R( A)由于行列式行列互换后其值不变 Nhomakorabea而矩阵 AT
的每一个子式都是A的某个子式的转置,因此A的
非零子式的最高阶数与 AT 的非零子式的最高阶
数相同,即矩阵的转置不改变矩阵的秩。
C
k n
个。
例如
1 2 3 5
在矩阵 A= 0 4 1 2
1 3 2 1
中可选出C43 4个三阶子式, 1 2 5
选1,2,3行和1,2,4列的子式 0 4 2 131
在A中可选出
C32
C
2 4
18
个二阶子式,
比如1,3行2,4列位于这些行列交叉点上的元素构
25

大学线性代数课件第三章第一节可逆矩阵

大学线性代数课件第三章第一节可逆矩阵
证明方法
假设有两个不同的逆矩阵$B$和$C$,则有$AB = BA = I$和$AC = CA = I$。由此可得$(B - C)A = 0$和 $A(B - C) = 0$,从而推出$(B - C)$是零矩阵,即$B = C$。
逆矩阵与原矩阵的关系
逆矩阵的性质
如果矩阵$A$是可逆的,那么它的逆矩阵和原矩阵满足关系式 $AA^{-1} = A^{-1}A = I$。
分解方法
常见的矩阵分解方法包括QR 分解、LU分解、SVD分解等, 这些方法都利用了可逆矩阵的 性质。
应用场景
在数值分析、计算物理等领域 中,矩阵分解是非常重要的计 算工具,可逆矩阵的应用为这 些领域提供了强大的支持。
特征值和特征向量的计算
特征值和特征向量
可逆矩阵可以用于计算特征值和 特征向量,这些数值在许多领域 中都有重要的应用。
p;3 1&2 end{bmatrix} $$
习题
判断矩阵B是否可逆,如果可逆,求其逆矩阵。
$$ B = begin{bmatrix}
习题
4 & -3 1&2 end{bmatrix} $$
答案与解析
矩阵A的行列式值为
$ |A| = 2*2 - 3*1 = 1 neq 0 $,因此矩阵A是可逆的。
矩阵A的逆矩阵为
$ A^{-1} = frac{1}{2} begin{bmatrix}
答案与解析
2 & -3
end{bmatrix} $。 1&2
01
03 02
答案与解析
矩阵B的行列式值为
$ |B| = 4*2 - (-3)*(-1) = 5 neq 0 $,因此矩 阵B是可逆的。

第三章-数值分析(08)用矩阵分解法解线性代数方程组

第三章-数值分析(08)用矩阵分解法解线性代数方程组

OO O
M M
an1
bn1
cn1
xn1
d
n1
an bn xn dn
矩阵表示 Ax d
数值分析
数值分析
2 x1 x2
1
例:求解方程组:
x1
2 x2
1
x2 2 x3 x4 0
x3
2
x4
1
2 1
1
u1 r1
解:A
1
2
LU
l2
1
u2 r2
1 2 1
1 2
l3
1 l4
1
u3
r3 u4
1
2 1
1
2
1 23
1 12
1
32 0 2
1
3
2
ck rk ,
k 2, 3,L , n 1
数值分析
数值分析
b1 u1 , c1 r1, a2 l2u1
b2 l2r1 u2 l2c1 u2, c2 r2 ,
ak lk uk1 ,
k 2, 3,L , n
bk lk rk1 uk lkck1 uk , k 2, 3,L , n
y1
f
,

y2
y3 y4
113327
117
2 解Ux
1 7
2 0
0
0 0 1 0
1
1 2
13 7
11 7
x1 x2 x3 x4
=
-1
13 2
13 7 117
,得
x1 x2 x3 x4
=
较常见带状矩阵为带宽为3(p=q=2,w=3)的矩阵。
a11
a12

线性代数第三章

线性代数第三章

Am n 的各阶子式的总数:
min( m , n )

k 1
k k CmCn .
任意非零矩阵都至少有一个1阶非零子式(其每个非零元都可构成一个
1阶非零子式), 更高阶子式(如有)中还可能有非零的.
一个矩阵所具有的非零子式的最高阶数这一 数字与该矩阵的多方面性质有关, 将这一数字定
1 A 0 0 2 2 0 1 8 0 0 8 0
0
由此知A可逆, 故系数 行列式非零,于是克莱 默法则也适用本题.
3
行最简形矩阵
2
(29,16, 3)
1
x1 2 x2 x3 0 x2 4 x3 4 . 例3.4.2 求解线性方程组 4 x 5 x 8 x 9 1 2 3
由性质 5
ci c n i i 1, 2,, n
~
( A, B )

R ( A) R ( B ).
证毕.
例3.3.4 设A为n阶方阵,证明: R( A E) R( A E) n. 证明:
A E
ri ( 1) i 1, 2, , n
~
EA
练习 设A2=E,证明: R(A+E)+R(A-E)=n.
B的各非零行的首个非零元处在第1,2,3行、第1,2,4列, 分别对应于A 的第4,2,3行、第1,2,4列, 其交叉点处的元素构成的行列式
3 2 D 2 1 0 6
6 5 1
A的第2,3,4行、第1,3,4 列交叉点处的元素也可构成A 的最高阶非零子式.想想为什 么?还可以怎么取?
就是A的一个最高阶非零子式.
R( A) R( B) 3 .
例3.3.2 解:(2)求A的一个最高阶非零子式.事实上

《线性代数》课件-第3章 矩阵

《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。

高等数学线性代数教材目录

高等数学线性代数教材目录

高等数学线性代数教材目录第一章行列式1.1 行列式的引入1.2 二阶和三阶行列式的计算1.3 行列式的性质和性质的应用1.4 行列式的性质证明第二章矩阵和向量2.1 矩阵的概念和基本运算2.2 矩阵的转置和逆2.3 向量的线性相关性和线性无关性2.4 向量组的秩和极大线性无关组第三章矩阵的运算3.1 矩阵的加法和减法3.2 矩阵的数乘3.3 矩阵的乘法3.4 矩阵的特殊类型第四章线性方程组4.1 线性方程组的概念和解的分类4.2 齐次线性方程组和非齐次线性方程组的解 4.3 线性方程组的向量表示第五章向量空间5.1 向量空间的定义和例子5.2 向量子空间和子空间的概念5.3 向量空间的线性组合和生成子空间5.4 基和维数第六章矩阵的特征值和特征向量6.1 特征值和对角化6.2 特征多项式和特征方程6.3 相似矩阵和相似对角矩阵6.4 实对称矩阵的对角化第七章线性变换7.1 线性变换的概念和性质7.2 线性变换的矩阵表示7.3 线性变换的特征值和特征向量7.4 线性变换的相似、迹和行列式第八章内积空间8.1 内积的定义和性质8.2 欧几里得空间和具有内积的实向量空间8.3 向量的正交性和正交子空间8.4 施密特正交化方法第九章广义特征值问题9.1 广义特征值问题的引入9.2 广义特征值的计算9.3 广义特征值与相似变换9.4 对称矩阵的广义特征值问题与对角化第十章特殊矩阵的标准形式10.1 对称矩阵的对角化10.2 正定矩阵和正定二次型10.3 实对称矩阵的正交对角化10.4 复数矩阵的标准型这是《高等数学线性代数》教材的目录, 包含了十个章节,每个章节中有相应的小节来详细介绍相关内容。

这本教材综合了高等数学和线性代数的知识,旨在帮助读者掌握线性代数的基本概念、理论和方法,以及应用于实际问题的能力。

希望读者通过学习这本教材,能够系统地理解和应用线性代数的知识,为今后的学习和研究打下坚实的基础。

线性代数课件第三章矩阵的秩课件

线性代数课件第三章矩阵的秩课件

VS
矩阵的秩可以用于判断两个矩阵是否相似。如果两个矩阵相似,则它们的秩相同。
特征值和特征向量
矩阵的秩还可以用于确定矩阵的特征值和特征向量的个数。对于给定的矩阵,其秩等于其非零特征值的个数。
矩阵相似
矩阵的秩可以用于矩阵分解,如奇异值分解(SVD)和QR分解等。这些分解方法将一个复杂的矩阵分解为几个简单的、易于处理的矩阵,有助于简化计算和解决问题。
1 2 3 | 0 0 -3
7 8 9 | 0 0 0`
```
由于非零行的行数为2,所以矩阵B的秩为2。
题目3
求矩阵C=[1 -2 3; -4 5 -6; 7 -8 9]的秩。
解答
首先,将矩阵C进行初等行变换,得到行阶梯矩阵
```
继续进行初等行变换,得到
1 -2 3 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0
矩阵秩的应用
03
线性方程组的解
矩阵的秩可以用来判断线性方程组是否有解,以及解的个数。如果系数矩阵的秩等于增广矩阵的秩,则方程组有唯一解;否则,方程组无解或有无数多个解。
最小二乘法
矩阵的秩还可以用于最小二乘法,通过最小化误差平方和来求解线性方程组。最小二乘法的解就是使残差矩阵的秩等于其行数或列数的最小二乘解。

线性代数第三章矩阵的逆(习题课)

线性代数第三章矩阵的逆(习题课)
线性代数第三章矩阵的逆( 习题课)
目录
• 矩阵的逆的定义和性质 • 逆矩阵的运算规则 • 逆矩阵的应用 • 习题解析与解答
01
矩阵的逆的定义和性质
定义与性质
逆矩阵的定义
如果存在一个矩阵A-1,使得A*A-1=I (单位矩阵),则称A为可逆矩阵, A-1为A的逆矩阵。
逆矩阵的性质
若A是可逆矩阵,则A的逆矩阵A-1也 是可逆矩阵,且(A-1)-1=A。同时, 若B是A的逆矩阵,则AB=BA=I。
03
逆矩阵的应用
解线性方程组
线性方程组
线性方程组是数学中一个常见的 问题,它涉及到多个未知数和方 程。通过矩阵的逆,我们可以找 到线性方程组的解。
求解步骤
首先,将系数矩阵进行转置,然 后计算其行列式值。如果行列式 值不为零,则存在唯一解。最后, 通过矩阵的逆计算出线性方程组 的解。
应用场景
线性方程组广泛应用于各个领域, 如物理、工程、经济等。通过矩 阵的逆,我们可以更高效地解决 这些领域中的问题。
综合题2解析
题目要求求一个给定矩阵的逆矩阵, 并判断其是否可逆。同时,我们需要 解决一个与该矩阵相关的问题。首先 ,我们判断矩阵是否可逆。如果可逆 ,我们再使用公式法或分块法计算逆 矩阵。然后,我们将逆矩阵应用于实 际问题中以获得解决方案。
综合题目3解析
题目要求求多个给定矩阵的乘积的逆 矩阵,并验证其正确性。同时,我们 需要解决一个与这些矩阵相关的问题 。首先,我们计算多个给定矩阵的乘 积。然后,我们使用公式法或分块法 计算其逆矩阵。最后,我们通过乘以 其原矩阵来验证逆矩阵的正确性。同 时,我们将逆矩阵应用于实际问题中 以获得解决方案。
量βi;最后,计算P^(-1)AP=B。

线性代数课件第三章矩阵的秩

线性代数课件第三章矩阵的秩

线性方程组的解 与矩阵的秩的关 系
利用矩阵的秩判 断线性方程组是 否有解
利用矩阵的秩求 解线性方程组的 步骤和方法
矩阵的秩在判断向量组线性相关性的应用
矩阵的秩与向量组 线性相关性的定义
矩阵的秩在判断向 量组线性相关性中 的应用
矩阵的秩与向量组 线性相关性的关系
矩阵的秩在解决实 际问题中的应用
矩阵的秩在求向量空间维数中的应用
汇报人:PPT
PPT,a click to unlimited possibilities汇报人Leabharlann PPT目录矩阵秩的定义
矩阵的秩的概念
矩阵秩的几何意义
矩阵秩的计算方法
矩阵秩的性质和定理
矩阵的秩的计算方法
定义:矩阵的秩是其行向量或列向量的最大线性无关组的个数
计算方法:通过初等行变换或初等列变换将矩阵化为阶梯形矩阵,然后数非零行数或非零列 数
利用初等列变换求矩阵的秩的证明
初等列变换的定义和性质
阶梯形矩阵的秩的计算方法
添加标题
添加标题
添加标题
添加标题
利用初等列变换将矩阵化为阶梯形 矩阵
证明利用初等列变换求矩阵的秩的 正确性
零矩阵的秩
零矩阵的定义:所 有元素都为0的矩 阵
零矩阵的秩为0
零矩阵与任何矩阵 相乘都等于0
零矩阵在数学中的 意义和作用
性质:矩阵的秩与行数和列数有关,且不超过行数和列数中的最小值
应用:矩阵的秩在解线性方程组、判断向量组的线性相关性等方面有重要应用
矩阵的秩的性质
矩阵的秩等于其行秩或列秩
矩阵的秩是其所有子矩阵的 秩的最大值
矩阵的秩是唯一的
矩阵的秩等于其转置矩阵的 秩
矩阵的秩在解线性方程组中的应用

线性代数与空间解析几何01-第19节 矩阵的运算(二)_19

线性代数与空间解析几何01-第19节 矩阵的运算(二)_19

3.2 矩阵的运算
本节基本要求
u 了解矩阵的线性运算 u 掌握矩阵的乘法 u 了解矩阵转置的性质 u 了解方阵多项式及方阵行列式的的性质
本节重点、难点
u 重点:矩阵的乘法 u 难点:矩阵的乘法及其性质,矩阵的
转置及其性质
3.2 矩阵的运算
第3讲 矩阵的运算(二)
3.2 矩阵的运算
本讲主要内容
u方阵的幂 u矩阵的转置 u方阵的行列式 u共轭矩阵 u小结与思考题
线性代数与空间解析几何
第3章 矩阵
本章主要内容
u 3.1 矩阵 u 3.2 矩阵的运算 u 3.3 矩阵的初等变换 u 3.4 逆矩阵 u 3.5 矩阵的分块 u 3.6 矩阵的秩
3.2 矩阵的运算
本节主要内容
u矩阵的加法 u矩阵的数乘 u矩阵的乘法 u方阵的幂 u矩阵的转置 u方阵的行列式 u共轭矩阵
0 1 0 1
证 显然n = 1时, 等式成立, 假设n=k时等式 成立, 即 1 k 1 k .
0 1 0 1
当n=k+1时, 有 1 k1 1 k 1 1 k 1
0 1 0 1 0 1 0 1 0 1
3.2 矩阵的运算
3.2.4 方阵的幂 例 3.2.4 试证 1 n 1 n (n 1, 2,).
2 1
3 2
,
1 则AT 2
3
3 1. 2
矩阵转置的运算律 (假设运算都是可行的):
(1) (AT)T = A;
(2) (A+B)T =AT + BT;
(3) (kA)T = kAT (k为数);
(4) (AB)T = BTAT .
对有限个矩阵乘积的转置, 有
( A1A2 As )T

四川大学线性代数课件第三章第二节 初等矩阵和逆矩阵求法

四川大学线性代数课件第三章第二节 初等矩阵和逆矩阵求法
另:利用初等行变换求逆矩阵的方法,还可用于求矩阵 A1B. A1( A B) (E A1B)
即 (A B)
初等行变换
2020/3/4
E A1B
25
例3:求矩阵 X ,使 AX B,其中
1 2 3
2 5
A 2 2 1, B 3 1.
3 4 3

0
1
0

0 0 1

2
1
2

0 0 1


1
2
2

0 1 0
1
12
c2 ( 110)

0
2


1
0
0 1 0 0.1 0.2 0.1
0
1
19 c1 c2 12 0
1
c3 c2 19
Ps L P2P1 A E, 等号两边右乘 A1,
(Ps L P2P1 )E A1
即, A, E 初等行变换 E,A1
又AA1 E , A Ps L P2P1 E,
E Ps L P2P1 A1,
2020/3/4
即,

相 当 于 在A的 左 边 乘 一 个 相 应 的m阶 初 等 矩 阵 ; 对A施 行 一 次 初 等 列 变 换 ,相 当 于 在A的 右 边 乘 一 个 相 应 的n阶 初 等 矩 阵 。
证明:
设A按行分块,对A施行倍加变换,将A的第j行 k倍加到第i行上,即
2020/3/4
14
A

1
2020/3/4
16
必要性: n 阶可逆矩阵

线性代数课件第三章

线性代数课件第三章
的元素都为零, 则称这个矩阵为标准形矩阵.
定理 任何矩阵都可经过单纯的初等行变换化为行
最简形矩阵. 任何矩阵都可经过初等变换化为标准形矩 阵.
下面我们还是通过例子来说明该定理.
单击这里开始
从上面的例子可见, 任何矩阵经单纯的初等行变换 必能化为行阶梯形矩阵和行最简形矩阵, 但不一定能化 成标准形矩阵, 如果再使用初等列变换, 则一定能化成 标准形矩阵. 将矩阵化为行阶梯形矩阵的方法不是唯一 的, 所得结果也不唯一. 但一个矩阵的标准形是唯一的, 这反映了矩阵的另一个属性, 即矩阵的秩的概念.
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换 第二节 矩阵的秩 第三节 线性方程组的解 知识要点 释疑解难 习题课
第三章 矩阵的初等变换与线性方程组
本章先引进矩阵的初等变换, 建立矩阵的秩的概念; 然后利用矩阵的秩讨论齐次线性方程组有非零解的充要 条件和非齐次线性方程组有解的充要条件, 并介绍用初 等变换解线性方程组的方法.
(i) 对调两行(对调 i, j 两行, 记作 ri rj ); (ii) 以数 k 0 乘某一行中的所有元素
(第 i 行乘 k , 记作 ri k ); (iii) 把某一行所有元素的 k 倍加到另一行对应的元素 上去(第 j 行的 k 倍加到第 i 行上,记作 ri + krj).
把定义中的“行”换成“列”,即得矩阵的初等列变 定义换. 的矩阵的初等行变换与初等列变换, 统称初等变换.

①-② ②-③
x2 x3 3, x4 3,
② ③
(B5)
0 0. ④
至此消元结束, 且得到 (1) 的同解方程组 (B5), (B5) 是方程组 (1) 的所有同解方程组中最简单的一个, 其中

线性代数-第三章矩阵

线性代数-第三章矩阵
推论3设A是n阶可逆矩阵,则A可表为初等矩阵的乘积.从而有A是可逆矩阵 A可表示为初等矩阵的乘积.
推论4若A,B均为可逆矩阵,则
r(AC)=r(C);r(CB)=r(C);r(ACB)=r(C).
推论5可逆矩阵A仅施行初等行(或列)变换即可化为单位矩阵.
例3.4.2求可逆矩阵A= 的逆矩阵。
5、矩阵的等价和等价标准形
定义3.5.1设A,B均为m×n矩阵.若A经过若干次初等行、列变换可化为B,则称A与B等价.
性质3.5.1设A为一个秩为r的矩阵,则A与 等价,并称 为A的等价标准形
下面介绍判断矩阵等价的几个充要条件.
定理3.5.1设A,B均为m×n矩阵,则下述条件中的每一个均为A与B等价的充要条件:
(1)存在m阶可逆矩阵P与n阶可逆矩阵Q使PAQ=B;
定义3.4.1对单位矩阵 施行一次初等变换后所得到的矩阵称为初等矩阵.
据此对单位矩阵 施行三种初等变换所对应的初等矩阵分别为:
1、互换
2、倍乘
3、倍加
定理3.4.1对矩阵 施行一次初等行变换相当于在 的左边乘一个相应的m阶初等矩阵;对 施行一次初等列变换相当于在 的右边乘一个相应的n阶初等矩阵.
推论2设 是秩为r的矩阵,则存在m阶可逆阵P,n阶可逆阵Q,使得
(2)r(A)=r(B);
定理3.5.2秩 秩 ,秩 秩
习ቤተ መጻሕፍቲ ባይዱ3.5
3、已知 与 等价,则a=为什么?
4、证明:秩为r的矩阵可表示为r个秩为1的矩阵之和。
定理3.1.5设 ,A,B,是矩阵,它们的行数和列数使下列各式有意义,则有
1、
2、
3、
4、
5、
定理3.1.6(1)同阶(反)对称矩阵的和仍为(反)对称矩阵

《线性代数》课件第3章

《线性代数》课件第3章
2.加法交换律 : A + B = B + A; 3. A + 0m×n = A; 4. A + (−A) = 0m×n; 5. a(A + B) = aA + bB; 6. (a + b)A = aA + bA; 7. (ab)A = a(bA).
定义1.4对于一组m × n矩阵A1,..., At和数c1,...,ct , 矩阵 c1A1 + + ctAt
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 a 21
am1
a12 a 22
am 2
a 1n a 2n
amn
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
称为S
上一个m
×
n矩阵,通常简记为
(aij
) m
×n

(aij
).
一个n × n矩阵称为n阶矩阵或n阶方阵.在一个n阶矩阵中,从
左上角至右下角的一串元素a11, a22 ,..., ann称为矩阵的对角线.
+
a2
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
0 1 0
0
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
+
+
an
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
0 0
0 1
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
= a 1ε1 + a 2ε2 +
+ anen .
§3.2 矩阵的乘法
( ) ( ) 定义2.1(矩阵的乘法)设A = aij 是一个m×n矩阵, B = bij 是一个
1. 把A整个分成一块,此时A就是一个1×1的分快矩阵;
2. 把A的每一行(列)或若干行(列)看成一块.比如,把A按列分

第三章-矩阵的秩

第三章-矩阵的秩

的一个最高阶非零子式. 则这个子式便是 A 的一个最高阶非零子式
线性代数——第 3章
1 0 例7 求矩阵A = 2 3
1 1 1 −1 3 a 5 1
1 b 的秩, 其中a, b为参数. 4 7
线性代数——第 3章
三、矩阵秩的性质
( 1)
(2 )
R ( AT ) = R ( A )
线性代数——第 3章
定义2 定义2
设在矩阵中有一个不等于 的 阶子式 阶子式D, 设在矩阵中有一个不等于0的r阶子式 ,且 有一个不等于
所有r 所有 + 1阶子式(如果存在的话)全等于 ,那么 阶子式(如果存在的话)全等于0 那么D 称为矩阵A的最高阶非零子式, 称为矩阵 的秩, 称为矩阵A的秩 称为矩阵 的最高阶非零子式,数r称为矩阵 的秩, 记作R (A), 并规定零矩阵的秩等于零 记作 , 并规定零矩阵的秩等于零.
线性代数——第 3章
§3 矩阵的秩
一、矩阵秩的概念 二、矩阵秩的求法 三、矩阵秩的性质 小结、 四、小结、思考题
线性代数——第 3章
一、矩阵秩的概念
任何矩阵 Am × n , 总可经过有限次初等行 变换 把它变为行阶 梯形,行阶 梯形矩阵中非零行的行 梯形, 数是唯一确定的 .
矩阵的秩
线性代数——第 3章

r1 ↔ r4 r2 − r4
r3 − 2r1 r4 − 3r1
6 4 −4 −1 1 3 1 −1 0 − 4 0 − 12 9 7 − 11 0 − 16 12 8 − 12
线性代数——第 3章
r3 − 3r2
r4 − 4r2
1 6 − 4 −1 4 1 − 1 0 − 4 3 0 0 0 4 − 8 0 0 0 4 − 8

大学线性代数课件矩阵第三章 矩 阵4

大学线性代数课件矩阵第三章 矩 阵4
设A为m×k矩阵,B为k×n矩阵,对A,B作分块,使得A的列 分法与B的行分法一致,即
k1
k2
A
A11 A21
A12 A22
Ar1 Ar 2
ks
A1s A2 s
m1 m2 ,
Ars
mr
n1
n2
B11
B12
B B21 B22
Br1 Br 2
np
B1s
B2s
k1 k2
A
A21
A22
Ar 1
Ar 2

AT
A1T1 A1T2
A2T1 A2T2
ArT1 ArT2
.
A1Ts
A2Ts
ArTs
A1s
A2 s
,
Ars
如矩阵
1 0 2 1 1
A
0 1
1 4
4 3
5 5
2 6
A11 A21
A12 A22
A13
A23
其中 则
1 0
2 1
1
A11
A11
1 5
;
A2
3 2
1 1
,
A21
1 2
31;
0 1 1
A1
O A11
A21 O
0
1
2
3
5 0 0
§5 矩阵的秩
一、矩阵的秩
定义定12义一:一、矩、矩阵矩阵A阵的的的秩k阶秩子式
设 A 是 mn 的矩阵,任取 A 的 k 个行和 k 个列 (1≤k≤min{m, n}),位于这些行列交叉点处的 kk 个元 素,按照原来的顺序组成一个 k 阶方阵,该方阵对应 的行列式称为矩阵 A 的 k阶子式.

线性代数第三章矩阵的初等变换与线性方程组第一节矩阵的初等变换

线性代数第三章矩阵的初等变换与线性方程组第一节矩阵的初等变换

例如
2. 重要结论 定理 每一个矩阵都可以经过单纯的初等行
变换化为行阶梯形矩阵. 这个定理我们不作证明,下面通过几个具体的
例子说明如何用初等行变换化矩阵为行阶梯形矩 阵.
单击这里开始
五、行最简形矩阵和标准形矩阵
定义 一个行阶梯形矩阵若满足
(1) 每个非零行的第一个非零元素为 1 ; (2) 每个非零行的第一个非零元素所在列
定理 1 把矩阵的初等变换与矩阵的乘法运算联 系了起来,从而可以依据矩阵乘法的运算规律得到 初等变换的运算规律,也可以利用矩阵的初等变换 去研究矩阵的乘法.
由定理 1 可得如下推论.
推论 方阵 A 可逆的充要条件是 A ~r E .
七、求逆矩阵的初等变换法
表明,如果
A ~r ,
B
即 A 经一系列
九、矩阵的行阶梯形、行最简形和 标准形的比较
我们还是以引例中的矩阵 B 为例.
矩阵 B 的行阶梯形、行最简形和标准形分 别如下:
行阶梯形矩阵
特点:阶梯线以下的元 素全是0,台阶数即为非零 行数, 竖线后面的第一个元素 为非零元 .
行最简形矩阵
特点:非零行的第一个 非零元为1,且这些非零元 所在的列的其他元素都为0.
(i) A ~r B 的充要条件是存在 m 阶可逆矩阵 P,使 PA = B;
(ii)A ~c B 的充要条件是存在 n 阶可逆矩阵 Q,使 AQ = B;
(iii)A ~ B 的充要条件是存在 m 阶可逆矩阵 P,及 n 阶可逆矩阵 Q,使 PAQ = B .
为了证明定理 1,需引进初等矩阵的知识.
利用初等变换, 把一个矩阵化为行阶梯形矩 阵和行最简形矩阵, 是一种很重要的运算. 由引 例可知, 要解线性方程组只需把增广矩阵化为行 最简形矩阵.

线性代数第三章矩阵的初等变换与线性方程组第一节矩阵的初等变换演示文稿

线性代数第三章矩阵的初等变换与线性方程组第一节矩阵的初等变换演示文稿
如果矩阵 A 经有限次初等列变换变成矩阵 B , 就称
矩阵 A 与 B 列等价, 记作 A ~c B ; 如果矩阵 A 经
有限次初等变换变成矩阵 B , 就称矩阵 A 与 B
等价, 记作 A ~ B.
目前十三页\总数二十七页\编于八点
2. 等价关系的性质 (i) 反身性 A ~ A;
(ii) 对称性 若 A ~ B, 则 B ~ A; (iii) 传递性 若 A ~ B, B ~ C, 则 A ~ C.
形 矩 阵 的 特 点
阶 梯 线 下 方 的
,
目前十六页\总数二十七页\编于八点
2. 重要结论 定理 每一个矩阵都可以经过单纯的初等行
变换化为行阶梯形矩阵.
这个定理我们不作证明,下面通过几个具体的
例子说明如何用初等行变换化矩阵为行阶梯形矩
阵.
单击这里开始
目前十七页\总数二十七页\编于八点
五、行最简形矩阵和标准形矩阵
一个 具体 的例 子,
从几何上验证这一结论 .

A
A
1 1 2
1 2 1
1 1
1
3 2 2
,
下 设
A
为 增广 矩阵的 非 齐次 线性 方程 组为
目前十四页\总数二十七页\编于八点
四、行阶梯形矩阵
1. 定义 满足下面两个条件的矩阵称为 行阶梯形矩阵:
(1) 非零行(元素不全为零的行)的标号小于
初等变换的运算规律, 也可以利用矩阵的初等变换
去研究矩阵的乘法. 由定理 1 可得如下推论.
推论 方阵 A 可逆的充要条件是
推 论 方 阵 A 可 逆 的 充 要 条 件 是 A ~r E .
证 明 必 要 性 设 方 阵 A 可 逆 ,由

线性代数课件_第3章_矩阵的初等变换与线性方程组

线性代数课件_第3章_矩阵的初等变换与线性方程组

-13-
定理 (等价标准形定理 等价标准形定理) 等价标准形定理 用初等变换必能将矩阵化为如下等价标准形 等价标准形( 用初等变换必能将矩阵化为如下等价标准形(也称 相抵标准形): 相抵标准形):Er Fra bibliotek O O
等价标准形是唯一的。 等价标准形是唯一的。
-14-
例2
(接例1) 接例 )
1 2 1 1 1 2 1 1 4 6 2 2 3 6 9 7
1 0 0 0
0 2 0 1 1 0 0 0 1 0 0 0
0 0 0 0
1 2 0 1 0 0 1 2 0 0 0 0 0 0 0 0
-10-
只用初等行变换必能将矩阵化为阶梯形, 定理 只用初等行变换必能将矩阵化为阶梯形, 从而再化为最简阶梯形。阶梯形不唯一,最简阶梯形 从而再化为最简阶梯形。阶梯形不唯一, 唯一。 唯一。
-8-
在 m × n 的矩阵集合 R 中的一个等价关系? 中的一个等价关系
m×n
A r 中, 如果
B ,
具有行相抵的关系,问行相抵是不是 行相抵的关系 则称 A 与 B 具有行相抵的关系 问行相抵是不是 R m × n
Gauss消元法的思想又可表述为 在与方程组增 消元法的思想又可表述为, 消元法的思想又可表述为 广矩阵行相抵的矩阵中,找一个最简单的 找一个最简单的,然后求解 广矩阵行相抵的矩阵中,找一个最简单的,然后求解 这个最简单的矩阵所对应的方程组. 这个最简单的矩阵所对应的方程组 以后我们把这个最简单的矩阵叫做(行 最简阶 以后我们把这个最简单的矩阵叫做 行)最简阶 梯形矩阵. 梯形矩阵
a11 = a 21 a 31
a12
a 22 a 32
a13 1 0 0 a 23 0 1 0 a 33 0 0 k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 矩阵与线性代数计算MATLAB ,即“矩阵实验室”,它是以矩阵为基本运算单元。

因此,本章从最基本的运算单元出发,介绍MATLAB 的命令及其用法。

3.1矩阵的定义由m×n 个元素a ij (i=1,2,…m;j=1,2,…n)排列成的矩形阵称为一个m 行n 列的矩阵,或m×n 阶矩阵,可以简记为A=(a ij ) m×n ,其中的a ij 叫做矩阵的第i 行第j 列元素。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m n m m n n a a a a a a a a a A212222111211当m=n 时,称A 为n 阶方阵,也叫n 阶矩阵;当m=1,n ≥2时,即A 中只有一行时,称A 为行矩阵,或行向量(1维数组); 当m ≥2,n=1时,即A 中只有一列时,称A 为列矩阵,或列向量; 当m=1,n=1时,即A 中只有一个元素时,称A 为标量或数量(0维数组)。

3.2矩阵的生成1.实数值矩阵输入MATLAB 的强大功能之一体现在能直接处理向量或矩阵。

当然首要任务是输入待处理的向量或矩阵。

不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。

所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。

如: 【例3-1】矩阵的生成例。

a=[1 2 3;4 5 6;7 8 9]b=[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9; 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9; 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9] Null_M = [ ] %生成一个空矩阵a =1 2 34 5 67 8 9b =1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.60002.0000 2.1000 2.2000 2.3000 2.4000 2.5000 2.60003.0000 3.1000 3.2000 3.3000 3.4000 3.5000 3.60001.7000 1.8000 1.90002.7000 2.8000 2.90003.7000 3.8000 3.9000Null_M =[]2.复数矩阵输入复数矩阵有两种生成方式:【例3-2】a=2.7;b=13/25;C=[1,2*a+i*b,b*sqrt(a); sin(pi/4),a+5*b,3.5+1]C=1.0000 5.4000 + 0.5200i 0.85440.7071 5.3000 4.5000【例3-3】矩阵的生成例。

R=[1 2 3;4 5 6], M=[11 12 13;14 15 16]CN=R+i*MR =1 2 34 5 6M =11 12 1314 15 16CN =1.0000 +11.0000i2.0000 +12.0000i3.0000 +13.0000i4.0000 +14.0000i5.0000 +15.0000i6.0000 +16.0000i3 大矩阵的生成对于大型矩阵,一般创建M文件,以便于修改:【例3-4】用M文件创建大矩阵,文件名为c3e4.mexm=[ 456 468 873 2 579 5521 687 54 488 8 1365 4567 88 98 21 5456 68 4589 654 5 9875488 10 9 6 33 77在MA TLAB命令窗口输入:c3e4;size(exm) %显示exm的大小ans=5 6 %表示exm有5行6列。

4 特殊矩阵的生成命令全零阵函数zeros格式 B = zeros(n) %生成n×n全零阵B = zeros(m,n) %生成m×n全零阵B = zeros([m n]) %生成m×n全零阵B = zeros(size(A)) %生成与矩阵A相同大小的全零阵命令单位阵函数eye格式Y = eye(n) %生成n×n单位阵Y = eye(m,n) %生成m×n单位阵Y = eye(size(A)) %生成与矩阵A相同大小的单位阵命令全1阵函数ones格式Y = ones(n) %生成n×n全1阵Y = ones(m,n) %生成m×n全1阵Y = ones([m n]) %生成m×n全1阵Y = ones(size(A)) %生成与矩阵A相同大小的全1阵命令均匀分布随机矩阵函数rand格式Y = rand(n) %生成n×n随机矩阵,其元素在(0,1)内Y = rand(m,n) %生成m×n随机矩阵Y = rand([m n]) %生成m×n随机矩阵Y = rand(size(A)) %生成与矩阵A相同大小的随机矩阵【例3-5】产生一个3×4随机矩阵R=rand(3,4)R =0.9501 0.4860 0.4565 0.44470.2311 0.8913 0.0185 0.61540.6068 0.7621 0.8214 0.7919【例3-6】产生一个在区间[10, 20]内均匀分布的4阶随机矩阵a=10;b=20;x=a+(b-a)*rand(4)x =19.2181 19.3547 10.5789 11.388917.3821 19.1690 13.5287 12.027711.7627 14.1027 18.1317 11.987214.0571 18.9365 10.0986 16.0379命令正态分布随机矩阵函数randn格式Y = randn(n) %生成n×n正态分布随机矩阵Y = randn(m,n) %生成m×n正态分布随机矩阵Y = randn([m n]) %生成m×n正态分布随机矩阵Y = randn(size(A)) %生成与矩阵A相同大小的正态分布随机矩阵【例3-7】产生均值为0.6,方差为0.1的4阶矩阵mu=0.6; sigma=0.1;x=mu+sqrt(sigma)*randn(4)x =0.8311 0.7799 0.1335 1.05650.7827 0.5192 0.5260 0.48900.6127 0.4806 0.6375 0.79710.8141 0.5064 0.6996 0.8527命令产生随机排列函数randperm格式 p = randperm(n) %产生1~n 之间整数的随机排列 【例3-8】整数的随机排列。

randperm(6) ans =3 2 1 54 6命令 产生线性等分向量函数 linspace格式 y = linspace(a,b) %在(a, b)上产生100个线性等分点 y = linspace(a,b,n) %在(a, b)上产生n 个线性等分点 命令 产生对数等分向量 函数 logspace格式 y = logspace(a,b) %在( )之间产生50个对数等分向量y = logspace(a,b,n)命令 计算矩阵中元素个数n = numel(a) %返回矩阵A 的元素的个数 命令 产生以输入元素为对角线元素的矩阵 函数 blkdiag格式 out = blkdiag(a,b,c,d,…) %产生以a,b,c,d,…为对角线元素的矩阵 【例3-9】产生以输入元素为对角线元素的矩阵 out = blkdiag(1,2,3,4) out =1 0 0 0 02 0 0 0 03 0 0 0 04 命令 Magic(魔方)矩阵函数 magic格式 M = magic(n) %产生n 阶魔方矩阵 【例3-10】产生3 阶魔方矩阵M=magic(3) M =8 1 6 3 5 74 9 2ba 10,103.3矩阵的加减乘除运算1 加、减运算设u 为一数量,A=(a ij ) m×n 和B=(b ij ) r×s 为两矩阵,则加减运算的规定为:对应元素相加、减,即按线性代数中矩阵的“十”,“一”运算进行。

u±A=(u±a ij ) m×nA±B=( a ij ± b ij ) m×n u*A=(u*a ij ) m×n【例3-11】矩阵的加减运算。

输入:u=9a=[1 2 3;4 5 6;7 8 0] b=[3 4 5;6 7 8;9 10 2] c=u+a d=a-be=u*a % 和数组运算相同 结果:c = 10 11 12 13 14 15 16 17 9d = -2 -2 -2 -2 -2 -2 -2 -2 -2e = 9 18 27 36 45 54 63 72 0 2 矩阵的乘及乘方运算设u 为一数量,A=(a ij ) m×l 和B=(b ij ) l×n 为两矩阵, A 的列数l 和B 的行数l 相等,可进行A 与B 的乘法运算。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ml m m l l a a a a a a a a a A212222111211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ln 212222111211b b b b b b b b b B l l n n⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=*=m n m m n n c c c c c c c c c B A C212222111211这里c ij =a i1b 1j +a i2b 2j +…a il b lj =tj lt itb a∑=1它表示C 的第i 行第j 列的元素是A 第i 行的各元分别与B 第j 列的各对应元的乘积的和。

【例3-12】矩阵的乘及乘方运算。

a=[1 2 3;4 5 6;7 8 0] f=[1 2 3] g=f*a h=f.*aa = 1 2 3 4 5 6 7 8 0 g = 30 36 15 ??? Error using ==> .* 3.方阵的求逆单位矩阵:主对角线上的元素都是1,其他各元素都是0的n 阶矩阵与任意n 阶矩阵A 左乘或右乘的乘积仍然是A 自身,即EA=AE=A ,因此我们叫E 为n 阶单位矩阵。

⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11 E 对满秩方阵A ,存在A -1,使A* A -1= A -1*A=E ;我们称A -1是A 的逆矩阵。

命令 逆 函数 inv格式 Y=inv(X) %求方阵X 的逆矩阵。

【例3-13】求⎪⎪⎪⎭⎫ ⎝⎛=343122321A 的逆矩阵A=[1 2 3; 2 2 1; 3 4 3]; Y=inv(A)或Y=A^(-1) 则结果显示为Y =1.0000 3.0000 -2.0000 -1.5000 -3.0000 2.5000 1.0000 1.0000 -1.0000【例3-14】求逆运算。

相关文档
最新文档