中考数学试题分类汇编 圆中的计算(含答案)
2024河南中考数学复习 与圆有关的计算(含阴影部分面积) 强化精练 (含答案)
2024河南中考数学复习与圆有关的计算(含阴影部分面积)强化精练基础题1.(2023兰州)如图①是一段弯管,弯管的部分外轮廓线如图②所示是一条圆弧AB ︵,圆弧的半径OA =20cm ,圆心角∠AOB =90°,则AB ︵=()第1题图A.20πcmB.10πcmC.5πcmD.2πcm2.(2023新疆维吾尔自治区)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()第2题图A.12πB.6πC.4πD.2π3.(2023鄂州)如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是()第3题图A.53-33πB.53-4πC.53-2πD.103-2π4.(2023连云港)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是()第4题图A.414π-20B.412π-20C.20πD.205.(2023金华)如图,在△ABC 中,AB =AC =6cm ,∠BAC =50°,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为________cm.第5题图6.如图,在2×3的网格图中,每个小正方形的边长均为1,点A ,B ,C ,D 都在格点上,线段CD 与AC ︵交于点E ,则图中AE ︵的长度为________.第6题图7.(2023重庆A 卷)如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为________.(结果保留π)第7题图8.(2023包头)如图,正方形ABCD的边长为2,对角线AC,BD相交于点O,以点B为圆心,对角线BD的长为半径画弧,交BC的延长线于点E,则图中阴影部分的面积为________.第8题图9.(万唯原创)如图,在Rt△ABC中,∠BAC=90°,∠B=30°,AC=2,以点A为圆心,AC 长为半径作弧,分别交AB,BC于点D,E,则图中阴影部分的周长为________.第9题图10.(2023新乡一模)如图,△ABC中,∠C=90°,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为________.第10题图11.(2023驻马店二模)如图,将扇形OAB沿OA方向平移得到对应扇形CDE,线段CE交AB︵于点F,当OC=CF时平移停止.若∠O=60°,OB=3,则阴影部分的面积为________.第11题图拔高题12.(2023通辽)如图,在扇形AOB中,∠AOB=60°,OD平分∠AOB交AB︵于点D,点C是半径OB 上一动点,若OA =1,则阴影部分周长的最小值为()A.2+π6B.2+π3C.22+π6 D.22+π3第12题图13.如图,两个半径长均为2的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C 是AB ︵的中点,且扇形CFD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分面积等于()第13题图A.π2-1B.π2-2C.π-1D.π-214.如图,AB 为⊙O 的直径,将BC ︵沿BC 翻折,翻折后的弧交AB 于点D.若BC =45,sin ∠ABC =55,则图中阴影部分的面积为()第14题图A.25πB.25πC.8D.1015.如图,在矩形ABCD中,AD=2,AB=22,对角线AC,BD交于点O,以A为圆心,AB的长为半径画弧,交CD于点F,连接FO并延长交AB于点M,连接AF,则图中阴影部分的面积是______.(结果保留π)第15题图参考答案与解析1.B 【解析】∵圆弧的半径OA =20cm ,圆心角∠AOB =90°,∴ AB 的长=90π×20180=10π(cm).2.B 【解析】∵∠ACB =30°,∴∠AOB =2∠ACB =60°,∴S 扇形AOB =60×π×62360=6π.3.C【解析】如解图,连接OD ,BD ,在Rt △ABC 中,tan 30°=AB BC ,∴BC =AB tan 30°=43,∵OC =OD ,∴∠OCD =∠ODC =30°,∴∠BOD =60°,∵BO =DO ,∴△BOD 是等边三角形,∴BD =BO =12BC =23,∠BDO =60°,∴∠BDC =90°,AD =BD ·tan 30°=2.∴S 阴影部分=S △ABD +S △BOD -S 扇形BOD =12×23×2+34×(23)2-60π×(23)2360=53-2π.第3题解图4.D 【解析】如解图,连接AC ,∵矩形ABCD 内接于⊙O ,AB =4,BC =5,∴AC 2=AB 2+BC 2,∴阴影部分的面积为S矩形ABCD +π×(AB 2)2+π×(BC 2)2-π×(AC 2)2=S 矩形ABCD +π×14(AB 2+BC 2-AC 2)=S 矩形ABCD =4×5=20.第4题解图5.56π【解析】如解图,连接OE ,OD ,∵OD =OB ,∴∠B =∠ODB ,∵AB =AC ,∴∠B =∠C ,∴∠C =∠ODB ,∴OD ∥AC ,∴∠EOD =∠AEO ,∵OE =OA ,∴∠OEA =∠BAC =50°,∴∠EOD =∠BAC =50°,∵OD =12AB =12×6=3(cm),∴ DE 的长为50π×3180=56π(cm).6.54π【解析】如解图,连接AC ,AD ,设AC 交网格线于点O ,连接OE .∵AD 2=22+12=5,AC 2=22+12=5,CD 2=12+32=10,∴AD =AC ,AD 2+AC 2=CD 2,∴△ACD 是等腰直角三角形,∴∠ACD =45°,∵∠ABC 是直角,∴AC 是⊙O 的直径,∴∠AOE =90°.∵AC =5,∴OE =OA =12AC =52,∴ AE 的长为90π×52180=54π.第6题解图7.254π-12【解析】如解图,连接BD ,由题知∠BAD =90°,∴BD 是⊙O 的直径,∵AB =4,AD =3,∴BD =AD 2+AB 2=32+42=5,∴S 阴影=S ⊙O -S 矩形ABCD =π×(52)2-3×4=254π-12.第7题解图8.π【解析】∵正方形ABCD 对角线相交于点O ,∴AO =BO ,CO =DO ,∠AOD =∠BOC ,∴△AOD ≌△BOC ,∴阴影部分的面积=扇形DBE 的面积,∵正方形的边长为2,∴由勾股定理得BD =22,∠DBC =45°,∴阴影部分的面积=45360×π·(22)2=π.9.π3+23【解析】如解图,连接AE ,∵在Rt △ABC 中,∠B =30°,∴BC =2AC =4,AB =23.∵ DE 是以点A 为圆心,AC 长为半径的弧,∴AD =AE =AC =2,∴BD =AB -AD=23-2,∠AEC =∠C =60°,∴△AEC 为等边三角形,∴AE =EC =2.,∴BE =2,∠BAE=∠B =30°,∴ DE 的长为30π×2180=π3,∴阴影部分的周长为2+π3+23-2=π3+23.10.π【解析】在△ABC 中,∠ACB =90°,AC =BC =2,由勾股定理得,AB =22+22=22,∵将△ABC 绕着点A 顺时针旋转90度到△AB 1C 1的位置,∴∠CAC 1=90°,∴阴影部分的面积S =S 扇形BAB 1+S △B 1AC 1-S △ACB -S 扇形CAC 1=S 扇形BAB 1-S 扇形CAC 1=90π×(22)2360-90π×22360=π.11.3π4-334【解析】如解图,连接OF ,过点C 作CH ⊥OF 于点H ,由平移性质知,CE ∥OB ,∴∠CFO =∠BOF ,∵CO =CF ,∴∠COF =∠CFO ,∴∠COF =∠BOF =12∠BOC =30°,在等腰△OCF 中,OH =12OF =12OB =32,∴CH =OH ·tan 30°=32×33=32,∴S 阴影=S 扇形AOF -S △COF =30·π×32360-12×3×32=3π4-334.第11题解图12.A 【解析】如解图,作D 点关于直线OB 的对称点E ,连接AE ,OE ,DE ,CE ,AE 与OB 的交点为C 点,则CD =CE ,OD =OE ,∠DOB =∠EOB ,∴AC +CD =AC +CE ≥AE ,当A ,C ,E 三点共线时,AC +CD 取得最小值,此时阴影部分周长最小,在扇形AOB 中,∠AOB =60°,OD 平分∠AOB 交 AB 于点D ,∴∠AOD =∠BOD =30°,由轴对称的性质,∠EOB =∠BOD =30°,OE =OD ,∴∠AOE =90°,∴△AOE 是等腰直角三角形,∵OA =1,∴AE =2, AD 的长=30π×1180=π6,∴阴影部分周长的最小值为2+π6.第12题解图13.D 【解析】两扇形的面积和为180π·(2)2360=π,如解图,过点C 作CM ⊥AE 于点M ,CN ⊥BE 于点N ,连接CE ,则四边形EMCN 是矩形,∵点C 是 AB 的中点,∴EC 平分∠AEB ,∴CM =CN ,∴矩形EMCN 是正方形,∵∠MCG +∠FCN =90°,∠NCH +∠FCN =90°,∴∠MCG =∠NCH ,在△CMG 与△CNH 中,MCG =∠NCH ,=CN ,CMG =∠CNH ,∴△CMG ≌△CNH (ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为12×2×2=1,∴图中阴影部分的面积=π-2.第13题解图14.C 【解析】如解图,连接AC ,CD ,过点C 作CH ⊥AB 于点H ,∵∠ABC =∠DBC ,∴ AC = CD,∴AC =CD ,∵CH ⊥AD ,∴AH =HD ,∵BC =45,sin ∠ABC =55,∴CH =BC ·sin ∠ABC =4,∵AB 为⊙O 的直径,∴∠ACB =90°,∵sin ∠ABC =AC AB =55,∴设AC =5m ,AB =5m ,根据勾股定理,AC 2+BC 2=AB 2,∴5m 2+80=25m 2,∴m =2(负值已舍去),∴AC =CD =25,∴AH =AC 2-CH 2=(25)2-42=2,∴AD =2AH =4,∴S 阴影=S △ACD =12AD ·CH =12×4×4=8.第14题解图15.π-22+2【解析】在矩形ABCD 中,AD =2,AB =22,∴∠ADC =90°,AB ∥CD ,OB =OD ,∴∠ABD =∠CDB ,∵AF =AB =22,AF 2=AD 2+DF 2,∴(22)2=22+DF 2,∴DF =2,∴AD =DF ,∴∠DAF =∠DFA =45°,∴∠BAF =45°,在△BOM 和△DOF 中,MBO =∠FDO=ODBOM =∠DOF ,∴△BOM ≌△DOF (ASA),∴BM =DF =2,∴AM =22-2,∴图中45π×(22)2360-12×(22-2)×2=π-22+2.阴影部分的面积为:。
中考数学复习专题24:圆的有关计算(含中考真题解析)
专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。
2024中考数学全国真题分类卷 第二十一讲 与圆有关的计算 强化训练(含答案)
2024中考数学全国真题分类卷第二十一讲与圆有关的计算强化训练命题点1扇形的相关计算类型一弧长的计算1.(2023甘肃省卷)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧( AB ),点O 是这段弧所在圆的圆心,半径OA =90m ,圆心角∠AOB =80°,则这段弯路( AB )的长度为()第1题图A.20πmB.30πmC.40πmD.50πm2.(2023黄冈)如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则弧AD 的长为()第2题图A.πB.43πC.53πD.2π3.(2023丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为23m ,则改建后门洞的圆弧长是()第3题图A.5π3mB.8π3mC.10π3m D.(5π3+2)m 4.(2023攀枝花)如图,在半径为1的⊙O 上顺次取点A ,B ,C ,D ,E ,连接AB ,AE ,OB ,OC ,OD ,OE .若∠BAE =65°,∠COD =70°,则 BC与 DE 的长度之和为________(结果保留π).第4题图5.(新趋势)·跨学科知识(2023衡阳)如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了________cm.(结果保留π)第5题图6.(2023宜昌)如图,点A,B,C都在方格纸的格点上,△ABC绕点A顺时针方向旋转90°BB'的长为________.后得到△AB′C′,则点B运动的路径第6题图7.(2023福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求 AC的长(结果保留π).第7题图类型二扇形面积的计算8.(2023凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为()A.1 2π米2B.14π米2 C.18π米2 D.116π米2第8题图9.(2023台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界....向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为()A.(840+6π)m2B.(840+9π)m2C.840m2D.876m210.(2023玉林)数学课上,老师将如图边长为1的正方形铁丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不计),则所得扇形DAB的面积是________.第10题图11.(2023盐城)如图,在矩形ABCD中,AB=2BC=2,将线段AB绕点A按逆时针方向旋转,使得点B落在边CD上的点B′处,线段AB扫过的面积为________.第11题图命题点2与扇形有关的阴影部分面积计算类型一直接和差法12.(2023兰州)如图①是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图②所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()第12题图A.4.25πm 2B.3.25πm 2C.3πm 2D.2.25πm 213.(2023泰安)如图,四边形ABCD 中,∠A =60°,AB ∥CD ,DE ⊥AD 交AB 于点E ,以点E 为圆心,DE 为半径,且DE =6的圆交CD 于点F ,则阴影部分的面积为()第13题图A.6π-93B.12π-93C.6π-932D.12π-93214.(2023山西)如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在 AB 上的点C 处,图中阴影部分的面积为()第14题图A.3π-33B.3π-932C.2π-33D.6π-93215.(2023重庆A 卷)如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若AB =2,∠BAD =60°,则图中阴影部分的面积为________.(结果不取近似值)第15题图类型二构造和差法16.(2023赤峰)如图,AB 是⊙O 的直径,将弦AC 绕点A 顺时针旋转30°得到AD ,此时点C 的对应点D 落在AB 上,延长CD ,交⊙O 于点E ,若CE =4,则图中阴影部分的面积为()第16题图A.2πB.22C.2π-4D.2π-2217.(2022资阳)如图,在矩形ABCD 中,AB =2cm ,AD =3cm ,以点B 为圆心,AB 长为半径画弧,交CD 于点E ,则图中阴影部分的面积为________cm 2.第17题图18.(2023河南)如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O ′处,得到扇形A ′O ′B ′.若∠O =90°,OA =2,则阴影部分的面积为__________.第18题图19.(2023梧州)如图,四边形ABCD 是⊙O 的内接正四边形.分别以点A ,O 为圆心,取大于12OA 的定长为半径画弧,两弧相交于点M ,N ,作直线MN ,交⊙O 于点E ,F .若OA =1,则 BE,AE ,AB 所围成的阴影部分面积为________.第19题图类型三等积转化法20.(2023遵义)如图,在正方形ABCD 中,AC 和BD 交于点O ,过点O 的直线EF 交AB 于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为()A.π8-18B.π8-14C.π2-18D.π2-14第20题图21.(2022泰安)若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为________.第21题图22.(2023广元)如图,将⊙O沿弦AB折叠, AB恰经过圆心O,若AB=23,则阴影部分的面积为________.第22题图类型四容斥原理法23.(2022荆门)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为________.第23题图命题点3圆切线与求阴影部分面积结合24.(2023齐齐哈尔)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O交于点E,过点C作CF∥AB,且CF=CD,连接BF.(1)求证:BF是⊙O的切线;(2)若∠BAC=45°,AD=4,求图中阴影部分的面积.第24题图25.(2023益阳)如图,C是圆O被直径AB分成的半圆上一点,过点C的圆O的切线交AB 的延长线于点P,连接CA,CO,CB.(1)求证:∠ACO=∠BCP;(2)若∠ABC=2∠BCP,求∠P的度数;(3)在(2)的条件下,若AB=4,求图中阴影部分的面积(结果保留π和根号).第25题图命题点4圆锥、圆柱的相关计算26.(2023无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC 旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π27.(2023赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cmB.20cmC.5cmD.24cm第27题图28.(2023云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是________.29.(2022广西北部湾经济区)如图,从一块边长为2,∠A=120°的菱形铁片上剪出一个扇形,这个扇形在以A为圆心的圆上(阴影部分).且圆弧与BC,CD分别相切于点E,F,将剪下来的扇形围成一个圆锥.则圆锥的底面圆半径是________.第29题图命题点5圆与正多边形的相关计算30.(2022贵阳)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC 的度数是()A.144°B.130°C.129°D.108°第30题图31.(2023雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为()第31题图A.33B.32 C.332 D.332.(2022山西)如图,正六边形ABCDEF 的边长为2,以A 为圆心,AC 的长为半径画弧,得 EC ,连接AC ,AE ,则图中阴影部分的面积为()第32题图A.2πB.4πC.33πD.233π33.(2022绥化)边长为4cm 的正六边形,它的外接圆与内切圆半径的比值是________.参考答案与解析1.C 【解析】根据弧长公式l =n πr 180=80×π×90180=40π.2.B 【解析】如解图,连接CD ,∵∠B =30°,∠ACB =90°,AB =8,∴∠CAB =60°,AC =4.∵AC =CD ,∴△ACD 是等边三角形,∴∠ACD =60°.∴弧AD 的长为60π×4180=43π.第2题解图3.C 【解析】∵圆弧所在圆外接于矩形,且矩形四个角均为直角,∴直角所对的弦为直径,∴如解图,连接矩形对角线的交点O 即为圆心,∵AB =2,AD =23,∴BD =AB 2+AD 2=4,∴∠ADB =30°,∴∠ABD =60°,∵OA =OD =OB =OC =2,∴∠AOB =∠DOC =60°,∴圆弧长为300π×2180=10π3.第3题解图4.π3【解析】∵∠BAE =65°,∴∠BOE =2∠BAE =130°,∵∠COD =70°,∴∠BOC +∠DOE =∠BOE -∠COD =130°-70°=60°,∴ BC 与 DE 的长度之和为60π×1180=π3.5.4π【解析】由题意可知,重物上升的高度即为120°的圆心角所对应的弧长,∴重物上升的高度为120π×6180=4π.6.52π【解析】由题可得旋转角∠BAB ′=90°,AB =AB ′,∵在Rt △ABC 中,BC =3,AC=4,∴AB =5,∴路径 BB'的长为90π×5180=52π.7.(1)证明:∵AD ∥BC ,DF ∥AB ,∴四边形ABED 是平行四边形,∴∠B =∠D .又∵∠AFC =∠B ,∠ACF =∠D ,∴∠AFC =∠ACF ,∴AC =AF ;(2)解:如解图,连接AO ,CO .由(1)得∠AFC =∠ACF ,又∵∠CAF =30°,∴∠AFC =180°-30°2=75°,∴∠AOC =2∠AFC =150°.∴ AC 的长为150π×3180=52π.第7题解图8.C【解析】如解图,连接BC ,OA .∵∠BAC =90°,∴BC 为⊙O 的直径.∵BC =1米,∴OA =OB =12米,由题意可知AB =AC ,∴△ABC 为等腰直角三角形,∴AB =22米,∴S扇形=90π×(22)2360=18π米2.第8题解图9.B【解析】如解图,该垃圾填埋场外围受污染土地的面积=80×3×2+60×3×2+32π=(840+9π)m 2.第9题解图10.1【解析】∵正方形ABCD 的边长为1,∴AB =AD =1, BD的长为2,∴S 扇形DAB =12lr=12×2×1=1.11.π3【解析】如解图,过点B ′作B ′H ⊥AB 于点H ,∵B ′H =BC =1,AB ′=AB =2,∴∠B ′AH=30°,∴线段AB 所扫过的面积为30π×22360=π3.第11题解图12.D【解析】S 阴影=S 扇形AOD -S 扇形BOC =120π×32360-120π×1.52360=13×π×(9-2.25)=2.25π(m 2).13.B【解析】如解图,过点E 作EG ⊥CD 于点G ,∵∠A =60°,AD ⊥DE ,∴∠AED =30°.∵AB ∥CD ,∴∠EDF =∠AED =30°.又∵DE =EF ,∴∠DFE =∠EDF =30°,∴∠DEF =180°-∠DFE -∠EDF =120°.在Rt △DEG 中,DE =6,∠EDF =30°,∴EG =DE ·sin ∠EDF =3,DG =DE ·cos ∠EDF =33,∴DF =2DG =63,∴S 阴影=S 扇形DEF -S △DEF =120π×62360-12×63×3=12π-93.第13题解图14.B 【解析】如解图,连接OC ,∵扇形AOB 沿着AB 折叠,点O 落在 AB 上的点C 处,∴四边形OACB 是菱形.又∵OA =AC =OC ,∴△AOC 是等边三角形,∴∠AOC =60°,∴∠AOB =120°.∵S 菱形OACB =2S △AOC ,∴S 阴影=S 扇形AOB -S 菱形OACB =120π×32360-2×34×32=3π-932.第14题解图15.23-2π3【解析】如解图,连接BD 交AC 于点M .∵四边形ABCD 是菱形,∠BAD=60°,∴∠AMD =90°,∠DAM =12∠BAD =30°,AM =12AC ,DM =12BD ,∴在Rt △ADM中,DM =12AD =1,AM =32AD =3,∴AC =2AM =23,BD =2DM =2,∴S 菱形ABCD =12AC ·BD =12×23×2=23,S 扇形DAE =S 扇形BCF =30π×22360=π3,∴S 阴影=S 菱形ABCD -S 扇形DAE-S 扇形BCF =23-π3-π3=23-2π3.第15题解图16.C 【解析】如解图,连接OC ,OE ,过点O 作ON ⊥CE 于点N ,∵AC =AD 且∠A =30°,∴∠ADC =∠ACD =75°,∵OA =OC ,∴∠ACO =∠A =30°,∴∠OCD =∠ACD -∠ACO =45°,∵OC =OE ,∴∠OCE =∠OEC =45°,∴∠EOC =90°,∵CE =4,∴ON =EN =CN =2,OE =OC =22,∴S 阴影=S 扇形COE -S △OEC =90π×(22)2360-12×4×2=2π-4.第16题解图17.332-2π3【解析】如解图,连接BE ,由题意得BE =AB =2cm ,∵四边形ABCD是矩形,∴∠ABC =∠C =90°,BC =AD =3cm ,∴cos ∠EBC =BC BE =32,∴∠EBC =30°,∴∠ABE =60°,CE =1cm ,∴S 阴影=S 矩形ABCD -S 扇形ABE -S △ECB =2×3-60π×22360-12×1×3=(332-2π3)cm 2.第17题解图18.π3+32【解析】如解图,设O ′A ′与 AB 交于点C ,连接OC ,∵点O ′是OB 的中点,∴OO ′=12OB =12OA =1,由平移可得∠CO ′O =90°,∴cos ∠COO ′=OO ′OC =12,∴∠COO ′=60°,∴CO ′=3OO ′=3,∴S 阴影=S 扇形A ′O ′B ′+S △COO ′-S 扇形COB =90π×22360+12×3×1-60π×22360=π3+32.第18题解图19.π12-2-34【解析】如解图,连接OE ,OB ,∵四边形ABCD 是⊙O 的内接正四边形,∴∠AOB =90°,由尺规作图知MN 垂直平分OA ,∴AE =OE ,∵OA =OE ,∴△OAE 是等边三角形,∴AE =OE =OA =1,∠AOE =60°,设MN 与OA 交于点G ,则EG =OE ·sin ∠AOE =1×sin 60°=32,∴S 阴影=S 扇形AOB -S △OAB -S 弓形AE =S 扇形AOB -S △OAB -(S 扇形AOE -S △OAE )=90π×12360-12×1×1-(60π×12360-12×1×32)=π4-12-π6+34=π12-2-34.第19题解图20.B 【解析】如解图,以点O 为圆心,以OD 为半径作 DN,∵四边形ABCD 是正方形,AB =1,∴OB =OD =OC =22,∠DOC =90°,∵∠EOB =∠FOD ,∴S 扇形BOM =S 扇形DON ,易知△BOE ≌△DOF ,∴S 阴影=S 扇形COD -S △COD =90π×(22)2360-14×1×1=π8-14.第20题解图【一题多解】∵在正方形ABCD 中,AB =1,∴⊙O 的半径为OB =22AB =22,∵EF 过点O ,∴由中心对称可得四边形EBCF 的面积等于正方形面积的一半,又∵S △OBC =14S 正方形ABCD ,∴S阴影=S半圆-12S 正方形ABCD -(S扇形BOC -S △OBC )=12π×(22)2-12×1×1-90π×(22)2360+14×1×1=π4-12-π8+14=π8-14.21.4【解析】如解图,连接CD ,则阴影部分面积为△ABC 面积的一半,即12×4×4×12=4.第21题解图22.2π3【解析】如解图,过点O 作OD ⊥AB 于点D ,交劣弧AB 于点E ,连接AO ,AE ,根据垂径定理得AD =BD =12AB =3,∵将⊙O 沿弦AB 折叠, AB 恰经过圆心O ,∴OD=DE =12OA ,∴∠OAD =30°,∴∠OAE =60°,∵OA =OE ,∴△AOE 是等边三角形,∴∠E=60°,在Rt △AOD 中,AO =ADcos 30°=332=2,∵AD =BD ,∠ADE =∠BDO =90°,DE=OD ,∴△ADE ≌BDO (SAS),∴S 阴影=S 扇形AEO =60π×22360=2π3.第22题解图【一题多解】如解图,过点O 作OD ⊥AB 于点D ,交劣弧AB 于点E ,连接AO ,AE ,∴AD=BD =3,∠ODB =90°,由折叠可知,OD =DE =12OB ,可得∠OBD =30°,∠AOB =120°,∴OB =BD cos ∠OBD =2,∴S 扇形AOB =120π×22360=4π3,S △AOB =12×23×1=3,S 扇形AOB-S △AOB =4π3-3.OE 左边阴影部分面积为12(S 扇形AOB -S △AOB )=2π3-32,OE 右边阴影部分面积为12S △AOB =32,整体阴影部分面积为两部分阴影面积之和即为2π3.23.23-2π3【解析】如解图,连接PB ,PC ,过点P 作PF ⊥BC 于点F ,∵PB =BC =PC ,∴△PBC 为等边三角形,∴∠PBC =60°,∠PBA =30°,∴BF =PB ·cos 60°=12PB =1,PF =PB ·sin 60°=3,∴S 阴影=[S 扇形ABP -(S 扇形BPC -S △BPC )]×2=[30π×22360-(60π×22360-12×2×3)]×2=23-2π3.第23题解图24.(1)证明:如解图,连接BD ,第24题解图∵AB 是⊙O 的直径,∴∠BDA =90°,∴∠BDC =90°,∵AB =AC ,∴∠ABC =∠ACB .∵CF ∥AB ,∴∠FCB =∠ABC ,∠ABF +∠F =180°,∴∠FCB =∠ACB ,∵CF =CD ,BC =BC ,∴△BCF ≌△BCD (SAS).∴∠F =∠BDC =90°,又∵∠ABF +∠F =180°,∴∠ABF =90°,且AB 是⊙O 的直径,∴BF 是⊙O 的切线;(2)解:如解图,连接OE ,与BD 交于点M ,∵∠BDA =90°,∠BAC =45°,AD =4,∴BD =AD =4,∴AB =AD 2+BD 2=42,∴OB =22,∴OE =OB =22,∴∠OEB =∠ABC .∵AB =AC ,∠BAC =45°,∴∠BOE =∠BAC =45°,∴OE ∥AC ,∴∠OMB =∠ADB =90°,∴BM =OM =2,∴S 阴影=S 扇形BOE -S △OBE =45π×(22)2360-2×222=π-22.25.(1)证明:∵AB 为半圆O 的直径,∴∠ACB =90°,又∵CP 为半圆O 的切线,OC 为半圆O 的半径,∴∠OCP =90°,∴∠ACB =∠OCP ,∴∠ACO +∠OCB =∠OCB +∠BCP ,∴∠ACO =∠BCP ;(2)解:∵OA =OC ,∴∠OAC =∠OCA ,∴∠COB =∠OAC +∠OCA =2∠ACO ,∵∠ABC =2∠BCP ,∠ACO =∠BCP ,∴∠ABC =∠COB ,又∵OB =OC ,∴∠ABC =∠COB =∠OCB =60°,∴∠P =90°-∠COB =30°;(3)解:由(2)知∠OAC =30°,∴BC =12AB ,又∵AB =4,∴BC =2,∴AC =AB 2-BC 2=42-22=23,∴S △ABC =12×2×23=23,∴S 阴影=S 半圆-S △ABC =12π×22-23=2π-23.26.C 【解析】由题意得AB =32+42=5,∴以AC 所在直线为轴将△ABC 旋转一周得到一个圆锥,圆锥的底面圆半径为4,母线长为5,∴圆锥的侧面积为π×4×5=20π.27.D 28.120°【解析】由题意可知n π×30180=2π×10,解得n =120,即这种圆锥的侧面展开图的圆心角度数是120°.29.33【解析】如解图,连接AE ,AF ,AC .∵四边形ABCD 是菱形,∠BAD =120°,∴∠ACD =∠ACB =60°,∴AD =AB =BC =CD =AC =2,∵BC ,CD 是切线,∴AE ⊥BC ,AF ⊥CD ,∴AE =AF =AC ·sin 60°=3,设圆锥的底面圆半径为r ,则2πr =120π·AE180=120π×3180=23π3,解得r =33.第29题解图30.A【解析】正五边形的内角和为(5-2)×180°=540°,∴∠E =∠D =108°,∵AE ,CD分别与⊙O 相切于A ,C 两点,∴∠OAE =∠OCD =90°,∴∠AOC =540°-90°-90°-108°-108°=144°.31.C 【解析】如解图,连接OC ,OD ,∵圆的周长为6π,∴2πr =6π,∴r =3,∴OC =OD =3.∵六边形ABCDEF 是正六边形,∴∠COD =60°,∴∠OCD =60°.∵OG ⊥CD ,∴OG =OC ·sin ∠OCD =3×sin 60°=332.第31题解图32.A 【解析】如解图,过点B 作BG ⊥AC 于点G ,∵六边形ABCDEF 是正六边形,∴∠F =∠FAB =∠ABC =120°,AB =BC =AF =EF =2,∴∠BAC =∠EAF =30°,∴∠EAC =60°.∵BG ⊥AC ,∴AG =CG =AB ·cos 30°=2×32=3,∴AC =23,∴S 阴影=60π·(23)2360=2π.第32题解图33.233【解析】如解图,连接OA ,OB ,过点O 作OG ⊥AB 于点G ,∵正六边形的边长为4cm ,∴正六边形的外接圆的半径4cm ,内切圆的半径是正六边形的边心距,因而是GO =32×4=23,因而正六边形的外接圆的半径与内切圆的半径之比为423=233.第33题解图。
中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.23【答案】(1)证明见解析;(2)AB=DI,理由见解析(3【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.153≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.5.如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PB <PC ,PA 交BC 于E ,点F 是PC 延长线上的点,CF=PB ,AB=13,PA=4.(1)求证:△ABP ≌△ACF ;(2)求证:AC 2=PA•AE ;(3)求PB 和PC 的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得∠ACF=∠ABP ,于是可根据“SAS”判断△ABP ≌△ACF ;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC ,于是可判断△ACE ∽△APC ,然后利用相似比即可得到结论;(3)先利用AC 2=PA •AE 计算出AE=134 ,则PE=AP-AE=34,再证△APF 为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
人教中考数学圆的综合综合题含详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.2.如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上DCE B∠=∠.(1)求证:CE是半圆的切线;(2)若CD=10,2tan3B=,求半圆的半径.【答案】(1)见解析;(2)13【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵11322OA AB x ==,AD =2x +10, ∴113221013x x x =+. 解得 x =8.∴1384132OA=⨯=.则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.3.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD=,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD 的面积为6×4=24,Rt △CED 的面积为12×4×2=4, 扇形ABE 的面积为12π×42=4π, ∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.4.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.【答案】(1)P 1和P 3;(2)3311x -≤≤;(3333 3.r +≤ 【解析】【分析】 (1)先根据题意求出点P 的横坐标的范围,再求出P 点的纵坐标范围即可得出结果; (2)由直线y=x+1经过点M (1,2),得出x≥1,设直线y=x+1与P 4N 交于点A ,过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C ,则在△AMN 中,MN=3,∠AMN=45°,∠ANM=30°,设AB=MB=a ,tan ∠ANM=AB BN ,即tan30°=3a a-,求出a 即可得出结果; (3)圆心O 到P 4的距离为r 的最大值,圆心O 到MP 5的距离为r 的最小值,分别求出两个距离即可得出结果.【详解】(1))如图1所示:∵点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点,M (1,2),N (4,2),∴点P 的横坐标1≤x≤4,∵以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,当∠MPN=60°时,PM=60MN tan ︒=3=3, 同理P′N=3,∴点P 的纵坐标为2-3或2+3,即纵坐标2-3≤y≤2+3,∴线段MN 的“关联点”有P 1和P 3;故答案为:P 1和P 3;(2)线段MN 的“关联点”P 的位置如图所示,∵ 直线1y x =+经过点M (1,2),∴ x ≥1.设直线1y x =+与P 4N 交于点A .过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C .由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°.设AB = MB = a ,∴ tan AB ANM BN ∠=,即tan303a a ︒=-, 解得333a -=∴ 点A 的横坐标为33333111.22x a --=+=+= ∴331.x -≤ 综上 3311.2x -≤≤(3)点P 在以O (1,-1)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,如图3所示:连接P 4O 交x 轴于点D ,P 4、M 、D 、O 共线,则圆心O 到P 4的距离为r 的最大值,由(1)知:MP 4=NP 53即OD+DM+MP 433圆心O 到MP 5的距离为r 的最小值,作OE ⊥MP 5于E ,连接OP 5, 则OE 为r 的最小值,MP 5225MN NP +223(3)+3OM=OD+DM=1+2=3, △OMP 5的面积=12OE•MP 5=12OM•MN ,即12312×3×3, 解得:33 ∴3323 【点睛】本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN 的“关联点”图是关键.5.如图,在直角坐标系中,⊙M 经过原点O(0,0),点6,0)与点B(02),点D 在劣弧OA 上,连结BD 交x 轴于点C ,且∠COD =∠CBO.(1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r =2;(2)证明见解析;(3)点E 的坐标为(263,2). 【解析】 试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=2633=∴点E 的坐标为(263,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.6.在O 中,AB 为直径,C 为O 上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小.【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案.【详解】(1)连接OC ,∵OA =OC ,∴∠A =∠OCA =28°,∴∠POC =56°,∵CP 是⊙O 的切线,∴∠OCP =90°,∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径,∴OD ⊥AC ,∵∠CAB =12°,∴∠AOE =78°,∴∠DCA =39°,∵∠P =∠DCA ﹣∠CAB ,∴∠P =27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.7.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=332,∴S梯形PBCM=12(PB+CM)×PH=12×(2+3)×33=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.8.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE 3.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA =2∠ABC .②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 222213AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 60AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=,∴PE =36 . 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB . ∴2AD AC AC R= ∴R =2322AC AD =10.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B (,2).(2)证明见解析.【解析】 试题分析:(1)在Rt △ABN 中,求出AN 、AB 即可解决问题; (2)连接MC ,NC .只要证明∠MCD=90°即可试题解析:(1)∵A 的坐标为(0,6),N (0,2), ∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B (,2). (2)连接MC ,NC∵AN 是⊙M 的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt △NCB 中,D 为NB 的中点,∴CD=NB=ND ,∴∠CND=∠NCD ,∵MC=MN ,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.。
2022年中考数学真题分类汇编:圆类几何证明题(含答案)
2022年中考数学真题汇编圆类几何证明题1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.2.(1)求证:直线PE是⊙O的切线;3.(2)若⊙O的半径为6,∠P=30°,求CE的长.4.(2022·广西壮族自治区贵港市)如图,在△ABC中,∠ACB=90°,点D是AB边的中∠BDC.点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=125.(1)求证:AF是⊙O的切线;6.(2)若BC=6,sinB=4,求⊙O的半径及OD的长.57.(2022·山东省烟台市)如图,⊙O是△ABC的外接圆,∠ABC=45°.8.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);9.(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.10.(2022·山东省聊城市)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.11.(1)连接AF,求证:AF是⊙O的切线;12.(2)若FC=10,AC=6,求FD的长.13.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.14.(1)求证:∠D=∠EBC;15.(2)若CD=2BC,AE=3,求⊙O的半径.16.(2022·湖南省张家界市)如图,四边形ABCD内接于圆O,AB是直径,点C是BD⏜的中点,延长AD交BC的延长线于点E.17.(1)求证:CE=CD;18.(2)若AB=3,BC=√3,求AD的长.19.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.20.(1)求证:CE与⊙O相切;21.(2)若AD=4,∠D=60°,求线段AB,BC的长.22.(2022·贵州省铜仁市)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.23.(1)求证:AB=CB;24.(2)若AB=18,sinA=1,求EF的长.325.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.26.(1)求证:BF与⊙O相切;27.(2)若AP=OP,cosA=4,AP=4,求BF的长.528.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.29.(1)求证:CD是⊙O的切线.30.(2)若tan∠BED=2,AC=9,求⊙O的半径.331.32.(2022·内蒙古自治区呼和浩特市)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交线段CA的延长线于点E,连接BE.33.(1)求证:BD=CD;34.(2)若tanC=1,BD=4,求AE.235.(2022·北京市)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.36.(1)求证:∠BOD=2∠A;37.(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.38.(2022·广西壮族自治区百色市)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点M,作AD⊥MC,垂足为D,已知AC平分∠MAD.39.(1)求证:MC是⊙O的切线;40.(2)若AB=BM=4,求tan∠MAC的值.41.(2022·山东省临沂市)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.42.(1)求证:∠D=∠E;43.(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.44.(2022·辽宁省)如图,在Rt△ABC中,∠ACB=90°,▱ODEF的顶点O,D在斜边AB上,顶点E,F分别在边BC,AC上,以点O为圆心,OA长为半径的⊙O恰好经过点D和点E.45.(1)求证:BC与⊙O相切;46.(2)若sin∠BAC=3,CE=6,求OF的长.547.(2022·湖北省恩施土家族苗族自治州)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.48.(1)求证:∠ADE=∠PAE.49.(2)若∠ADE=30°,求证:AE=PE.50.(3)若PE=4,CD=6,求CE的长.51.(2022·内蒙古自治区赤峰市)如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.52.(1)求证:AD是⊙O的切线;53.(2)若CD=6,OF=4,求cos∠DAC的值.54.(2022·湖北省潜江市)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE交⊙O于点G,连接BG.55.(1)求证:FB2=FE⋅FG;56.(2)若AB=6,求FB和EG的长.57.(2022·贵州省毕节市)如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.58.(1)求证:BF=BD;59.(2)若CF=1,tan∠EDB=2,求⊙O的直径.60.(2022·贵州省黔东南苗族侗族自治州)(1)请在图1中作出△ABC的外接圆⊙O(尺规作图,保留作图痕迹,不写作法);61.(2)如图2,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE⏜的中点,过点B的切线与AC的延长线交于点D.62.①求证:BD⊥AD;63.②若AC=6,tan∠ABC=3,求⊙O的半径.464.65.(2022·山东省威海市)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.66.(1)若AB=AC,求证:∠ADB=∠ADE;67.(2)若BC=3,⊙O的半径为2,求sin∠BAC.68.(2022·江苏省无锡市)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.69.(1)求证:△CED∽△BAD;70.(2)当DC=2AD时,求CE的长.71.(2022·陕西省)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.72.(1)求证:∠CAB=∠APB;73.(2)若⊙O的半径r=5,AC=8,求线段PD的长.74.(2022·新建生产建设兵团)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在⊙O上,AC=CD,连接AD,延长DB交过点C的切线于点E.75.(1)求证:∠ABC=∠CAD;76.(2)求证:BE⊥CE;77.(3)若AC=4,BC=3,求DB的长.78.(2022·江苏省扬州市)如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.79.(1)试判断直线BC与⊙O的位置关系,并说明理由;80.(2)若sinA=√5,OA=8,求CB的长.5参考答案1.(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,BC=6,在Rt△CDE中,即得CE的长是3.可得BD=CD=12本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(1)作OH⊥FA,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD=CD,再通过导角得出AC是∠FAB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;(2)根据BC=6,sinB=4,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,5利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.本题主要考查了圆的切线的性质和判定,直角三角形的性质,三角函数,相似三角形的判定与性质,勾股定理等知识,熟练掌握切线的判定与性质是解题的关键.3.(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.本题考查作图−复杂作图,三角形的外接圆,切线的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(1)根据SAS证△AOF≌△EOF,得出∠OAF=∠OEF=90°,即可得出结论;(2)根据勾股定理求出AF,证△OEC∽△FAC,设圆O的半径为r,根据线段比例关系列方程求出r,利用勾股定理求出OF,最后根据FD=OF−OD求出即可.本题主要考查切线的判定和性质,熟练掌握切线的判定和性质是解题的关键.5.(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.6.(1)连接AC,通过证明△ACE≌△ACB,利用全等三角形的性质分析推理;(2)通过证明△EDC∽△EBA,利用相似三角形的性质分析计算.本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.7.(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,∠D=60°,即得AB=√3BD=2√3,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=√2AB=√6,又△AOC是等腰直角三角形,OA=OC=2,得AC=2√2,故CF=2√AC2−AF2=√2,从而BC=BF+CF=√6+√2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.8.(1)连接OD,则OD⊥DE,利用BC⊥DE,可得OD//BC,通过证明得出∠A=∠C,结论得证;(2)连接BD,在Rt△ABD中,利用sinA=1求得线段BD的长;在Rt△BDF中,利用3sin∠A=sin∠FDB,解直角三角形可得结论.本题主要考查了圆的切线的性质,垂径定理,圆周角定理,三角形相似的判定与性质,解直角三角形,勾股定理,等腰三角形的判定,平行线的判定与性质.连接过切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.9.(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,AD,然后利用等腰三角形的进而利用直角三角形三角形斜边上的中线可得BF=EF=12性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE=90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.10.(1)连接OD,由圆周角定理得出∠ADB=90°,证出OD⊥CD,由切线的判定可得出结论;(2)证明△BDC∽△DAC,由相似三角形的性质得出CDAC =BCCD=BDDA=23,由比例线段求出CD和BC的长,可求出AB的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.11.(1)连接AD,利用直径所对的圆周角是直角可得∠ADB=90°,然后利用等腰三角形的三线合一性质即可解答;(2)利用(1)的结论可得BD=DC=4,BC=8,然后在Rt△ADC中,利用锐角三角函数的定义求出AD的长,从而利用勾股定理求出AC的长,最后证明△CDA∽△CEB,利用相似三角形的性质求出CE的长,进行计算即可解答.本题考查了圆周角定理,相似三角形的判定与性质,解直角三角形,等腰三角形的性质,熟练掌握圆周角定理,以及解直角三角形是解题的关键.12.(1)连接AD,首先利用垂径定理得BC⏜=BD⏜,知∠CAB=∠BAD,再利用同弧所对的圆心角等于圆周角的一半可得结论;(2)连接OC,首先由点F为AC的中点,可得AD=CD,则∠ADF=∠CDF,再利用圆的性质,可说明∠CDF=∠OCF,∠CAB=∠CDE,从而得出∠OCD+∠DCE=90°,从而证明结论.本题主要考查了圆周角定理,垂径定理,圆的切线的判定等知识,熟练掌握圆周角定理是解题的关键.13.(1)根据垂直定义可得∠D=90°,然后利用等腰三角形和角平分线的性质可证OC//DA,从而利用平行线的性质可得∠OCM=90°,即可解答;(2)先在Rt△OCM中,利用勾股定理求出MC的长,然后证明A字模型相似三角形△MCO ∽△MDA,从而利用相似三角形的性质可求出AD,CD的长,进而在Rt△ACD中,利用锐角三角函数的定义求出tan∠DAC的值,即可解答.本题考查了切线的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,熟练掌握切线的判定与性质,以及相似三角形的判定与性质是解题的关键.14.(1)连接OB,由切线的性质得出∠E+∠BOE=90°,由圆周角定理得出∠D+∠DCB= 90°,证出∠BOE=∠OCB,则可得出结论;(2)求出∠BOG=60°,由三角形面积公式及扇形的面积公式可得出答案.本题考查了切线的性质,直角三角形的性质,等腰三角形的性质,平行线的性质,圆周角定理,扇形的面积公式,熟练掌握切线的性质是解题的关键.15.(1)连接OE,利用平行四边形的性质和圆的性质可得四边形AOEF是平行四边形,则OE//AC,从而得出∠OEB=90°,从而证明结论;(2)过点F作FH⊥OA于点H,根据sin∠CFE=sin∠CAB=35,可得EF的长,由OA=OE,得▱AOEF是菱形,则AF=AO=EF=10,从而得出FH和AH的长,进而求出OF的长.本题主要考查了圆的切线的判定,平行四边形的判定与性质,三角函数的定义,勾股定理等知识,熟练运用相等角的三角函数值相等是解题的关键.16.(1)连接OA,利用切线的性质定理,圆周角定理,同圆的半径相等,等腰三角形的性质和等角的余角相等解答即可;(2)利用(1)的结论,直径所对的圆周角为直角,三角形的外角的性质和等腰三角形的判定定理解答即可;(3)CE=x,则DE=CD+CE=6+x,OA=OE=6+x2,OC=OE−CE=6−x2,OP=OE+PE=14+x2,利用相似三角形的判定与性质得出比例式即可求得结论.本题主要考查了圆的切线的性质,切线长定理,等腰三角形的判定与性质,圆周角定理,垂径定理,相似三角形的判定与性质,连接OA是解决此类问题常添加的辅助线.17.(1)利用等腰三角形的三线合一,平行线的判定与性质和圆的切线的判定定理解答即可;(2)利用全等三角形的判定与性质得到CF=CD=6,利用相似三角形的判定与性质求得线段AC,再利用直角三角形的边角关系定理在Rt△AOC中,求得cos∠OCA,则结论可得.本题主要考查了圆的切线的判定,等腰三角形的性质,平行线的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,相似三角形的判定与性质,勾股定理,直角三角形的边角关系定理,灵活应用等量代换是解题的关键.18.(1)利用相似三角形的判定与性质解答即可;(2)连接OE,利用平行线分线段成比例定理求得FB;利用相交弦定理求EG即可.本题主要考查了正方形的性质,圆周角定理,垂径定理及其推论,相似三角形的判定与性质,平行线的性质,勾股定理,相交弦定理,灵活运用上述定理及性质是解题的关键.19.(1)连接OE,利用圆的切线的性质定理,平行线的判定与性质,同圆的半径相等和等腰三角形的判定定理解答即可;(2)连接BE,利用直径所对的圆周角为直角,直角三角形的边角关系定理和相似三角形的判定与性质解答即可.本题主要考查了圆的切线的性质定理,平行线的判定与性质,等腰三角形的判定与性质.相似三角形的判定与性质,直角三角形的边角关系定理,连接经过切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.20.(1)利用尺规作图分别作出AB、AC的垂直平分线交于点O,以O为圆心、OA为半径作圆即可;(2)①连接OB,根据切线的性质得到OB⊥CD,证明OB//AD,根据平行线的性质证明结论;②连接EC,根据圆周角定理得到∠AEC=∠ABC,根据正切的定义求出EC,根据勾股定理求出AE,得到答案.本题考查的是切线的性质、圆周角定理、解直角三角形,掌握圆的切线垂直于经过切点的半径是解题的关键.21.(1)根据圆内接四边形的性质以及等腰三角形的性质即可求证;(2)连接CO并延长交⊙O于点F,连接BF,根据圆周角定理得出∠FBC=90°,∠F=∠BAC,解直角三角形即可得解.此题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质、圆周角定理是解题的关键.22.(1)由对顶角的性质,圆周角定理得出∠CDE=∠BDA,∠A=∠E,即可证明△CED∽△BAD;(2)过点D作DF⊥EC于点F,由等边三角形的性质得出∠A=60°,AC=AB=6,由DC=2AD,得出AD=2,DC=4,由相似三角形的性质得ECDE =ABAD=62=3,得出EC=3DE,由含30°角的直角三角形的性质得出DE=2EF,设EF=x,则DE=2x,DF=√3x,EC=6x,进而得出FC=5x,利用勾股定理得出一元二次方程(√3x)2+ (5x)2=42,解方程求出x的值,即可求出EC的长度.本题考查了圆周角定理,等边三角形的性质,相似三角形的判定与性质,熟练掌握圆周角定理,相似三角形的判定与性质,等边三角形的性质,勾股定理,解一元二次方程等知识是解决问题的关键.23.(1)根据平行线的判定和切线的性质解答即可;(2)通过添加辅助线,构造出直角三角形,利用勾股定理和相似三角形的判定和性质解答即可.本题主要考查了切线的性质定理,勾股定理,相似三角形的判定和性质,熟练掌握这些性质定理是解题的关键.24.(1)利用等腰三角形的性质可得∠CAD=∠ADC,再利用同弧所对的圆周角相等可得∠ABC=∠ADC,即可解答;(2)利用切线的性质可得∠OCE=90°,利用圆内接四边形对角互补以及平角定义可得∠CAD=∠CBE,再利用(1)的结论可得∠OCB=∠CBE,然后可证OC//BE,最后利用平行线的性质可得∠E=90°,即可解答;(3)根据直径所对的圆周角是直角可得∠ACB=90°,从而在Rt△ABC中,利用勾股定理求出BA的长,再根据同弧所对的圆周角相等可得∠CAB=∠CDB,进而可证△ACB∽△DEC,然后利用相似三角形的性质可求出DE的长,最后再利用(2)的结论可证△ACB∽△CEB,利用相似三角形的性质可求出BE的长,进行计算即可解答.本题考查了切线的性质,等腰三角形的性质,相似三角形的判定与性质,三角形的外接圆与外心,圆周角定理,熟练掌握相似三角形的判定与性质,以及圆周角定理是解题的关键.25.(1)连接OB,由等腰三角形的性质得出∠A=∠OBA,∠CPB=∠CBP,结合对顶角的性质得出∠APO=∠CBP,由垂直的性质得出∠A+∠APO=90°,进而得出∠OBA+∠CBP=90°,即可得出直线BC与⊙O相切;(2)由sinA=√5,设OP=√5x,则AP=5x,由勾股定理得出方程(√5x)2+82=(5x)2,5=4,再利用勾股定理得出BC2+82=解方程求出x的值,进而得出OP=√5×4√55(BC+4)2,即可求出CB的长.本题考查了切线的判定,勾股定理,锐角三角函数的定义,熟练掌握等腰三角形的性质,切线的判定与性质,勾股定理,锐角三角函数的定义,一元二次方程的解法是解决问题的关键.。
备战中考数学圆的综合综合题含详细答案
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD .(1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ;(3)在(2)的条件下,若DG 平分∠3∠3,求⊙O 的半径。
【答案】(1)证明见解析;(2)证明见解析;(3)129【解析】试题分析:(1)连接AC.由弦相等得到弧相等,进一步得到圆周角相等,即可得出结论.(2)延长AD到N,使DN=AD,连接NC.得到四边形ABED是平行四边形,从而有AD=BE,DN=BE.由圆内接四边形的性质得到∠NDC=∠B.即可证明ΔABE≌ΔCND,得到AE=CN,再由三角形中位线的性质即可得出结论.(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,得到AB=DE.再证明ΔCDE是等边三角形,ΔBGE是等边三角形,通过解三角形ABE,得到AB,HB,AH,HE的长,由EC=DE=AB,得到HC的长.在Rt△AHC中,由勾股定理求出AC的长.作直径AP,连接CP,通过解△APC即可得出结论.试题解析:解:(1)连接AC.∵AB=CD,∴弧AB=弧CD,∴∠DAC=∠ACB,∴AD∥BC.(2)延长AD到N,使DN=AD,连接NC.∵AD∥BC,DG∥AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE.∵ABCD是圆内接四边形,∴∠NDC=∠B.∵AB=CD,∴ΔABE≌ΔCND,∴AE=CN.∵DN=AD,AF=FC,∴DF=1CN,∴AE=2DF.2(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,∴AB=DE.∵DF∥CN,∴∠ADF=∠ANC,∴∠AEB=∠ADF,∴tan∠AEB= tan∠ADF=3DG平分∠ADC,∴∠ADG=∠CDG.∵AD∥BC,∴∠ADG=∠CED,∠NDC=∠DCE.∵∠ABC=∠NDC,∴∠ABC=∠DCE.∵AB∥DG,∴∠ABC=∠DEC,∴∠DEC=∠ECD=∠EDC,∴ΔCDE是等边三角形,∴AB=DE=CE.∵∠GBC=∠GDC=60°,∠G=∠DCB=60°,∴ΔBGE是等边三角形,BE= GE=53.∵tan∠AEB= tan∠ADF=43,设HE=x,则AH=43x.∵∠ABE=∠DEC=60°,∴∠BAH=30°,∴BH=4x,AB=8x,∴4x+x=53,解得:x=3,∴AB=83,HB=43,AH=12,EC=DE=AB=83,∴HC=HE+EC=383+=93.在Rt△AHC中,AC=222212(93)AH HC+=+=343.作直径AP,连接CP,∴∠ACP=90°,∠P=∠ABC=60°,∴sin∠P=AC AP,∴3432129sin603ACAP===︒,∴⊙O的半径是129.3.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D 在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.试题解析:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.4.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:3,∴S⊙P=3π5.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=45,求⊙O的半径.【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.【解析】分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45AE AB ,∵AE=4,∴AB=5,则圆O 的半径为2.5.点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.6.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×3=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.7.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH ∽△OBC 可知:BC HB OC BC = ∵AB=8,∴BC 2=HB•OC=4HB , ∴HB=24BC , ∴OH=OB-HB=4-24BC ∵CB=CH ,∴OH+HC=4−24BC +BC , 当∠BOC=90°,此时BC=42 ∵∠BOC <90°, ∴0<BC <42,令BC=x 则CH=x ,BH=24x ()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.8.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围; ②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.9.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.10.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O 的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.【答案】(1)见解析 (2) EC=172AE=132【解析】试题分析:(1)如图1中,连接OC、OE.利用等角的余角相等,证明∠PCD=∠PDC即可;(2)如图2中.作EH⊥BC于H,EF⊥CA于F.首先证明Rt△AEF≌Rt△BEH,推出AF=BH,设AF=BH=x,再证明四边形CFEH是正方形,推出CF=CH,可得5+x=12﹣x,推出x=72,延长即可解决问题;试题解析:(1)证明:如图1中,连接OC、OE.∵AB直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴AE=BE,∴OE⊥AB,∴∠DOE=90°.∵PC是切线,∴OC⊥PC,∴∠PCO=90°.∵OC=OE,∴∠OCE=∠OEC.∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,∴∠PCD=∠PDC,∴PC=PD.(2)如图2中.作EH⊥BC于H,EF⊥CA于F.∵CE平分∠ACB,EH⊥BC于H,EF⊥CA于F,∴EH=EF,∠EFA=∠EHB=90°.∵AE=BE,∴AE=BE,∴Rt△AEF≌Rt△BEH,∴AF=BH,设AF=BH=x.∵∠F=∠FCH=∠CHE=90°,∴四边形CFEH是矩形.∵EH=EF,∴四边形CFEH是正方形,∴CF=CH,∴5+x=12﹣x,∴x =72,∴CF =FE =172,∴EC CF =2,AE 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。
2019年浙江省中考数学分类汇编专题圆(解析版)
2019年浙江省中考数学分类汇编专题:圆(解析版)一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.【答案】C【考点】弧长的计算【解析】【解答】解:把已知数导入弧长公式即可求得:。
故答案为:C。
【分析】求弧长,联想弧长公式,代入数字即可。
2.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A. 2B.C.D.【答案】B【考点】圆周角定理,切线的性质【解析】【解答】解:连接OA∵∠ABC=30°弧AC=弧AC∴∠AOC=2∠ABC=60°∵AP是圆O的切线,∴OA⊥AP∴∠OAP=90°∴AP=OAtan60°=1× =故答案为:B【分析】连接OA,利用圆周角定理可求出∠AOC的度数,再根据切线的性质,可证△AOP是直角三角形,然后利用解直角三角形求出PA的长。
3.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A. πB. πC. 2πD. π【答案】A【考点】圆周角定理,弧长的计算【解析】【解答】解:连接OC、OB,∵∠A=180°-∠ABC-∠ACB∴∠A=180°-65°-70°=45°∵弧BC=弧BC∴∠BOC=2∠A=2×45°=90°∵OB=OC在Rt△OBC中,∠OBC=45°∴OC=BCsin45°= =2∴弧BC的长为:故答案为:A【分析】利用三角形内角和定理求出∠A,再根据圆周角定理,求出∠BOC的度数,就可证得△BOC是等腰直角三角形,利用解直角三角形求出OC的长,然后利用弧长公式计算可求出弧BC的长。
4.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A. 2B. 3C. 4D. 4-【答案】A【考点】切线的性质,解直角三角形的应用,切线长定理【解析】【解答】解:设AB、AC的切点分别为D、E,连结OD、OE,如图,∵AB、AC与⊙O相切于点D、E,∴AD=AE,∠ODB=∠OEC=90°,又∵△ABC是边长为8的等边三角形,∴AB=AC=BC=8,∠B=60°,∴BD=CE,∵OD=OE,∴△ODB≌△OEC(SAS),∴OB=OC= BC=4,在Rt△ODB中,∴sin60°= ,即OD=OBsin60°=4× =2 ,∴⊙O的半径为2 .故答案为:A.【分析】设AB、AC的切点分别为D、E,连结OD、OE,根据切线的性质和切线长定理得AD=AE,∠ODB=∠OEC=90°,由等边三角形性质得AB=AC=BC=8,∠B=60°,等量代换可得BD=CE,根据全等三角形判定SAS 得△ODB≌△OEC,再由全等三角形性质得OB=OC=4,在Rt△ODB中,根据锐角三角函数正弦定义即可求得答案.5.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2【答案】B【考点】圆锥的计算【解析】【解答】解:设圆锥母线为R,圆锥底面半径为r,∵R=13cm,r=5cm,∴圆锥的侧面积S= ·2 r.R= ×2 ×5×13=65 (cm2).故答案为:B.【分析】根据圆锥侧面展开图为扇形,再由扇形面积计算即可求得答案.6.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A. 60°B. 70°C. 72°D. 144°【答案】C【考点】正多边形和圆【解析】【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=∠C= (5−2)×180°=108°,∵CD=CB,∴∠CBD== (180°−108°)=36°,∴∠ABD=∠ABC-∠CBD=72°,故答案为:C.【分析】由正多边形的内角和公式可求得∠ABC和∠C的度数,又由等边对等角可知∠CBD=∠CDB,从而可求得∠CBD,进而求得∠ABD。
中考数学专题复习《圆的证明与计算》检测题(含答案)
专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。
【2021中考数学分类训练】圆含答案
2021年中考真题汇编—圆一.选择题(共32小题)1.(2020•日照)如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6,AE=9,则阴影部分的面积为()A.6π﹣B.12π﹣9C.3π﹣D.9 2.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,﹣)B.(1,)C.(1,﹣2)D.(2,1)3.(2020•永州)如图,已知P A,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①P A=PB;②OP⊥AB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1B.2C.3D.4 4.(2020•吉林)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°5.(2020•海南)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°6.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.2 7.(2020•广州)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm 8.(2020•青岛)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°9.(2020•牡丹江)如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°10.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=a D.R=a 11.(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°12.(2020•武汉)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4 13.(2020•泰州)如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π14.(2020•凉山州)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:2 15.(2020•河北)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值16.(2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE 的长为()A.6B.9C.12D.15 17.(2020•达州)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为()A.πB.πC.πD.π18.(2020•哈尔滨)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O 上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°19.(2020•黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π20.(2020•杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°21.(2020•黔东南州)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2 22.(2020•嘉兴)如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是()A.2B.C.D.23.(2020•湖州)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是()A.70°B.110°C.130°D.140°24.(2020•鸡西)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°25.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2C.24πcm2D.2πcm2 26.(2020•湘西州)如图,P A、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BP A为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BP A的边AB上的中线27.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°28.(2020•攀枝花)如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是()A.B.C.πD.3π29.(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为()A.2B.C.2D.30.(2020•南京)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)二.解答题(共3小题)31.(2020•贵港)如图,在△ABC中,AB=AC,点D在BC边上,且AD=BD,⊙O是△ACD的外接圆,AE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若AB=2,AD=3,求直径AE的长.32.(2020•东营)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.33.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.参考答案与试题解析一.选择题(共32小题)1.(2020•日照)如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6,AE=9,则阴影部分的面积为()A.6π﹣B.12π﹣9C.3π﹣D.9【分析】根据垂径定理得出CE=DE=,再利用勾股定理求得半径,根据锐角三角函数关系得出∠EOD=60°,进而结合扇形面积求出答案.【解答】解:∵AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,∴CE=DE=.设⊙O的半径为r,在直角△OED中,OD2=OE2+DE2,即,解得,r=6,∴OE=3,∴cos∠BOD===,∴∠EOD=60°,∴,,∴,【点评】此题主要考查了垂径定理,勾股定理以及锐角三角函数和扇形面积求法等知识,正确得出∠EOD=60°是解题关键.2.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,﹣)B.(1,)C.(1,﹣2)D.(2,1)【分析】由题意旋转8次应该循环,因为2020÷8=252…4,所以∁i的坐标与C4的坐标相同.【解答】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴∁i的坐标与C4的坐标相同,∵C(﹣1,),点C与C4关于原点对称,∴C4(1,﹣),∴顶点∁i的坐标是(1,﹣),故选:A.【点评】本题考查正多边形与圆,坐标与图形变化﹣性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.3.(2020•永州)如图,已知P A,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:①P A=PB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1B.2C.3D.4【分析】利用切线长定理对①进行判断;利用线段的垂直平分线定理的逆定理对②进行判断;利用切线的性质和圆周角定理可对③进行判断;由于只有当∠APO=30°时,OP =2OA,此时PM=OM,则可对④进行判断.【解答】解:∵P A,PB是⊙O的两条切线,A,B为切点,∴P A=PB,所以①正确;∵OA=OB,P A=PB,∴OP垂直平分AB,所以②正确;∵P A,PB是⊙O的两条切线,A,B为切点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴点A、B在以OP为直径的圆上,∴四边形OAPB有外接圆,所以③正确;∵只有当∠APO=30°时,OP=2OA,此时PM=OM,∴M不一定为△AOP外接圆的圆心,所以④错误.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理.4.(2020•吉林)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【分析】运用圆内接四边形对角互补计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.【点评】本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.5.(2020•海南)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°【分析】根据AB是⊙O的直径,可得∠ADB=90°,根据同弧所对圆周角相等可得∠DAB=∠BCD=36°,进而可得∠ABD的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠DAB=∠BCD=36°,∴∠ABD=∠ADB﹣∠DAB,即∠ABD=90°﹣∠DAB=90°﹣36°=54°.故选:A.【点评】本题考查了圆周角定理,解决本题的关键是掌握圆周角定理.在同圆或等圆中,圆周角是所对圆心角的一半.6.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.2【分析】连接OC,根据圆周角定理求得∠AOC=60°,在Rt△COE中可得OE=OC =OC﹣1得到OC=2,从而得到CE=,然后根据垂径定理得到BC的长.【解答】解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=OC,CE=OE,∵OE=OA﹣AE=OC﹣1,∴OC﹣1=OC,∴OC=2,∴OE=1,∴CE=,∴BC=2CE=2.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.7.(2020•广州)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.【点评】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.(2020•青岛)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°【分析】根据圆周角定理得到∠BAD=90°,∠DAC=∠COD=63°,再由=得到∠B=∠D=45°,然后根据三角形外角性质计算∠AGB的度数.【解答】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.(2020•牡丹江)如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°【分析】连接OA,OB,OC,根据圆周角定理得出∠BOC=100°,再根据得到∠AOC,从而得到∠ABC,最后利用圆内接四边形的性质得到结果.【解答】解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵,∴∠BOC=∠AOC=100°,∴∠ABC=∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.【点评】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.10.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=a D.R=a【分析】根据等边三角形的内切圆和外接圆是同心圆,设圆心为O,根据30°角所对的直角边是斜边的一半得:R=2r;等边三角形的高是R与r的和,根据勾股定理即可得到结论.【解答】解:如图,∵△ABC是等边三角形,∴△ABC的内切圆和外接圆是同心圆,圆心为O,设OE=r,AO=R,AD=h,∴h=R+r,故A正确;∵AD⊥BC,∴∠DAC=∠BAC=×60°=30°,在Rt△AOE中,∴R=2r,故B正确;∵OD=OE=r,∵AB=AC=BC=a,∴AE=AC=a,∴(a)2+r2=(2r)2,(a)2+(R)2=R2,∴r=,R=a,故C错误,D正确;故选:C.【点评】本题考查了等边三角形及它的内切圆和外接圆的关系,等边三角形的内心与外心重合,是三条角平分线的交点;由等腰三角形三线合一的特殊性得出30°角和60°,利用直角三角形30°的性质或三角函数得出R、r、h的关系.11.(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°【分析】先利用对顶角相等和互余得到∠A=20°,再利用等腰三角形的性质得到∠OBA =∠A=20°,然后根据切线的性质得到OB⊥BC,从而利用互余计算出∠ABC的度数.【解答】解:∵OC⊥OA,∴∠AOC=90°,∵∠APO=∠BPC=70°,∴∠A=90°﹣70°=20°,∵OA=OB,∴∠OBA=∠A=20°,∵BC为⊙O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠ABC=90°﹣20°=70°.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.12.(2020•武汉)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC 与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.【点评】本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.13.(2020•泰州)如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π【分析】连接OC,易证得四边形CDOE是矩形,则△DOE≌△CEO,得到∠COB=∠DEO=∠CDE=36°,图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC==10π∴图中阴影部分的面积=10π,故选:A.【点评】本题考查了扇形面积的计算,矩形的判定与性质,利用扇形OBC的面积等于阴影的面积是解题的关键.14.(2020•凉山州)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:2【分析】连接OA、OB、OD,过O作OH⊥AB于H,由垂径定理得出AH=BH=AB,证出△AOD是等腰直角三角形,∠AOH=∠BOH=60°,AH=BH=AB,得出AD=OA,AH=OA,则AB=2AH=OA,进而得出答案.【解答】解:连接OA、OB、OD,过O作OH⊥AB于H,如图所示:则AH=BH=AB,∵等边三角形ABC和正方形ADEF,都内接于⊙O,∴∠AOB=120°,∠AOD=90°,∵OA=OD=OB,∴△AOD是等腰直角三角形,∠AOH=∠BOH=×120°=60°,∴AD=OA,AH=OA•sin60°=OA,∴AB=2AH=2×OA=OA,∴==,故选:B.【点评】本题考查了正多边形和圆、垂径定理、等边三角形的性质、正方形的性质、等腰直角三角形的判定与性质等知识;熟练掌握垂径定理、等边三角形和正方形的性质是解题的关键.15.(2020•河北)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.【点评】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.16.(2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE 的长为()A.6B.9C.12D.15【分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.【解答】解:如图所示:连接OD,∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.【点评】此题主要考查了垂径定理和勾股定理,正确得出CO的长是解题关键.17.(2020•达州)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为()A.πB.πC.πD.π【分析】作O点关于AB的对称点O′,连接O′A、O′B,如图,利用对称的性质得到OA=OB=O′A=O′B,则可判断四边形OAO′B为菱形,再根据切线的性质得到O′A⊥OA,O′B⊥OB,则可判断四边形OAO′B为正方形,然后根据弧长公式求解.【解答】解:如图,作O点关于AB的对称点O′,连接O′A、O′B,∵OA=OB=O′A=O′B,∴四边形OAO′B为菱形,∵折叠后的与OA、OB相切,∴O′A⊥OA,O′B⊥OB,∴四边形OAO′B为正方形,∴∠AOB=90°,∴劣弧AB的长==π.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了对称的性质和弧长公式.18.(2020•哈尔滨)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O 上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°【分析】根据切线的性质和圆周角定理即可得到结论.【解答】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.19.(2020•黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积,再减去2个以边长为1的正方形的面积,加上以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.【点评】本题考查扇形的面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(2020•杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°【分析】根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.【解答】解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,∴∠COD=2∠DBC=180°﹣2α,∵∠AOD+∠COD=90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D.【点评】本题主要考查了圆的基本性质,直角三角形的性质,关键是用α表示∠COD.21.(2020•黔东南州)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【分析】连接OA,先根据⊙O的直径CD=20,OM:OC=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.【解答】解:连接OA,∵⊙O的直径CD=20,OM:OC=3:5,∴OC=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.(2020•嘉兴)如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是()A.2B.C.D.【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解.【解答】解:作AM⊥BC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC是等边三角形,AM⊥BC,∴AB=BC=3,BM=CM=BC=,∠BAM=30°,∴AM=BM=,∴△ABC的面积=BC×AM=×3×=,∴重叠部分的面积=△ABC的面积=×=;故选:C.【点评】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键.23.(2020•湖州)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是()A.70°B.110°C.130°D.140°【分析】根据圆内接四边形的性质即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=70°,∴∠ADC=180°﹣∠ABC=180°﹣70°=110°,故选:B.【点评】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.24.(2020•鸡西)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°【分析】设圆心为O,连接OA、OB,如图,先证∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.25.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2C.24πcm2D.2πcm2【分析】首先证明△OCD是等边三角形,求出OC=OD=CD=4cm,再根据S阴=S扇形OAB﹣S扇形OCD,求解即可.【解答】解:如图,连接CD.∵OC=OD,∠O=60°,∴△COD是等边三角形,∴OC=OD=CD=4cm,∴S阴=S扇形OAB﹣S扇形OCD=﹣=40π(cm2),故选:B.【点评】本题考查扇形的面积,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(2020•湘西州)如图,P A、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BP A为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BP A的边AB上的中线【分析】根据切线的性质即可求出答案.【解答】解:(A)∵P A、PB为圆O的切线,∴P A=PB,∴△BP A是等腰三角形,故A选项不符合题意.(B)由圆的对称性可知:PD垂直平分AB,但AB不一定平分PD,故B选项符合题意.(C)连接OB、OA,∵P A、PB为圆O的切线,∴∠OBP=∠OAP=90°,∴点A、B、P在以OP为直径的圆上,故C选项不符合题意.(D)∵△BP A是等腰三角形,PD⊥AB,∴PC为△BP A的边AB上的中线,故D选项不符合题意.故选:B.【点评】本题考查切线的性质,解题的关键是熟练运用切线的性质,本题属于中等题型.27.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°【分析】根据垂径定理,可得=,∠APC=28°,根据圆周角定理,可得∠BOC.【解答】解:∵在⊙O中,OC⊥AB,∴=,∵∠APC=28°,∴∠BOC=2∠APC=56°,故选:D.【点评】本题考查了圆周角定理,利用垂径定理得出=是解题关键.28.(2020•攀枝花)如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是()A.B.C.πD.3π【分析】由半圆A′B面积+扇形ABA′的面积﹣空白处半圆AB的面积即可得出阴影部分的面积.【解答】解:∵半圆AB,绕B点顺时针旋转30°,∴S阴影=S半圆A′B+S扇形ABA′﹣S半圆AB=S扇形ABA′==3π,故选:D.【点评】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.29.(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为()A.2B.C.2D.【分析】先根据圆周角得:∠BAC=∠D=90°,根据勾股定理即可得结论.【解答】解:∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC===2,∵点D在⊙O上,且平分,∴DC=BD.Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=,故选:D.【点评】本题考查圆周角定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用勾股定理求线段的长,属于中考常考题型.30.(2020•南京)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP 与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.【点评】本题主要考查了正方形的性质,矩形的性质与判定,圆的切线的性质,垂径定理,勾股定理,关键是求出CG的长度.二.解答题(共3小题)31.(2020•贵港)如图,在△ABC中,AB=AC,点D在BC边上,且AD=BD,⊙O是△ACD的外接圆,AE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若AB=2,AD=3,求直径AE的长.【分析】(1)连接DE,根据等腰三角形的性质得到∠B=∠BAD,∠B=∠C,等量代换得到∠E=∠BAD,根据圆周角定理得到∠ADE=90°,得到∠BAE=90°,于是得到结论;(2)作AH⊥BC,垂足为点H,证明△ABC∽△DBA,由相似三角形的性质得出,求出BC的长,证明△AED∽△ABH,得出,则可求出答案.【解答】(1)证明:连接DE,如图1,∵AB=AC,AD=BD,∴∠B=∠BAD,∠B=∠C,∴∠C=∠E,∴∠E=∠BAD,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠DAE=90°,∴∠BAD+∠DAE=90°,即∠BAE=90°,∴AE⊥AB,∴直线AB是⊙O的切线;(2)解:如图2,作AH⊥BC,垂足为点H,∵AB=AC,∴BH=CH,∵∠B=∠C=∠BAD,∴△ABC∽△DBA,∴,即AB2=BD•BC,又AB=2,BD=AD=3,∴BC=8,在Rt△ABH中,BH=CH=4,∴AH===2,∵∠E=∠B,∠ADE=∠AHB,∴△AED∽△ABH,∴,∴=3.【点评】本题考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,圆周角定理,正确的作出辅助线是解题的关键.32.(2020•东营)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于MN∥BC,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4﹣r)2,解方程即可得到⊙O的半径,即可得出答案.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和勾股定理的逆定理.33.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【解答】解:(1)连接BF,OC,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,CF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵OF=OC,∴∠OCF=∠COB,∴CF∥AB,∴S△ACF=S△COF,∴阴影部分的面积=S扇形COF,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.【点评】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.。
初三数学有关圆的各地中考题汇编(含答案)
1、(2011•湖州)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC=60°,OC=2.(1)求OE 和CD 的长;(2)求图中阴影部队的面积.2、(2011•衡阳)如图,△ABC 内接于⊙O ,CA=CB ,CD ∥AB 且与OA 的延长线交于点D .(1)判断CD 与⊙O 的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD 的长.3、(2011•杭州)在平面上,七个边长为1的等边三角形,分别用①至⑦表示(如图).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形(1)你取出的是哪个三角形?写出平移的方向和平移的距离;(2)将取出的三角形任意放置在拼成的正六边形所在平面,问:正六边形没有被三角形盖住的面积能否等于52?请说明理由.4、(2011•杭州)在△ABC 中,AB=√3,AC=√2,BC=1. (1)求证:∠A≠30°;(2)将△ABC 绕BC 所在直线旋转一周,求所得几何体的表面积.5、(2011•贵阳)在▱ABCD 中,AB=10,∠ABC=60°,以AB 为直径作⊙O ,边CD 切⊙O 于点E .(1)圆心O 到CD 的距离是 _________ .(2)求由弧AE 、线段AD 、DE 所围成的阴影部分的面积.(结果保留π和根号)6、(2011•抚顺)如图,AB 为⊙O 的直径,弦CD 垂直平分OB 于点E ,点F 在AB 延长线上,∠AFC=30°.(1)求证:CF 为⊙O 的切线.(2)若半径ON ⊥AD 于点M ,CE=√3,求图中阴影部分的面积.7、(2011•北京)如图,在△ABC ,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF=12∠CAB .(1)求证:直线BF 是⊙O 的切线;(2)若AB=5,sin ∠CBF=√55,求BC 和BF 的长.8、(2010•义乌市)如图,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是AE ̂的中点,OM 交AC 于点D ,∠BOE=60°,cosC=12,BC=2√3.(1)求∠A 的度数;(2)求证:BC 是⊙O 的切线 (3)求MD 的长度.9、(2010•沈阳)如图,AB 是⊙O 的直径,点C 在BA 的延长线上,直线CD 与⊙O 相切与点D ,弦DF ⊥AB 于点E ,线段CD=10,连接BD .(1)求证:∠CDE=2∠B ;(2)若BD :AB=√3:2,求⊙O 的半径及DF 的长.10、(2010•绍兴)如图,已知△ABC 内接于⊙O ,AC 是⊙O 的直径,D 是AB ̂的中点,过点D 作直线BC的垂线,分别交CB 、CA 的延长线E 、F .(1)求证:EF 是⊙O 的切线;(2)若EF=8,EC=6,求⊙O 的半径.11、(2010•丽水)如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直,垂足为H ,已知AB=16cm ,.(1)求⊙O 的半径;(2)如果要将直线l 向下平移到与⊙O 相切的位置,平移的距离应是多少?请说明理由.1、(2011•湖州)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC=60°,OC=2.(1)求OE 和CD 的长;(2)求图中阴影部队的面积.考点:扇形面积的计算;垂径定理。
人教中考数学圆的综合-经典压轴题附详细答案
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB ∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.2.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
(1)如图1,在平面直角坐标系中,已知点A 、B 的坐标分别为A (6,0)、B (0,2),点C (x ,y )在线段AB 上,计算(x+y )的最大值。
2020年全国中考数学试题分类(11)——圆(含答案)
2020年全国中考数学试题分类(11)——圆一.圆心角、弧、弦的关系(共1小题)1.(2020•广安)如图,点A,B,C,D四点均在⊙O上,∠AOD=68°,AO∥DC,则∠B的度数为()A.40°B.60°C.56°D.68°二.圆周角定理(共9小题)2.(2020•巴中)如图,在⊙O中,点A、B、C在圆上,∠ACB=45°,AB=2√2,则⊙O的半径OA的长是()A.√2B.2 C.2√2D.33.(2020•贵港)如图,点A,B,C均在⊙O上,若∠ACB=130°,则∠α的度数为()A.100°B.110°C.120°D.130°̂上任意一4.(2020•临沂)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为BB 点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°5.(2020•陕西)如图,点A、B、C在⊙O上,BC∥OA,连接BO并延长,交⊙O于点D,连接AC,DC.若∠A=25°,则∠D的大小为()A.25°B.30°C.40°D.50°6.(2020•兰州)如图,AB是⊙O的直径,若∠BAC=20°,则∠ADC=()A .40°B .60°C .70°D .80°7.(2020•阜新)如图,AB 为⊙O 的直径,C ,D 是圆周上的两点,若∠ABC =38°,则锐角∠BDC 的度数为( )A .57°B .52°C .38°D .26°8.(2020•赤峰)如图,⊙A 经过平面直角坐标系的原点O ,交x 轴于点B (﹣4,0),交y 轴于点C (0,3),点D 为第二象限内圆上一点.则∠CDO 的正弦值是( )A .35B .−34C .34D .45 9.(2020•眉山)如图,四边形ABCD 的外接圆为⊙O ,BC =CD ,∠DAC =35°,∠ACD =45°,则∠ADB的度数为( )A .55°B .60°C .65°D .70°10.(2020•河池)如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= °.三.圆内接四边形的性质(共2小题)11.(2020•广西)如图,已知四边形ABCD 为⊙O 的内接四边形,BD 平分∠ABC ,DH ⊥AB 于点H ,DH =√3,∠ABC=120°,则AB+BC的值为()A.√2B.√3C.2 D.√512.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.四.点与圆的位置关系(共1小题)13.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.五.三角形的外接圆与外心(共3小题)14.(2020•赤峰)如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为()A.3πB.4πC.6πD.9π̂的长为.15.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则BB16.(2020•黄石)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,̂的长等于.作△ABC的外接圆,则BB六.直线与圆的位置关系(共1小题)17.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.七.切线的性质(共4小题)18.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC 的度数是()A.60°B.65°C.70°D.75°19.(2020•眉山)如图,点P为⊙O外一点,过点P作⊙O的切线P A、PB,点A、B为切点,连接AO并延长交PB的延长线于点C,过点C作CD⊥PO,交PO的延长线于点D.已知P A=6,AC=8,则CD的长为.20.(2020•呼和浩特)已知AB为⊙O的直径且长为2r,C为⊙O上异于A,B的点,若AD与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形AOC的顶角为120度,则CD=12r,②若△AOC为正三角形,则CD=√32r,③若等腰三角形AOC的对称轴经过点D,则CD=r,④无论点C在何处,将△ADC沿AC折叠,点D一定落在直径AB上,其中正确结论的序号为.21.(2020•济南)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.八.切线的判定与性质(共9小题)22.(2020•兰州)如图,在Rt△AOB中,∠AOB=90°,OA=OB,点C是AB的中点,以OC为半径作⊙O.(1)求证:AB是⊙O的切线;(2)若OC=2,求OA的长.23.(2020•西藏)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.24.(2020•葫芦岛)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.(2020•镇江)如图,▱ABCD 中,∠ABC 的平分线BO 交边AD 于点O ,OD =4,以点O 为圆心,OD 长为半径作⊙O ,分别交边DA 、DC 于点M 、N .点E 在边BC 上,OE 交⊙O 于点G ,G 为BB̂的中点. (1)求证:四边形ABEO 为菱形;(2)已知cos ∠ABC =13,连接AE ,当AE 与⊙O 相切时,求AB 的长. 26.(2020•宁夏)如图,在△ABC 中,∠B =90°,点D 为AC 上一点,以CD 为直径的⊙O 交AB 于点E ,连接CE ,且CE 平分∠ACB .(1)求证:AE 是⊙O 的切线;(2)连接DE ,若∠A =30°,求BB BB .27.(2020•烟台)如图,在▱ABCD 中,∠D =60°,对角线AC ⊥BC ,⊙O 经过点A ,B ,与AC 交于点M ,连接AO 并延长与⊙O 交于点F ,与CB 的延长线交于点E ,AB =EB .(1)求证:EC 是⊙O 的切线;(2)若AD =2√3,求BB ̂的长(结果保留π).28.(2020•广东)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧BB̂上一点,AD =1,BC =2.求tan ∠APE 的值.29.(2020•株洲)AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM=∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=53,若⊙O的半径为1,cosα=34,求AG•ED的值.30.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BB̂的中点,过点C作CE ⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.九.三角形的内切圆与内心(共1小题)31.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=√34a D.R=√3 3a一十.正多边形和圆(共7小题)32.(2020•济南)如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.33.(2020•黄石)匈牙利著名数学家爱尔特希(P.Erdos,1913﹣1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是.34.(2020•株洲)据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为尺.(结果用最简根式表示)35.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.̂上一点(点P与点D,点E不重合),连36.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为BB接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.37.(2020•成都)如图,六边形ABCDEF是正六边形,曲线F A1B1C1D1E1F1…叫做“正六边形的渐开线”,BB 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .38.(2020•通辽)中心为O 的正六边形ABCDEF 的半径为6cm ,点P ,Q 同时分别从A ,D 两点出发,以1cm /s 的速度沿AF ,DC 向终点F ,C 运动,连接PB ,PE ,QB ,QE ,设运动时间为t (s ).(1)求证:四边形PBQE 为平行四边形;(2)求矩形PBQE 的面积与正六边形ABCDEF 的面积之比.一十一.弧长的计算(共4小题)39.(2020•盘锦)如图,在△ABC 中,AB =BC ,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,点E 为线段OB 上的一点,OE :EB =1:√3,连接DE 并延长交CB 的延长线于点F ,连接OF 交⊙O 于点G ,若BF =2√3,则BB̂的长是( ) A .B 3 B .B 2 C .2B 3 D .3B 440.(2020•沈阳)如图,在矩形ABCD 中,AB =√3,BC =2,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则BB̂的长为( ) A .4B 3 B .π C .2B 3 D .B 3 41.(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:BB 1̂的圆心为点A ,半径为AD ;B 1B 1̂的圆心为点B ,半径为BA 1;B 1B 1̂的圆心为点C ,半径为CB 1;B 1B 1̂的圆心为点D ,半径为DC 1;⋯BB 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则B 2020B 2020̂的长是 .42.(2020•河南)如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BB̂于点D ,点E 为半径OB 上一动点.若OB =2,则阴影部分周长的最小值为 .一十二.扇形面积的计算(共6小题)43.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC =BD =12cm ,C ,D 两点之间的距离为4cm ,圆心角为60°,则图中摆盘的面积是( )A .80πcm 2B .40πcm 2C .24πcm 2D .2πcm 244.(2020•日照)如图,AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,若CD =6√3,AE =9,则阴影部分的面积为( ) A .6π−92√3 B .12π﹣9√3C .3π−94√3D .9√3 45.(2020•西藏)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .43π−√3B .43π﹣2√3C .83π−√3D .83π﹣2√3 46.(2020•呼伦贝尔)若一个扇形的弧长是2πcm ,面积是6πcm 2,则扇形的圆心角是 度.47.(2020•鄂尔多斯)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =2√3,则阴影部分面积S 阴影= .48.(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 .(结果保留π)一十三.圆锥的计算(共1小题)49.(2020•广东)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .一十四.圆的综合题(共1小题)50.(2020•呼和浩特)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比√5−12≈0.618.如图,圆内接正五边形ABCDE ,圆心为O ,OA 与BE 交于点H ,AC 、AD 与BE 分别交于点M 、N .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)(1)求证:△ABM 是等腰三角形且底角等于36°,并直接说出△BAN 的形状;(2)求证:BB BB =BB BB ,且其比值k =√5−12;(3)由对称性知AO ⊥BE ,由(1)(2)可知BB BB 也是一个黄金分割数,据此求sin18°的值.2020年全国中考数学试题分类(11)——圆参考答案与试题解析一.圆心角、弧、弦的关系(共1小题)1.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=68°,∵OD=OC,∴∠ODC=∠OCD=68°,∴∠COD=44°,∴∠AOC=112°,∴∠B=12∠AOC=56°.故选:C.二.圆周角定理(共9小题)2.【解答】解:根据圆周角定理得:∠AOB=2∠ACB,∵∠ACB=45°,∴∠AOB=90°,∵AB=2√2,OA=OB,∴2OA2=AB2,∴OA=OB=2,故选:B.3.【解答】解:在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:A.4.【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE =x ,则∠COE =100°﹣x ,∠DOE =100°﹣x +40°, ∵OC =OE ,∠COE =100°﹣x ,∴∠OEC =∠OCE =40°+12x ,∵OD <OE ,∠DOE =100°﹣x +40°=140°﹣x ,∴∠OED <20°+12x , ∴∠CED =∠OEC ﹣∠OED >(40°+12x )﹣(20°+12x )=20°,∵∠CED <∠ABC =40°,∴20°<∠CED <40°故选:C .5.【解答】解:∵BC ∥OA ,∴∠ACB =∠A =25°,∠B =∠AOB =2∠ACB =50°,∵BD 是⊙O 的直径,∴∠BCD =90°,∴∠D =90°﹣∠B =90°﹣50°=40°,故选:C .6.【解答】解:∵AB 是直径,∴∠ACB =90°,∵∠BAC =20°,∴∠ABC =90°﹣20°=70°,∴∠ADC =∠ABC =70°,故选:C .7.【解答】解:连接AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =38°,∴∠BAC =90°﹣∠ABC =52°,∴∠BDC =∠BAC =52°.故选:B .8.【解答】解:连接BC ,如图,∵B (﹣4,0),C (0,3),∴OB =4,OC =3,∴BC =√32+42=5,∴sin ∠OBC =BB BB =35, ∵∠ODC =∠OBC ,∴sin ∠CDO =sin ∠OBC =35.故选:A .9.【解答】解:∵BC =CD , ∴BB̂=BB ̂, ∵∠ABD 和∠ACD 所对的弧都是BB̂, ∴∠BAC =∠DAC =35°,∵∠ABD =∠ACD =45°,∴∠ADB =180°﹣∠BAD ﹣∠ABD =180°﹣70°﹣45°=65°. 故选:C .10.【解答】解:如图,连接AD .∵AB 是直径,∴∠ADB =90°,∵∠1=∠ADE ,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.三.圆内接四边形的性质(共2小题)11.【解答】解:延长BA 到E ,使AE =BC ,连接DE ,如图,∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =12×120°=60°,∵∠DAC =∠DBC =60°,∠DCA =∠DBA =60°,∴△DAC 为等边三角形,∴DA =DC ,在△ADE 和△BCD 中,{BB =BB BBBB =BBBB BB =BB ,∴△ADE ≌△BCD (SAS ),∴∠E =∠DBC =60°,而∠DBA =60°,∴△DBE 为等边三角形,∵DH ⊥AB ,∴BH =EH ,在Rt △BDH 中,BH =√33DH =√33×√3=1,∴BE =2BH =2,∴AB +BC =2.故选:C .12.【解答】(1)证明:∵四边形ABCD 内接于圆.∴∠ABC +∠ADC =180°,∵∠ABC =60°,∴∠ADC =120°,∵DB 平分∠ADC ,∴∠ADB =∠CDB =60°,∴∠ACB =∠ADB =60°,∠BAC =∠CDB =60°,∴∠ABC =∠BCA =∠BAC ,∴△ABC 是等边三角形.(2)过点A 作AM ⊥CD ,垂足为点M ,过点B 作BN ⊥AC ,垂足为点N . ∴∠AMD =90°,∵∠ADC =120°,∴∠ADM =60°,∴∠DAM =30°,∴DM =12AD =1,AM =√BB 2−BB 2=√22−12=√3,∵CD =3,∴CM =CD +DM =1+3=4,∴S △ACD =12CD •AM =12×3×√3=3√32,Rt △AMC 中,∠AMD =90°,∴AC =√BB 2+BB 2=√3+16=√19,∵△ABC 是等边三角形,∴AB =BC =AC =√19,∴BN =√32BC =√572,∴S △ABC =12×√19×√572=19√34, ∴四边形ABCD 的面积=19√34+3√32=25√34, ∵BE ∥CD ,∴∠E +∠ADC =180°,∵∠ADC =120°,∴∠E =60°,∴∠E =∠BDC ,∵四边形ABCD 内接于⊙O ,∴∠EAB =∠BCD ,在△EAB 和△DCB 中,{∠B =∠BBBBBBB =BBBB BB =BB,∴△EAB ≌△DCB (AAS ),∴△BDE 的面积=四边形ABCD 的面积=25√34. 四.点与圆的位置关系(共1小题)13.【解答】解:如图,连接BE ,BD .由题意BD =√22+42=2√5,∵∠MBN =90°,MN =4,EM =NE ,∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的弧, ∴当点E 落在线段BD 上时,DE 的值最小,∴DE 的最小值为2√5−2.(也可以用DE ≥BD ﹣BE ,即DE ≥2√5−2确定最小值) 故答案为2√5−2.五.三角形的外接圆与外心(共3小题)14.【解答】解:∵AB =AC ,AD 是∠BAC 的平分线, ∴BD =CD ,AD ⊥BC ,∵EF 是AC 的垂直平分线,∴点O 是△ABC 外接圆的圆心,∵OA =3,∴△ABC 外接圆的面积=πr 2=π×32=9π.故选:D .15.【解答】解:连接OC ,OA .∵∠AOC =2∠ABC ,∠ABC =30°,∴∠AOC =60°,∵OA =OC ,∴△AOC 是等边三角形,∴OA =OC =AC =6,∴BB ̂的长=60⋅B ⋅6180=2π, 故答案为2π.16.【解答】解:∵每个小方格都是边长为1的正方形, ∴AB =2√5,AC =√10,BC =√10,∴AC 2+BC 2=AB 2,∴△ACB 为等腰直角三角形,∴∠A =∠B =45°,∴连接OC ,则∠COB =90°,∵OB =√5,∴BB̂的长为:90⋅B ×√5180=√52π, 故答案为:√52π. 六.直线与圆的位置关系(共1小题)17.【解答】解:∵直线a ⊥b ,O 为直线b 上一动点, ∴⊙O 与直线a 相切时,切点为H ,∴OH =1cm ,当点O 在点H 的左侧,⊙O 与直线a 相切时,如图1所示:OP =PH ﹣OH =4﹣1=3(cm );当点O 在点H 的右侧,⊙O 与直线a 相切时,如图2所示:OP =PH +OH =4+1=5(cm );∴⊙O 与直线a 相切,OP 的长为3cm 或5cm ,故答案为:3cm 或5cm .七.切线的性质(共4小题)18.【解答】解:∵AC 与⊙O 相切于点A ,∴AC ⊥OA ,∴∠OAC =90°,∵OA =OB ,∴∠OAB =∠OBA .∵∠O =130°,∴∠OAB=180°−BB2=25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.19.【解答】解:连接OB,如图,∵P A、PB为⊙O的切线,∴PB=P A=6,OB⊥PC,OA⊥P A,∴∠CAP=∠CBO=90°,在Rt△APC中,PC=√BB2+BB2=√62+82=10,∴BC=PC﹣PB=4,设⊙O的半径为r,则OA=OB=r,OC=8﹣r,在Rt△BCO中,42+r2=(8﹣r)2,解得r=3,∴OA=3,OC=5,在Rt△OP A中,OP=√BB2+BB2=√32+62=3√5,∵CD⊥PO,∴∠CDO=90°,∵∠COD=∠POA,∠CDO=∠P AO,∴△COD∽△POA,∴CD:P A=OC:OP,即CD:6=5:3√5,∴CD=2√5.故答案为2√5.20.【解答】解:①如图1,∵∠AOC=120°,∴∠CAO=∠ACO=30°,∵CD和圆O相切,AD⊥CD,∴∠OCD=90°,AD∥CO,∴∠ACD=60°,∠CAD=30°,∴CD=12AC,∵C为⊙O上异于A,B的点,∴AC<AB,∴CD≠12r,故①错误;②如图2,过点A作AE⊥OC,垂足为E,若△AOC为正三角形,∠AOC=∠OAC=60°,AC=OC=OA=r,∴∠OAE=30°,∴OE=12AO,AE=√32AO=√32r,∵四边形AECD为矩形,∴CD=AE=√32r,故②正确;③若等腰三角形AOC的对称轴经过点D,如图3,∴AD=CD,而∠ADC=90°,∴∠DAC=∠DCA=45°,又∠OCD=90°,∴∠ACO=∠CAO=45°∴∠DAO=90°,∴四边形AOCD为矩形,∴CD=AO=r,故③正确;④如图4,过点C作CE⊥AO,垂足为E,连接DE,∵OC⊥CD,AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO,∵OC=OA,∴∠ACO=∠CAO,∴∠CAD=∠CAO,∴CD=CE,在△ADC和△AEC中,∠ADC=∠AEC=90°,CD=CE,AC=AC,∴△ADC≌△AEC(HL),∴AD=AE,∴AC垂直平分DE,则点D和点E关于AC对称,即点D一定落在直径上,故④正确.故正确的序号为:②③④,故答案为:②③④.21.【解答】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD =90°,∴∠ACD +∠ACO =90°,∵AD ⊥DC ,∴∠ADC =90°,∴∠ACD +∠DAC =90°,∴∠ACO =∠DAC ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠DAC =∠OAC ,∴AC 是∠DAB 的角平分线;(2)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠D =∠ACB =90°,∵∠DAC =∠BAC ,∴Rt △ADC ∽Rt △ACB ,∴BB BB =BB BB ,∴AC 2=AD •AB =2×3=6,∴AC =√6.八.切线的判定与性质(共9小题)22.【解答】(1)证明:∵OA =OB ,点C 是AB 的中点,∴OC ⊥AB ,∵OC 为⊙O 的半径,∴AB 是⊙O 的切线;(2)∵△AOB 是等腰直角三角形,点C 是AB 的中点,∴OC ⊥AB ,AB =2OC =4,∵12OA 2=12BB ⋅BB , ∴OA =√2×4=2√2.23.【解答】(1)证明:连接OD ,OE ,∵AD 切⊙O 于A 点,AB 是⊙O 的直径,∴∠DAB =90°,∵AD =DE ,OA =OE ,OD =OD ,∴△ADO ≌△EDO (SSS ),∴∠OED =∠OAD =90°,∴CD 是⊙O 的切线;(2)解:过C 作CH ⊥AD 于H ,∵AB 是⊙O 的直径,AD 和BC 分别切⊙O 于A ,B 两点,∴∠DAB =∠ABC =∠CHA =90°,∴四边形ABCH 是矩形,∴CH =AB =12,AH =BC =4,∵CD 是⊙O 的切线,∴AD =DE ,CE =BC ,∴DH =AD ﹣BC =AD ﹣4,CD =AD +4,∵CH 2+DH 2=CD 2,∴122+(AD ﹣4)2=(AD +4)2,∴AD =9.24.【解答】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵BBB∠BBB=BB BB,∴BB=BBB45°⋅BB=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵BBB∠BBB=BB BB,∴BB=BBB45°⋅BB=3√2,∴BB=BB=3√2,在Rt△ABF中,BB2=BB2−BB2=(5√2)2−(3√2)2=32,∴BB=4√2,∴BB=BB+BB=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD =CH ,BD =BH ,∵AD =6,CD =8,∴DH =CD +CH =14,在Rt △BDH 中,∵BD 2=DH 2﹣BH 2,BD =BH ,则BD 2=98.∴BB =7√2.25.【解答】解:(1)证明:∵G 为BB̂的中点, ∴∠MOG =∠MDN .∵四边形ABCD 是平行四边形.∴AO ∥BE ,∠MDN +∠A =180°,∴∠MOG +∠A =180°,∴AB ∥OE ,∴四边形ABEO 是平行四边形.∵BO 平分∠ABE ,∴∠ABO =∠OBE ,又∵∠OBE =∠AOB ,∴∠ABO =∠AOB ,∴AB =AO ,∴四边形ABEO 为菱形;(2)如图,过点O 作OP ⊥BA ,交BA 的延长线于点P ,过点O 作OQ ⊥BC 于点Q ,设AE 交OB 于点F ,则∠P AO =∠ABC ,设AB =AO =OE =x ,则∵cos ∠ABC =13,∴cos ∠P AO =13,∴BB BB =13,∴P A =13x , ∴OP =OQ =2√23x当AE 与⊙O 相切时,由菱形的对角线互相垂直,可知F 为切点,∴在Rt △OBQ 中,由勾股定理得:(43B )2+(2√23B )2=82, 解得:x =2√6(舍负).∴AB 的长为2√6.26.【解答】(1)证明:连接OE ,如图1所示:∵CE 平分∠ACB ,∴∠ACE =∠BCE ,又∵OE =OC ,∴∠ACE =∠OEC ,∴∠BCE =∠OEC ,∴OE ∥BC ,∴∠AEO =∠B ,又∵∠B =90°,∴∠AEO =90°,即OE ⊥AE ,∵OE 为⊙O 的半径,∴AE 是⊙O 的切线;(2)解:连接DE ,如图2所示:∵CD 是⊙O 的直径,∴∠DEC =90°,∴∠DEC =∠B ,又∵∠DCE =∠ECB ,∴△DCE ∽△ECB ,∴BB BB =BB BB ,∵∠A =30°,∠B =90°,∴∠ACB =60°,∴∠DCE =12∠ACB =12×60°=30°,∴BB BB =cos ∠DCE =cos30°=√32,∴BB BB =√32.27.【解答】(1)证明:连接OB ,连接OM ,∵四边形ABCD 是平行四边形,∴∠ABC =∠D =60°,∵AC ⊥BC ,∴∠ACB =90°,∵BE =AB ,∴∠E =∠BAE ,∵∠ABC =∠E +∠BAE =60°,∴∠E =∠BAE =30°,∵OA =OB ,∴∠ABO =∠OAB =30°,∴∠OBC =30°+60°=90°,∴OB ⊥CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD =2√3,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC =2√3,∴OA =BB BBB60°=4,∠AOM =2∠AOH =60°,∴BB ̂的长度=60⋅B ×4180=4B 3. 28.【解答】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD ∥BC ,∠DAB =90°,∴∠OBC =180°﹣∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠BBB =∠BBBBBBB =BBBB BB =BB,∴△OCE ≌△OCB (AAS ),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图2所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC ﹣BF =2﹣1=1,∵AD ∥BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD 、BC 是⊙O 的切线,由(1)得:CD 是⊙O 的切线,∴ED =AD =1,EC =BC =2,∴CD =ED +EC =3,∴DF =√BB 2−BB 2=√32−12=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=BBBB=√22.29.【解答】(1)证明:连接OC,如图①,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠B=∠OCB,∵∠BCM=∠A,∴∠OCB+∠BCM=90°,即OC⊥MN,∴MN是⊙O的切线;(2)解:如图②,∵AB是⊙O的直径,⊙O的半径为1,∴AB=2,∵cos∠BAC=BBBB=BBBB=34,即BB2=34,∴BB=3 2,∵∠AFE=∠ACE,∠GFH=∠AFE,∴∠GFH=∠ACE,∵DH⊥MN,∴∠GFH+∠AGC=90°,∵∠ACE+∠ECD=90°,∴∠ECD=∠AGC,又∵∠DEC=∠CAG,∴△EDC∽△ACG,∴BB BB =BB BB ,∴BB ⋅BB =BB ⋅BB =32×53=52.30.【解答】解:(1)连接BF ,OC ,∵AB 是⊙O 的直径,∴∠AFB =90°,即BF ⊥AD ,∵CE ⊥AD ,∴BF ∥CE ,连接OC ,∵点C 为劣弧BB ̂的中点,∴OC ⊥BF ,∵BF ∥CE ,∴OC ⊥CE ,∵OC 是⊙O 的半径,∴CE 是⊙O 的切线;(2)连接OF ,CF ,∵OA =OC ,∠BAC =30°,∴∠BOC =60°,∵点C 为劣弧BB ̂的中点,∴BB ̂=BB ̂,∴∠FOC =∠BOC =60°,∵OF =OC ,∴∠OCF =∠COB ,∴CF ∥AB ,∴S △ACF =S △COF ,∴阴影部分的面积=S 扇形COF ,∵AB =4,∴FO =OC =OB =2,∴S 扇形FOC =60⋅B ×22360=23B , 即阴影部分的面积为:23B . 九.三角形的内切圆与内心(共1小题)31.【解答】解:如图,∵△ABC 是等边三角形,∴△ABC 的内切圆和外接圆是同心圆,圆心为O ,设OE =r ,AO =R ,AD =h ,∴h =R +r ,故A 正确;∵AD ⊥BC ,∴∠DAC =12∠BAC =12×60°=30°,在Rt △AOE 中,∴R =2r ,故B 正确;∵OD =OE =r ,∵AB =AC =BC =a ,∴AE =12AC =12a ,∴(12a )2+r 2=(2r )2,(12a )2+(12R )2=R 2, ∴r =√3B 6,R =√33a ,故C 错误,D 正确;故选:C .一十.正多边形和圆(共7小题)32.【解答】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r ,∴120B ×B 2360×2=24π,解得r =6.则正六边形的边长为6.33.【解答】解:由题意知点A 、B 、C 、D 为正五边形任意四个顶点,且O 为正五边形中心, ∴∠AOB =∠BOC =∠COD =360°5=72°,∴∠AOD =360°﹣3∠AOB =144°,又∵OA =OD ,∴∠ADO =180°−BBBB 2=180°−144°2=18°, 故答案为:18°.34.【解答】解:如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE为直径,∠ECD=45°,由题意得AB=2.5,∴CE=2.5﹣0.25×2=2,∴CD=CE⋅BBB∠BBB=2×√22=√2,∴正方形CDEF周长为4√2尺.故答案为:4√2.35.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BF,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=√3,∴BF=2BT=2√3,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=12•EF•BF=12×2×2√3=2√3,故答案为2√3.36.【解答】解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD=360°5=72°,∴∠CPD=12∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.37.【解答】解:BB 1̂的长=60⋅B ⋅1180=B 3,B 1B 1̂的长=60⋅B ⋅2180=2B 3, B 1B 1̂的长=60⋅B ⋅3180=3B 3,B 1B 1̂的长=60⋅B ⋅4180=4B 3,B 1B 1̂的长=60⋅B ⋅5180=5B 3, B 1B 1̂的长=60⋅B ⋅6180=6B 3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=B 3+2B 3+⋯+6B 3=21B 3=7π, 故答案为7π.38.【解答】(1)证明:∵六边形ABCDEF 是正六边形,∴AB =BC =CD =DE =EF =F A ,∠A =∠ABC =∠C =∠D =∠DEF =∠F ,∵点P ,Q 同时分别从A ,D 两点出发,以1cm /s 速度沿AF ,DC 向终点F ,C 运动, ∴AP =DQ =t ,PF =QC =6﹣t ,在△ABP 和△DEQ 中,{BB =BBBB =BB BB =BB ,∴△ABP ≌△DEQ (SAS ),∴BP =EQ ,同理可证PE =QB ,∴四边形PEQB 为平行四边形.(2)解:连接BE 、OA ,则∠AOB =360°6=60°,∵OA =OB ,∴△AOB 是等边三角形,∴AB =OA =6,BE =2OB =12,当t =0时,点P 与A 重合,Q 与D 重合,四边形PBQE 即为四边形ABDE ,如图1所示: 则∠EAF =∠AEF =30°,∴∠BAE =120°﹣30°=90°,∴此时四边形ABDE 是矩形,即四边形PBQE 是矩形.当t =6时,点P 与F 重合,Q 与C 重合,四边形PBQE 即为四边形FBCE ,如图2所示: 同法可知∠BFE =90°,此时四边形PBQE 是矩形.综上所述,t =0s 或6s 时,四边形PBQE 是矩形,∴AE =√122−62=6√3,∴矩形PBQE 的面积=矩形ABDE 的面积=AB ×AE =6×6√3=36√3;∵正六边形ABCDEF 的面积=6△AOB 的面积=6×14矩形ABDE 的面积=6×14×36√3=54√3, ∴矩形PBQE 的面积与正六边形ABCDEF 的面积之比=23.一十一.弧长的计算(共4小题)39.【解答】解:连接OD 、BD ,∵在△ABC 中,AB =BC ,∠ABC =90°,∴∠A =∠C =45°,∵AB 是直径,∴∠ADB =90°,∵OA =OB ,∴OD ⊥AB ,∴∠AOD =90°,∴∠AOD =∠ABC ,∴OD ∥FC ,∴△DOE ∽△FBE ,∴BB BB =BB BB ,∵OB =OD ,OE :EB =1:√3,∴tan ∠BOF =BB BB =√3, ∴∠BOF =60°,∴BF =2√3,∴OB =2,∴BB̂的长=60B ×2180=23π, 故选:C .40.【解答】解:∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴AE =AD =2,∵AB =√3,∴cos ∠BAE =BB BB =√32, ∴∠BAE =30°,∴∠EAD =60°,∴BB̂的长=60⋅B ×2180=2B 3, 故选:C .41.【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故B 2020B 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,B 2020B 2020̂的弧长=90180×8078B =4039B . 故答案为:4039π.42.【解答】解:如图,作点D 关于OB 的对称点D ′,连接D ′C 交OB 于点E ′,连接E ′D 、OD ′, 此时E ′C +E ′D 最小,即:E ′C +E ′D =CD ′,由题意得,∠COD =∠DOB =∠BOD ′=30°,∴∠COD ′=90°,∴CD ′=√BB 2+BB′2=√22+22=2√2,BB ̂的长l =30B ×2180=B 3, ∴阴影部分周长的最小值为2√2+B 3=6√2+B 3. 故答案为:6√2+B 3.一十二.扇形面积的计算(共6小题)43.【解答】解:如图,连接CD .∵OC =OD ,∠O =60°,∴△COD 是等边三角形,∴OC =OD =CD =4cm ,∴S 阴=S 扇形OAB ﹣S 扇形OCD =60⋅B ⋅162360−60⋅B ⋅42360=40π(cm 2), 故选:B .44.【解答】 解:∵AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E , ∴CE =DE =12BB =3√3. 设⊙O 的半径为r ,在直角△OED 中,OD 2=OE 2+DE 2,即B 2=(9−B )2+(3√3)2, 解得,r =6,∴OE =3,∴cos ∠BOD =BB BB =36=12,∴∠EOD =60°,∴B 扇形BBB =16B ×36=6B ,B BB △BBB =12×3×3√3=92√3,∴B 阴影=6B −92√3,故选:A .45.【解答】解:∵OD ⊥AC , ∴∠ADO =90°,BB̂=BB ̂,AD =CD , ∵∠CAB =30°,OA =4,∴OD =12OA =2,AD =√32OA =2√3, ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =60⋅B ×42360−12×2√3×2=8B 3−2√3,故选:D .46.【解答】解:设圆心角都度数为n 度,扇形的面积=12BB =6π,解得:r =6,又∵B =BB ×6180=2π, ∴n =60.故答案为:60.47.【解答】解:连接OC .∵AB ⊥CD ,∴BB̂=BB ̂,CE =DE =√3, ∴∠COB =∠BOD ,∵∠BOD =2∠BCD =60°,∴∠COB =60°,∵OC =OB =OD ,∴△OBC ,△OBD 都是等边三角形,∴OC =BC =BD =OD ,∴四边形OCBD 是菱形,∴OC ∥BD ,∴S △BDC =S △BOD ,∴S 阴=S 扇形OBD ,∵OD =BB BBB60°=2,∴S 阴=60⋅B ⋅22360=2B 3,故答案为2B 3. 48.【解答】解:S 扇形=90⋅B ⋅42360=4π, 故答案为:4π.一十三.圆锥的计算(共1小题)49.【解答】解:如图,连接OB ,OC ,OA ,∵OB =OA ,OA =OC ,AB =AC ,∴△ABO ≌△ACO (SSS ),∴∠BAO =∠CAO =60°,∵AO =BO ,∴△ABO 是等边三角形,∴AB =AO =1,由题意得,阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120B ×1180, 而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120B ×1180, 解得,r =13,故答案为:13. 一十四.圆的综合题(共1小题)50.【解答】解:(1)连接圆心O 与正五边形各顶点, 在正五边形中,∠AOE =360°÷5=72°,∴∠ABE =12∠AOE =36°,同理∠BAC =12×72°=36°,∴AM =BM ,∴△ABM 是等腰三角形且底角等于36°,∵∠BOD =∠BOC +∠COD =72°+72°=144°,∴∠BAD =12∠BOD =72°, ∴∠BNA =180°﹣∠BAD ﹣∠ABE =72°,∴AB =NB ,即△ABN 为等腰三角形;(2)∵∠ABM =∠ABE ,∠AEB =12∠AOB =36°=∠BAM , ∴△BAM ∽△BEA ,∴BB BB =BB BB ,而AB =BN , ∴BB BB =BB BB ,设BM =y ,AB =x ,则AM =AN =y ,AB =AE =BN =x ,∵∠AMN =∠MAB +∠MBA =72°=∠BAN ,∠ANM =∠ANB , ∴△AMN ∽△BAN ,∴BB BB =BB BB ,即B B =B −B B ,则y 2=x 2﹣xy ,两边同时除以x 2,得:(B B )2=1−B B ,设B B=t , 则t 2+t ﹣1=0,解得:t =√5−12或−1−√52(舍), ∴BB BB =BB BB =B B =√5−12; (3)∵∠MAN =36°,根据对称性可知:∠MAH =∠NAH =12∠MAN =18°, 而AO ⊥BE ,∴sin18°=sin ∠MAH =BB BB =12BB BB =12(B −B )B =B −B 2B =12×B B −12=12×√5−1−12=√5−14.。
2022年中考数学真题分类汇编:圆-解答题专题(含答案)
2022年全国各省市中考数学真题汇编圆解答题专题1.(2022·四川省德阳市)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.2.(2022·江苏省扬州市)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)3.(2022·浙江省湖州市)如图,已知在Rt△ABC中,∠C=Rt∠,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作OF⊥BC,垂足为F.(1)求证:OF=EC;(2)若∠A=30°,BD=2,求AD的长.4.(2022·江西省)课本再现(1)在⊙O中,∠AOB是AB⏜所对的圆心角,∠C是AB⏜所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种∠AOB;情况证明∠C=12知识应用(2)如图4,若⊙O的半径为2,PA,PB分别与⊙O相切于点A,B,∠C=60°,求PA的长.5.(2022·湖南省邵阳市)如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.(1)求∠ACB的度数;(2)若⊙O的半径为3,求圆弧AC⏜的长.6.(2022·浙江省金华市)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连结AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n的值.7.(2022·湖北省十堰市)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(1)求证:FG是⊙O的切线;(2)若BG=1,BF=3,求CF的长.8.(2022·福建省)如图,△ABC内接于⊙O,AD//BC交⊙O于点D,DF//AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求AC⏜的长(结果保留π).9.(2022·安徽省)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.10.(2022·浙江省绍兴市)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求AD⏜的长(结果保留π).(2)求证:AD平分∠BDO.11.(2022·湖北省宜昌市)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB⏜.桥的跨度(弧所对的弦长)AB=26m,设AB⏜所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).12.(2022·黑龙江省齐齐哈尔市)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O交于点E,过点C作CF//AB,且CF=CD,连接BF.(1)求证:BF是⊙O的切线;(2)若∠BAC=45°,AD=4,求图中阴影部分的面积.13.(2022·广东省)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=√2,AD=1,求CD的长度.14.(2022·湖北省武汉市)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2√10,求BC的长.15.(2022·江苏省宿迁市)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.16.(2022·天津市)已知AB为⊙O的直径,AB=6,C为⊙O上一点,连接CA,CB.(Ⅰ)如图①,若C为AB⏜的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⊙O的半径,且OD⊥CB,垂足为E,过点D作⊙O的切线,与AC的延长线相交于点F,求FD的长.17.(2022·湖南省衡阳市)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE//AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若CA=2,CD=4,求DE的长.18.(2022·江苏省泰州市)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动,矩形ABCD随之运动,运动时间为t秒.(1)如图②,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当AD、BC都与半圆O相交时,设这两个交点为G、H.连接OG、OH,若∠GOH为直角,求此时t的值.参考答案1.(1)证明:连接OC,如图,∵AB是⊙O的直径,AB⊥CD,∴BC⏜=BD⏜,∴∠CAB=∠DAB.∵∠COB=2∠CAB,∴∠COB=2∠BAD.∵∠ECD=2∠BAD,∴∠ECD=∠COB.∵AB⊥CD,∴∠COB+∠OCH=90°,∴∠OCH+∠ECD=90°,∴∠OCE=90°.∴OC⊥CF.∵OC是⊙O的半径,∴CF是⊙O的切线;(2)解:①∵AB=10,∴OA=OB=OC=5,∵AB是⊙O的直径,AB⊥CD,∴CH=DH=12CD=3.∴OH=√OC2−CH2=4,∵OC⊥CF,CH⊥OE,∴△OCH∽△OEC,∴OCOE =OHOC,∴5OE =45,∴OE =254. ∴AE =OA +OE =5+254=454;②过点F 作FG ⊥AB ,交AB 的延长线于点G ,如图,∵∠OCF =∠FGE =90°,∠CEO =∠GEF ,∴△OCE ∽△FGE .∴OC OE =FG FE =45,设FG =4k ,则FE =5k ,∴EG =√EF 2−FG 2=3k ,∵DH ⊥AB ,FG ⊥AB ,∴DH//FG .∴AH AG =DH FG , ∴9454+3k =34k ,解得:k =54.∴FG =4k =5.∴△AEF 的面积=12×AE ⋅FG =2258.2.解:【初步尝试】如图1,直线OP 即为所求;【问题联想】如图2,三角形MNP 即为所求;【问题再解】如图3中,CD⏜即为所求.3.(1)证明:连接OE,∵AC是⊙O的切线,∴OE⊥AC,∴∠OEC=90°,∵OF⊥BC,∴∠OFC=90°,∴∠OFC=∠C=∠OEC=90°,∴四边形OECF是矩形,∴OF=EC;(2)解:∵BD=2,∴OE=1,∵∠A=30°,OE⊥AC,∴AO=2OE=2,∴AD=AO−OD=2−1=1.4.解:(1)①如图2,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD+∠BOD=2∠ACO+2∠BCO=2∠ACB,∴∠ACB=12∠AOB;如图3,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD−∠BOD=2∠ACO−2∠BCO=2∠ACB,∴∠ACB=12∠AOB;(2)如图4,连接OA,OB,OP,∵∠C=60°,∴∠AOB=2∠C=120°,∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∠APO=∠BPO=12∠APB=12(180°−120°)=30°,∵OA=2,∴OP=2OA=4,∴PA=√42−22=2√3.5.解:(1)连接OA,∵AB是⊙O的切线,点A为切点,∴∠BAO=90°,又∵AB=AC,OA=OC,∴∠B=∠ACB=∠OAC,设∠ACB=x°,则在△ABC中,x°+x°+x°+90°=180°,解得:x=30,∴∠ACB的度数为30°;(2)∵∠ACB=∠OAC=30°,∴∠AOC=120°,∴lAC⏜=120π×3180=2π.6.解:(1)∵五边形ABCDE是正五边形,∴∠ABC=(5−2)×18025=108°,即∠ABC=108°;(2)△AMN是正三角形,理由:连接ON,NF,由题意可得:FN=ON=OF,∴△FON是等边三角形,∴∠NFA=60°,∴NMA=60°,同理可得:∠ANM=60°,∴∠MAN=60°,∴△MAN是正三角形;(3)∵∠AMN=60°,∴∠AON=120°,∵∠AOD=360°×2=144°,5∴∠NOD=∠AOD−∠AON=144°−120°=24°,∵360°÷24°=15,∴n的值是15.7.(1)证明:如图,连接OF,∵AB=AC,∴∠B=∠C,∵OF=OC,∴∠C=∠OFC,∴∠OFC=∠B,∴OF//AB,∵FG⊥AB,∴FG⊥OF,又∵OF是半径,∴GF是⊙O的切线;(2)解:如图,连接OE,过点O作OH⊥CF于H,∵BG=1,BF=3,∠BGF=90°,∴FG=√BF2−BG2=√9−1=2√2,∵⊙O与AB相切于点E,∴OE⊥AB,又∵AB⊥GF,OF⊥GF,∴四边形GFOE是矩形,∴OE=GF=2√2,∴OF=OC=2√2,又∵OH⊥CF,∴CH=FH,∵cosC=cosB=CHOC =BGBF,∴13=2√2,∴CH=2√23,∴CF=4√23.8.证明:(1)∵AD//BC,DF//AB,∴四边形ABCD是平行四边形,∴∠B=∠D,∵∠AFC=∠B,∠ACF=∠D,∴∠AFC=∠ACF,∴AC=AF.(2)连接AO,CO,由(1)得∠AFC=∠ACF,∵∠AFC=180°−30°2=75°,∴∠AOC=2∠AFC=150°,∴AC⏜的长l=150×π×3180=5π2.9.解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=√3⋅OC=√3,∴AD=OD−OA=√3−1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.10.(1)解:连结OA,如图:∵∠ACB=20°,∴∠AOD=40°,∴AD⏜=40×π×6180=4π3;(2)证明:∵OA=OD,∴∠OAD=∠ODA,∵AB切⊙O于点A,∴OA⊥AB,∵∠B=90°,∴OA//BC,∴∠OAD=∠ADB,∴∠ADB=∠ODA,∴AD平分∠BDO.11.解:(1)∵OC⊥AB,∴AD=BD;(2)设主桥拱半径为R,由题意可知AB=26,CD=5,∴BD=12AB=13,OD=OC−CD=R−5,∵∠OBD=90°,∴OD2+BD2=OB2,∴(R−5)2+132=R2,解得r=19.4≈19,答:这座石拱桥主桥拱的半径约为19m.12.(1)证明:如图1,连接BD,∵AB是直径,∴∠ADB=∠BDC=90°,∵AB=AC,∴∠ABC=∠ACB,∵AB//CF,∴∠ABC=∠FCB,∴∠ACB=∠FCB,在△DCB和△FCB中,{CD=CF∠DCB=∠FCB CB=CB,∴△DCB≌△FCB(SAS),∴∠F=∠CDB=90°,∵AB//CF,∴∠ABF+∠F=180°,∴∠ABF=90°,即AB⊥BF,∵AB为直径,∴BF是⊙O的切线;(2)解:如图2,连接BD、OE交于点M,连接AE,∵AB是直径,∴AE⊥BC,AD⊥BD,∵∠BAC=45°,AD=4,∴△ABD是等腰直角三角形,∴BD=AD=4,AB=√AD2+BD2=√42+42=4√2,∴OA=OB=2√2,∴OE是△ADB的中位线,∴OE//AD,∴∠BOE=∠BAC=45°,OE⊥BD,BMBD =OBAB=12,∴BM=12BD=12×4=2,∴S阴影部分=S扇形BOE−S△BOE=45×π×(2√2)2360−12×2√2×2=π−2√2.13.解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴AB⏜=BC⏜,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=√2,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=√3.即CD的长为:√3.14.解:(1)△BDE为等腰直角三角形.理由如下:∵AE平分∠BAC,BE平分∠ABC,∴∠BAE=∠CAD=∠CBD,∠ABE=∠EBC.∵∠BED=∠BAE+∠ABE,∠DBE=∠DBC+∠CBE,∴∠BED=∠DBE.∴BD=ED.∵AB为直径,∴∠ADB=90°∴△BDE是等腰直角三角形.另解:计算∠AEB=135°也可以得证.(2)解:连接OC、CD、OD,OD交BC于点F.∵∠DBC=∠CAD=∠BAD=∠BCD.∴BD=DC.∵OB=OC.∴OD垂直平分BC.∵△BDE是等腰直角三角形,BE=2√10,∴BD=2√5.∵AB=10,∴OB=OD=5.设OF=t,则DF=5−t.在Rt△BOF和Rt△BDF中,52−t2=(2√5)2−(5−t)2,解得t=3,∴BF=4.∴BC=8.另解:分别延长AC,BD相交于点G.则△MBG为等腰三角形,先计算AG=10,BG=4√5,AD=4√5,再根据面积相等求得BC.15.解:(1)直线AC与⊙O相切,理由如下:∵∠ABC=45°,AB=AC,∴∠ABC=∠C=45°,∴∠BAC=180°−2×45°=90°,∴BA⊥AC,∵AB是⊙O的直径,∴直线AC与⊙O相切;(2)连接OD,AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=45°,∴△ABD是等腰直角三角形,∠AOD=90°,∵AO=OB,AB=4,∴S△ABD=12⋅AB⋅OD=12×4×2=4,∴图中阴影部分的面积=S△ABC−S△BOD−S扇形OAD=12×4×4−12×4−90π×22360=8−2−π=6−π.16.解:(Ⅰ)∵AB为⊙O的直径,∴∠ACB=90°,∵C为AB⏜的中点,∴AC⏜=BC⏜,∴∠CAB=∠CBA=45°,∴AC=AB⋅cos∠CAB=3√2;(Ⅱ)∵DF是⊙O的切线,∴OD⊥DF,∵OD⊥BC,∠FCB=90°,∴四边形FCED为矩形,∴FD=EC,在Rt△ABC中,∠ACB=90°,AC=2,AB=6,则BC=√AB2−AC2=4√2,∵OD⊥BC,∴EC=12BC=2√2,∴FD=2√2.17.解:(1)直线BE与⊙O相切,理由:连接OD,∵CD与⊙O相切于点D,∴∠ODE=90°,∵AD//OE,∴∠ADO=∠DOE,∠DAO=∠EOB,∵OD=OA,∴∠ADO=∠DAO,∴∠DOE=∠EOB,∵OD=OB,OE=OE,∴△DOE≌△BOE(SAS),∴∠OBE=∠ODE=90°,∵OB是⊙O的半径,∴直线BE与⊙O相切;(2)设⊙O的半径为r,在Rt△ODC中,OD2+DC2=OC2,∴r2+42=(r+2)2,∴r=3,∴AB=2r=6,∴BC=AC+AB=2+6=8,由(1)得:△DOE≌△BOE,∴DE=BE,在Rt△BCE中,BC2+BE2=CE2,∴82+BE2=(4+DE)2,∴64+DE2=(4+DE)2,∴DE =6,∴DE 的长为6.18.解:(1)设BC 与⊙O 交于点M ,当t =2.5时,BE =2.5,∵EF =′10,∴OE =12EF =5,∴OB =2.5,∴EB =OE ,在正方形ABCD 中,∠ABC =90°, ∴ME =MO ,又∵MO =EO ,∴ME =EO =MO ,∴△MOE 是等边三角形,∴∠EOM =90°,∴l ME ⏜=60π×5180=5π3,即半圆O 在矩形ABCD 内的弧的长度为5π3;(2)连接GO ,HO ,∵∠GOH =90°,∴∠AOG +∠BOH =90°, ∵∠AGO +∠AOG =90°, ∴∠AGO =∠BOH ,在△AGO 和△OBH 中,{∠AGO =∠BOH ∠GAO =∠HBO OG =OH,∴△AGO≌△BOH(AAS),∴OB=AG=t−5,∵AB=7,∴AE=t−7,∴AO=5−(t−7)=12−t,在Rt△AGO中,AG2+AO2=OG2,∴(t−5)2+(12−t)2=52,解得:t1=8,t2=9,即t的值为8或9.。
2019年江苏省中考数学试题分类汇编之圆(解析版)
2019江苏省中考数学试题分类汇编之圆一、选择题1.(2019江苏镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若∠C =110°,则∠ABC 的度数等于( )A .55°B .60°C .65°D .70° 【答案】A .【解析】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∴DAB =180°﹣∴C =70°,∴DC CB =,∴∴CAB =12∴DAB =35°, ∴AB 是直径,∴∴ACB =90°,∴∴ABC =90°﹣∴CAB =55°,故选:A .2.(2019年江苏无锡)如图,P A 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P =40°,则∠B 的度数为( )A .20°B .25°C .40°D .50°OA B【答案】B.【解析】连结AO ,因为P A 是切线,所以∠P AO =90°,则∠AOP =90°-40°=50°,又因为同弧所对的圆周角=圆心角的一半,所以∴B =50°÷2=25°,故选B.3.(2019江苏苏州)如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BO 与O ⊙交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为()A .54B .36C .32D .27【答案】D.【答案】由切线性质得到90BAO ∠=,903654AOB ∴∠=-=.OD OA =,OAD ODA ∴∠=∠.AOB OAD ODA ∠=∠+∠,27ADC ADO ∴∠=∠=.故选D.4.(2019江苏宿迁)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积 是( )A .20πB .15πC .12πD .9π【答案】B .【解析】解:由勾股定理可得:底面圆的半径=3,则底面周长=6π,底面半径=3,PD由图得,母线长=5,侧面面积=12×6π×5=15π. 故选:B . 5.(2019江苏宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半 圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .πB .2πC .+πD .+2π 【答案】A .【解答】解:6个月牙形的面积之和=3π﹣(22π﹣6×12×2)=π, 故选:A .二、填空题6.(2019江苏泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【答案】12π.【解析】∵l=180R n π=1806120⨯π=4π,∴4π×3=12π. 故答案为:12π.7.(2019江苏连云港)如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为 .【答案】6.【解析】连结OB,OC,因为∠BOC=2∠A=60°,则△BOC为等边三角形,所以半径为6. 8.(2019江苏盐城)如图,点A、B、C、D、E在⊙O上,且AB的度数为50°,则∠E+∠C=°.【答案】155.【解析】解:连接EA,∵AB为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.9.(2019江苏南京)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.【答案】219°.【解析】解:连接AB,∵P A、PB是⊙O的切线,∴P A=PB,∵∠P=102°,∴∠P AB=∠PBA=12(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°,故答案为:219°.10.(2019江苏常州)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=°.【答案】30.【解析】解:∵∠BOC=180°﹣∠AOC=180°﹣120°=60°,∴∠CDB=12∠BOC=30°.故答案为30.11.(2019O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tan∠OCB=.【答案】5.【解析】解:连接OB,作OD⊥BC于D,∵⊙O与等边三角形ABC的两边AB、BC都相切,∴∠OBC=∠OBA=12∠ABC=30°,∴tan∠OBC=OD BD,∴BD =3tan303OD=3,∴CD=BC﹣BD=8﹣3=5,∴tan∠OCB=OD CD=故答案为5.12.(2019江苏扬州)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=.【答案】15.【解析】 解:连接OB ,∵AC 是⊙O 的内接正六边形的一边,∴∠AOC =360°÷6=60°,∵BC 是⊙O 的内接正十边形的一边,∴∠BOC =360°÷10=36°,∴∠AOB =60°-36°=24°,即360°÷n =24°,∴n =1513.(2019江苏连云港)一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为 .【答案】π6.【解析】根据圆锥侧面积公式πππ632=⨯⨯==rl S 侧.14.(2019年江苏无锡)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【答案】3【解析】因为圆锥侧面积公式是:rl S π=侧,所以圆锥底面圆的半径r=15π÷5π=3.15.(2019江苏淮安)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是 .【答案】3.【解析】解:设该圆锥底面圆的半径是为r ,根据题意得12×2π×r ×5=15π,解得r =3. 即该圆锥底面圆的半径是3.故答案为3.16.(2019江苏徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的 底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为 cm .【答案】6.【解析】解:圆锥的底面周长=2π×2=4πcm ,设圆锥的母线长为R ,则:=4π,解得R =6.故答案为:6.17.(2019江苏扬州)如图,将四边形ABCD 绕顶点A 顺时针旋转45°至AB′C′D′的位置,若AB =16cm ,则图中阴影部分的面积为 .【答案】32π.【解析】∵阴影部分面积=扇形BB′A 的面积+四边形ABCD 的面积-四AB′C′D′的面积 ∴阴影部分面积=扇形BB′A 的面积=ππ2451632360⨯=. 18.(2019江苏苏州)如图,扇形OAB 中,90AOB ∠=︒,P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为___________.【答案】5.【解析】解:∵OA=OB ,90AOB ∠=︒∴∠OAB =∠OBA =45°,∵PC ⊥OA ,∴∠CAD =∠CDA =45°,∴CA=CD =1,∵PD =2,∴PC =3,设扇形半径为x ,连接OP ,则OP=x ,OC=x -1,在Rt △OPC 中,由勾股定理得:222OC PC OP +=,即2223(1)x x +-=,解得x =5. 所以扇形的半径长为5.19.(2019江苏泰州)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP =3,过点A 作AP 的垂线交于⊙O 点B 、C.设PB=x ,PC=y ,则y 与x 的函数表达式为 .【答案】y=x30. 【解析】如图,连接PO 并延长交⊙O 于点N ,连接BN ,∵PN 是直径,∴∠PBN =90°.∵AP ⊥BC ,∴∠P AC =90°,OC∴∠PBN =∠P AC ,又∵∠PNB =∠PCA ,∴△PBN ∽△P AC , ∴PA PB =PC PN ,∴3x =y 10. ∴y =x30. 故答案为:y =x 30. 20.(2019年江苏无锡)如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内 自由移动,若⊙O 的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 . 【答案】25【解析】圆心能到达的面积为图中阴影区域,如图1,设OO 1=5x ,OO 2=12x ,则11051223x x =, 解得13x =,∴OO 1=53,∴DF =53,四边形ADO 1E 、四边形CFOG 、四边形MNO 2B 拼起来, 恰好拼成一个5:12:13的三角形,扇形O 1DE 、扇形OFG 、扇形O 2MN 恰好拼成一个整圆, 如图2设图2中的AC =5x ,BC =12x ,AB =13x ,则内切圆半径为51213212x x x x +-==, ∴12x =,∴AC =52,即AD +CF =52.∴图1中的AC =256,周长为25256AC BC AB AC ++⨯=.CBC图1 图221.(2019江苏连云港)如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作⊙C 与 直线BD 相切,点P 是⊙C 上一个动点,连接AP 交BD 于点T ,则ATAP的最大值是 .【答案】3.【解析】连接AC ,由勾股定理得AC =5,依据等面积可得⊙C 半径r =3×4÷5=512.设⊙C 与 直线BD 相切于点Q ,则CQ =512.如图1,过点A 作AM ∥BD ,过点P 作PH ⊥AM 于点H , 交BD 于点G ,则AP PH AT GH,∵GH=CQ =512,∴所以求ATAP的最大值就转化为求PH 的 最大值,即求PG 的最大值,显然当点P 在QC 的延长线上时PG 最大,如图2此时 PG =2CQ =2GH ,所以ATAP的最大值是3.图1 图2三、解答题22.(2019江苏南京)如图,⊙O 的弦AB 、CD 的延长线相交于点P ,且AB =CD .F CBCB求证:P A =PC .【答案】见解析. 【解析】证明:连接AC , ∵AB =CD , ∴AB CD =,∴AB BD CD BD +=+,即AD CB =, ∴∠C =∠A , ∴P A =PC .23.(2019年江苏无锡)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin∠ABOOAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.【答案与解析】(1)作MN BO ,由垂径定理得N 为OB 中点,MN =12OA . ∵MN =3,∴OA =6,即A (-6,0). ∵sin ∠ABO=2,OA =6, ∴OB=即B (0,.设y kx b ,将A 、B 带入得到3233yx . (2)∵第一问解得∠ABO =60°,∴∠AMO =120°所以阴影部分面积为22132323=43334Sπ()()π.24.(2019江苏徐州)如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为的中点.过点D作直线AC 的垂线,垂足为E ,连接OD . (1)求证:∠A =∠DOB ;(2)DE 与⊙O 有怎样的位置关系?请说明理由.【答案】(1)见解析;(2)DE 与⊙O 相切,理由见解析.【解析】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由如下:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.25.(2019江苏宿迁)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC 于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【答案】(1)见解析;(2)见解析.【解析】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.26.(2019江苏盐城)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,以CD为直径的⊙O分别交AC、BC于点M、N,过点N作NE⊥AB,垂足为E.(1)若⊙O的半径为52,AC=6,求BN的长;(2)求证:NE与⊙O相切.【答案】(1)BN=4;(2)见解析.【解析】解:(1)连接DN,ON,∵⊙O的半径为52,∴CD=5.∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD=5,∴AB=10,∴由勾股定理得BC=8,∵CD为直径,∴∠CND=90°,且BD=CD.∴BN=NC=4.(2)∵∠ACB=90°,D为斜边的中点,∴CD=DA=DB=12 AB,∴∠BCD=∠B,∵OC=ON,∴∠BCD=∠ONC,∴∠ONC=∠B,∴ON∥AB,∵NE⊥AB,∴ON⊥NE,∴NE为⊙O的切线.27.(2019江苏镇江)如图,在△ABC中,AB=AC,过AC延长线上的点O作OD⊥AO,交BC的延长线于点D,以O为圆心,OD长为半径的圆过点B.(1)求证:直线AB与⊙O相切;(2)若AB=5,⊙O的半径为12,则tan∠BDO=.【答案】(1)见解析;(2)23.【解析】(1)证明:连接AB,如图所示:∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠OCD,∴∠ABC=∠OCD,∵OD⊥AO,∴∠COD=90°,∴∠D+∠OCD=90°,∵OB=OD,∴∠OBD=∠D,∴∠OBD+∠ABC=90°,即∠ABO=90°,∴AB⊥OB,∵点B在圆O上,∴直线AB与⊙O相切;(2)解:∵∠ABO=90°,∴OA13==,∵AC=AB=5,∴OC=OA﹣AC=8,∴tan∠BDO=82123 OCOD==;故答案为:23.28.(2019江苏泰州)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为弧AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.【答案】(1)相切;(2)CE =425. 【解析】(1) DE 为⊙O 的切线, 理由:连接OD ,∵AC 为⊙O 的直径,D 为弧AC 的中点, ∴AD CD =,∴∠AOD =∠COD =90°, 又∵DE ∥AC ,∴∠EDO =∠AOD =90°, ∴DE 为⊙O 的切线.(2)解:∵DE ∥AC , ∴∠EDO =∠ACD, ∵∠ACD =∠ABD, ∵∠DCE =∠BAD, ∴△DCE ∽△BAD , ∴CE DCAD AB=, ∵半径为5,∴AC =10, ∵ D 为弧AC 的中点,∴AD=CD=,8,∴CE=425.29.(2019江苏扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是弧AmB上的一点,①求∠AQB的度数;②若OA=18,求弧AmB的长.【答案】(1)见解析;(2)①65°,②23π.【解析】解(1)连接OB,∵CP=CB,∴∠CPB=∠CBP,∵OA⊥OC,∴∠AOC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠PAO+∠APO=90°,∴∠ABO+∠CBP=90°.∴∠OBC=90°,∴BC是⊙O的切线.(2)①∵∠BAO =25°,OA=OB ,∴∠BAO =∠OBA =25°.∴∠AOB =130°,∴∠AQB =65°.②∵∠AOB =130°,OB =18,∴l 弧AmB =(360°-130°)π×18÷180=23π.30.(2019江苏苏州)如图,AE 为O 的直径,D 是弧BC 的中点BC 与AD ,OD 分别交于点E ,F .(1)求证:DO AC ∥;(2)求证:2DE DA DC ⋅=;(3)若1tan 2CAD ∠=,求sin CDA ∠的值.【答案】(1)见解析;(2)见解析;(3)35. 【解析】(1)证明:∵D 为弧BC 的中点,OD 为O 的半径,∴OD BC ⊥.又∵AB 为O 的直径,∴90ACB ∠=︒.∴AC OD ∥.(2)证明:∵D 为弧BC 的中点,CA∴CD BD =.∴DCB DAC ∠=∠.∴DCE DAC ∆∆∽. ∴DC DE DA DC=. 即2DE DA DC ⋅=.(3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠=, ∴12CD DE CE DA DC AC ===. 设CD =2a ,则DE =a ,4DA a =,又∵AC OD ∥,∴△AEC ∽△DEF , ∴3CE AE EF DE==. 所以83BC CE =. 又2AC CE =, ∴103AB CE =. 即3sin sin 5CA CDA CBA AB ∠=∠==. 31.(2019江苏淮安)如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分∠BAC , DE ⊥AC ,垂足为E .(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为2,∠BAC =60°,求线段EF 的长.【答案】(1)DE 与⊙O 相切,理由见解析;(2)1.【解析】解:(1)直线DE 与⊙O 相切,理由如下:连结OD .∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=12OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=12DF=1.32.(2019江苏镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400km,求这两个观测点之间的距离即⊙O上AB的长.(π取 3.1)【答案】(1)67°;(2)3968 km.【解答】解:(1)设点B的切线CB交ON延长线于点E,HD⊥BC于D,CH⊥BH交BC 于点C,如图所示:则∠DHC=67°,∵∠HBD+∠BHD=∠BHD+∠DHC=90°,∴∠HBD=∠DHC=67°,∵ON∥BH,∴∠BEO=∠HBD=67°,∴∠BOE=90°﹣67°=23°,∵PQ⊥ON,∴∠POE=90°,∴∠POB=90°﹣23°=67°;(2)同(1)可证∠POA=31°,∴∠AOB=∠POB﹣∠POA=67°﹣31°=36°,∴AB的长=366400180π⨯=3968(km).33.(2019江苏常州)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形”:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【答案】(1)①1;②(2)①如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.②M(﹣1,2)或(1,2),当点M在y轴的右侧时,满足条件的点M的横坐标的范围为1≤x≤1;当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣≤x﹣.【解析】解:(1)①半径为1的圆的宽距离为1,故答案为1.②如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt△ODC中,OC==∴OP+OC≥PC,∴PC≤∴这个“窗户形“的宽距为故答案为(2)①如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.②如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊥x轴于T.∵AC≤AM+CM,又∵5≤d≤8,∴当d=5时.AM=4,∴AT=M(﹣1,2),当d=8时.AM=7,∴AT=M(1,2),∴满足条件的点M的横坐标的范围为1≤x≤1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣≤x﹣.。
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。
2021年中考数学真题分类汇编--圆:与圆有关的计算(老师版)
中考真题分类汇编(圆)----与圆有关的计算一、选择题1. (2021•山西)如图,正六边形 ABCDEF 的边长为 2,以 A 为圆心,AC 的长 为半径画弧,得BC ,连接 AC 、AE ,则图中阴影部分的面积为( )A. 2πB. 4πC. 33πD. 233π解:过B 点作AC 垂线,垂直为G ,根据正六边形性质可知,30CAB BCA ∠=∠=︒,∴22222=222123AC AG AB GH =⨯-=⨯-=,∴S 扇形=260(23)2360ππ⨯⨯=, 故选:A .2. (2021•河北省)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作:①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【分析】如图,连接EM,EN,MF.NF.根据矩形的判定证明四边形MENF是矩形,再说明∠MOF≠∠AOB,可知(Ⅱ)错误.【解答】解:如图,连接EM,EN,MF.NF.∵OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图象可知∠MOF≠∠AOB,∴S扇形FOM≠S扇形AOB,故(Ⅱ)错误,故选:D.3.(2021•四川省成都市)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π,故选:D4.(2021•湖北省荆州市)如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC 长为半径画,点P为菱形内一点,连接P A,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为()A.B.C.2πD.【分析】连接AC,延长AP,交BC于E,根据菱形的性质得出△ABC是等边三角形,进而通过三角形全等证得AE⊥BC,从而求得AE、PE,利用S阴影=S扇形ABC﹣S△P AB﹣S△PBC即可求得.【解答】解:连接AC,延长AP,交BC于E,在菱形ABCD中,∠D=60°,AB=2,∴∠ABC=∠D=60°,AB=BC=2,∴△ABC是等边三角形,∴AB=AC,在△APB和△APC中,,∴△APB≌△APC(SSS),∴∠P AB=∠P AC,∴AE⊥BC,BE=CE=1,∵△BPC为等腰直角三角形,∴PE=BC=1,在Rt△ABE中,AE=AB=,∴AP=﹣1,∴S阴影=S扇形ABC﹣S△P AB﹣S△PBC=﹣(﹣1)×1﹣=π﹣,故选:A.5.(2021•四川省广元市)如图,在边长为2的正方形ABCD中,AE是以BC为直径的半圆的切线,则图中阴影部分的面积为()A. 32π+B. 2π- C. 1 D.52π-【答案】D【解析】【分析】取BC的中点O,设AE与⊙O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∠OF A=∠OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC 的中点O ,设AE 与⊙O 的相切的切点为F ,连接OF 、OE 、OA ,如图所示:∵四边形ABCD 是正方形,且边长为2,∴BC=AB =2,∠ABC=∠BCD =90°,∵AE 是以BC 为直径的半圆的切线,∴OB =OC =OF =1,∠OF A =∠OFE =90°,∴AB =AF =2,CE =CF ,∵OA =OA ,∴Rt △ABO ≌Rt △AFO (HL ),同理可证△OCE ≌△OFE ,∴,AOB AOF COE FOE ∠=∠∠=∠,∴90AOB COE AOB BAO ∠+∠=︒=∠+∠,∴COE BAO ∠=∠,∴ABO OCE ∽, ∴OC CE AB OB=, ∴12CE =, ∴15222222ABO OCE ABCE S S S S S S ππ-=-=+-=+-=阴影半圆半圆四边形; 6.(2021•四川省广元市)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90︒的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )A. 4πB. 24C. 12D. 1【答案】B【解析】【分析】先计算BC 的长度,然后围成的圆锥底面周长等同于BC 的长度,根据公式计算即可.【详解】解:如下图:连接BC ,AO ,∵90BAC ∠=,∴BC 是直径,且BC=2,又∵AB AC =,∴45ABC ACB ∠=∠=,,AO BC ⊥又∵sin 45OA AB ︒=,112OA BC == , ∴ 12sin 452OA AB ===︒ ∴BC 的长度为:9022=1802π⨯,∴围成的底面圆周长为22π, 设圆锥的底面圆的半径为r , 则:222r ππ=, ∴212=224r ππ=⨯. 故选:B7. (2021•浙江省衢州卷) 已知扇形的半径为6,圆心角为150︒.则它的面积是( )A. 32πB. 3πC. 5πD. 15π【答案】D8. (2021•遂宁市) 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为43,∠CDF =15°, 则阴影部分的面积为( )A. 16123π-B. 16243π-C. 20123π-D. 20243π-【答案】A【解析】 【分析】连接AD ,连接OE ,根据圆周角定理得到∠ADB =90°,根据等腰三角形的性质得到∠BAC =2∠DAC =2×15°=30°,求得∠AOE =120°,过O 作OH ⊥AE 于H ,解直角三角形得到OH 3AH =6,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接AD ,连接OE ,∵AB 是直径,∴∠ADB =90°,∴AD ⊥BC ,∴∠ADB =∠ADC =90°,∵DF ⊥AC ,∴∠DFC =∠DF A =90°,∴∠DAC =∠CDF =15°,∵AB =AC ,D 是BC 中点,∴∠BAC =2∠DAC =2×15°=30°,∵OA =OE ,∴∠AOE =120°,过O 作OH ⊥AE 于H ,∵AO 3∴OH =12AO 3, ∴AH 3=6,∴AE =2AH =12,∴S 阴影=S 扇形AOE -S △AOE =(212043112233602π⨯-⨯⨯163π=-故选:A .9. (2021•四川省自贡市)如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,OPQ △绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部份)面积的最大值是( )A. 23πB. 12π C. 1116π D. 2132π 【答案】A【解析】【分析】根据题意得OQM OMN S S S =-阴影扇形扇形,设P (a ,2-2a ),则Q (a ,3-a ),利用扇形面积公式得到()21325?8S a a π=-++阴影,利用二次函数的性质求解即可.【详解】解:如图,根据旋转的性质,OPQ OMN ≅,∴OPQ OMN S S =,则OMN OPQ OQM OPN S S S S S =+--阴影扇形扇形OQM OPN S S =-扇形扇形,∵点P 在直线22y x =-+上,点Q 在直线3y x =-+上,且PQ ∥y 轴,设P (a ,2-2a ),则Q (a ,3-a ),∴OP 2=()22222584a a a a +-=-+,OQ 2=()2223269a a a a +-=-+, OQM OPN S S S =-阴影扇形扇形2245?45?360360OQ OP ππ=- ()21325?8a a π=-++, 设22116325333y a a a ⎛⎫=-++=--+ ⎪⎝⎭, ∵30-<,∴当13a =时,y 有最大值,最大值为163, ∴S 阴影的最大值为1612383ππ⨯=. 故选:A .10. (2021•青海省)如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动)那么小羊A 在草地上的最大活动区域面积是( )A .πm 2B .πm 2C .πm 2D .πm 2【分析】小羊的最大活动区域是一个半径为5、圆心角为90°和一个半径为1、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【解答】解:大扇形的圆心角是90度,半径是5,所以面积==π(m 2);小扇形的圆心角是180°﹣120°=60°,半径是1m ,则面积==(m 2),则小羊A 在草地上的最大活动区域面积=π+=π(m 2). 故选:B .11. (2021•浙江省湖州市)如图,已知在矩形ABCD 中,AB =1,BC =3,点P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为C 1,当点P 运动时,点C 1也随之运动.若点P 从点A 运动到点D ,则线段CC 1扫过的区域的面积是A .πB .334π+C .332D .2π 【答案】B【解析】如图,C 1运动的路径是以B 为圆心,3为半径,圆心角为120°的弧上运动,故线段CC 1扫过的区域是一个圆心角为120°的扇形+一个以3为边长的等边三角形,故S =22120(3)333(3)36044ππ+⨯=+,故选B .12. (2021•湖南省张家界市)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,设正方形ABCD 的面积为S ,黑色部分面积为1S ,则1S :S 的比值为(A ).A 8π .B 4π .C 41 .D 2113. (2021•云南省)如图,等边△ABC 的三个顶点都在⊙O 上,AD 是⊙O 的直径.若0A =3,则劣弧BD 的长是( )BA .B .πC .D .2π14. (2021•广西贺州市)如图,在边长为2的等边ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,则图中阴影部分的面积为( )A. π6B. π3C. π2D. 2π3【答案】C【解析】【分析】由等边ABC 中,D 是BC 边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】ABC 是等边三角形,D 是BC 边上的中点AD BC ∴⊥,60A ∠=︒2222213AD AB BD ∴=-=-=S 扇形AEF 226060(3)3602r πππ⨯=== 故选C .15. (2021•湖北省江汉油田)用半径为30cm ,圆心角为120︒的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( )A. 5cmB. 10cmC. 15cmD. 20cm【答案】B【解析】【分析】根据圆锥的侧面是一个扇形,这个扇形的弧长等于圆锥底面周长即可得.【详解】解:设这个圆锥底面半径为cmr,由题意得:12030 2180ππ⨯=r,解得10(cm)r=,即这个圆锥底面半径为10cm,故选:B.16.(2021•呼和浩特市)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计的值,下面d及π的值都正确的是CA.8(21)sin22.5d-=︒,8sin22.5π≈︒B.4(21)sin22.5d-=︒,4sin22.5π≈︒C.4(21)sin22.5d-=︒,8sin22.5π≈︒D.8(21)sin22.5d-=︒,4sin22.5π≈︒二.填空题1..(2021•湖南省衡阳市)底面半径为3,母线长为4的圆锥的侧面积为12π.(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×4÷2=12π.故答案为:12π.2.(2021•怀化市)如图,在⊙O中,OA=3,∠C=45°,则图中阴影部分的面积是π﹣.(结果保留π)【分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB 可得出结论.【解答】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB==π﹣.故答案为:π﹣.3.(2021•宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.【答案】48π【解析】【分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.【详解】解:∵底面圆的半径为4,∴底面周长为8π,∴侧面展开扇形的弧长为8π,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴120180r π=8π, 解得:r =12,∴侧面积为π×4×12=48π,故答案为:48π.4. (2021•山东省聊城市)用一块弧长16πcm 的扇形铁片,做一个高为6cm 的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm 2【答案】80π【解析】【分析】先求出圆锥的底面半径,再利用勾股定理求出圆锥的母线长,最后利用扇形的面积公式求解即可.【详解】解:∵弧长16πcm 的扇形铁片,∴做一个高为6cm 的圆锥的底面周长为16πcm ,∴圆锥的底面半径为:16π÷2π=8cm ,∴圆锥的母线长为:226810cm +=,∴扇形铁片的面积=16110280ππ⨯⨯=cm 2, 故答案是:80π.5. (2021•山东省泰安市)若△ABC 为直角三角形,AC =BC =4,以BC 为直径画半圆如图所示,则阴影部分的面积为 4 .【分析】连接CD .构建直径所对的圆周角∠BDC =90°,然后利用等腰直角△ABC 的性质:斜边上的中线是斜边的一半、中线与垂线重合,求得CD =BD =AD ,从而求得弦BD 与CD 所对的弓形的面积相等,所以图中阴影部分的面积=直角三角形ABC 的面积﹣直角三角形BCD 的面积.【解答】解:连接CD .∵BC是直径,∴∠BDC=90°,即CD⊥AB;又∵△ABC为等腰直角三角形,∴CD是斜边AB的垂直平分线,∴CD=BD=AD,∴=,∴S弓形BD=S弓形CD,∴S阴影=S Rt△ABC﹣S Rt△BCD;∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,∴S Rt△ABC=2S Rt△BCD;又S Rt△ABC=×4×4=8,∴S阴影=4;故答案为:4.6..(2021•湖北省宜昌市)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为(2π﹣2)平方厘米.(圆周率用π表示)【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵AB =AC =BC =2厘米,∠BAC =∠ABC =∠ACB =60°,∵AD ⊥BC ,∴BD =CD =1厘米,AD =BD =厘米, ∴△ABC 的面积为BC •AD =(厘米2), S 扇形BAC ==π(厘米2),∴莱洛三角形的面积S =3×π﹣2×=(2π﹣2)厘米2, 故答案为:(2π﹣2).7. (2021•广东省)如题13图,等腰直角三角形ABC 中,90A ∠=︒,4BC =.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为_________.【答案】4π- 【解析】211142π24π424ABC B S S S =-=⨯⨯-⨯⨯=-△⊙阴影,考查阴影面积的求法(主要还是用整体减去局部)8. (2021•湖北省恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 26 寸.【分析】过圆心O 作OC ⊥AB 于点C ,延长OC 交圆于点D ,则CD =1寸,AC =BC =AB ,连接OA ,设圆的半径为x ,利用勾股定理在Rt △OAC 中,列出方程,解方程可得半径,进而直径可求.【解答】解:过圆心O 作OC ⊥AB 于点C ,延长OC 交圆于点D ,连接OA ,如图:∵OC ⊥AB ,∴AC =BC =AB ,.则CD =1寸,AC =BC =AB =5寸.设圆的半径为x 寸,则OC =(x ﹣1)寸.在Rt △OAC 中,由勾股定理得:52+(x ﹣1)2=x 2,解得:x =13.∴圆材直径为2×13=26(寸).故答案为:26.9. (2021•浙江省宁波市) 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,,AC BD 分别与O 相切于点C ,D ,延长,AC BD 交于点P .若120P ∠=︒,O 的半径为6cm ,则图中CD 的长为________cm .(结果保留π)【答案】2π【解析】【分析】连接OC 、OD ,利用切线的性质得到90OCP ODP ∠=∠=︒,根据四边形的内角和求得60COD ∠=︒,再利用弧长公式求得答案.【详解】连接OC 、OD ,∵,AC BD 分别与O 相切于点C ,D ,∴90OCP ODP ∠=∠=︒,∵120P ∠=︒,360OCP ODP P COD ∠+∠+∠+∠=︒,∴60COD ∠=︒,∴CD 的长=6062180(cm ),故答案为:2π..10. (2021•浙江省台州)如图,将线段AB 绕点A 顺时针旋转30°,得到线段AC .若AB =12,则点B 经过的路径BC 长度为_____.(结果保留π)【答案】2π【解析】【分析】直接利用弧长公式即可求解.【详解】解:30122180BC l ππ⋅==, 故答案为:2π.11. 2021•浙江省温州市)若扇形的圆心角为30°,半径为17,则扇形的弧长为π . 【分析】根据弧长公式代入即可.【解答】解:根据弧长公式可得:l===π.故答案为:π.12.(2021•湖北省荆门市)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为2﹣.【分析】连接PB、PC,作PF⊥BC于F,根据等边三角形的性质得到∠PBC=60°,解直角三角形求出BF、PF,根据扇形面积公式、三角形的面积公式计算,得到答案.【解答】解:连接PB、PC,作PF⊥BC于F,∵PB=PC=BC,∴△PBC为等边三角形,∴∠PBC=60°,∠PBA=30°,∴BF=PB•cos60°=PB=1,PF=PB•sin60°=,则图中阴影部分的面积=[扇形ABP的面积﹣(扇形BPC的面积﹣△BPC的面积)]×2=[﹣(﹣×2×)]×2=2﹣,故答案为:2﹣.13.(2021•江苏省盐城市)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为6π.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:该圆锥的侧面积=×2π×2×3=6π.故答案为6π.14.(2021•重庆市A)如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F.若BD=4,∠CAB=36°,则图中阴影部分的面积为___________.(结果保留π).【答案】4 5π【解析】【分析】利用矩形的性质求得OA=OC=OB=OD=2,再利用扇形的面积公式求解即可.【详解】解:∵矩形ABCD的对角线AC,BD交于点O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴22362423605AOES Sππ⨯⨯===阴影扇形,故答案为:45π.15. (2021•重庆市B)如图,在菱形ABCD中,对角线AC=12,BD=16,分别以点A,B,C,D为圆心,AB的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为96﹣100π.(结果保留π)【分析】先求出菱形面积,再计算四个扇形的面积即可求解.【解答】解:在菱形ABCD中,有:AC=12,BD=16.∴.∵∠ABC +∠BCD +∠CDA +∠DAB =360°.∴四个扇形的面积,是一个以AB 的长为半径的圆.∴图中阴影部分的面积=×12×16﹣π×102=96﹣100π.故答案为:96﹣100π.16.(2021•湖北省十堰市)如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是_________.【答案】3π-6【解析】【分析】连接BE ,可得ABE △是等腰直角三角形,弓形BE 的面积=2π-,再根据阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-BCE 的面积,即可求解.【详解】连接BE ,∵在正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,∴∠AEB =90°,即:AC ⊥BE ,∵∠CAB =45°,∴ABE △是等腰直角三角形,即:AE =BE ,∴弓形BE 的面积=211222242ππ⨯-⨯⨯=-, ∴阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-BCE 的面积=2π-+2454360π⨯⨯-114422⨯⨯⨯=3π-6. 故答案是:3π-6.17. (2021•湖南省永州市)某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为 .18.(2021•黑龙江省大庆市)一个圆柱形橡皮泥,底面积是12cm 2.高是5cm .如果这个橡皮泥的一半,把它捏成高为5cm 的圆锥,则这个圆锥的底面积是 cm 2;【分析】首先求出圆柱体积,根据题意得出圆柱体积的一半即为圆锥的体积,根据圆锥体积计算公式列出方程,即可求出圆锥的底面积.【详解】V圆柱=Sh =212560cm , 这个橡皮泥的一半体积为:2160302V cm ,把它捏成高为5cm 的圆锥,则圆锥的高为5cm ,故1303Sh , 即15=303S , 解得=18S (cm 2),故填:18.19. (2021•黑龙江省大庆市) 如图,作⊙O 的任意一条直经FC ,分别以F 、C 为圆心,以FO 的长为半径作弧,与⊙O 相交于点E 、A 和D 、B ,顺次连接AB 、BC 、CD 、DE 、EF 、F A ,得到六边形ABCDEF ,则⊙O 的面积与阴影区域的面积的比值为 ;16题图DBE A OF C【分析】可将图中阴影部分的面积转化为两个等边三角形的面积之和,设⊙O 的半径与等边三角形的边长为a ,分别表示出圆的面积和两个等边三角形的面积,即可求解 【详解】连接OE ,OD ,OB ,OA ,由题可得:EF OF OE FA OA AB OB BC OC CD OD ==========,,,,,EFO OFA OAB OBC OCD ∴△△△△△△ODE 为边长相等的等边三角形∴可将图中阴影部分的面积转化为ODE 和OAB 的面积之和,如图所示:设⊙O 的半径与等边三角形的边长为a ,∴⊙O 的面积为22S r a ππ==等边OED 与等边OAB 的边长为a234OAB a S S ∴==△OED △ 23=2OED OABa S S S ∴+=△△阴 ∴⊙O 的面积与阴影部分的面积比为22233S S a π=阴故答案为:233π. 20. (2021•吉林省长春市)如图是圆弧形状的铁轨示意图,半径OA 的长度为200米,圆心角90AOB ∠=︒,则这段铁轨的长度 米,(铁轨的宽度忽略不计,结果保留π)【分析】根据圆的弧长计算公式l =,代入计算即可. 【解答】解:圆弧长是:=100π(米).故答案是:100π.21. (2021•绥化市)一条弧所对的圆心角为135°弧长等于半径为5cm 的圆的周长的3倍,则这条弧的半径为__________cm .【答案】40【解析】【分析】设出弧所在圆的半径,由于弧长等于半径为5cm 的圆的周长的3倍,所以根据原题所给出的等量关系,列出方程,解方程即可.【详解】解:设弧所在圆的半径为r ,由题意得, 135253180r ππ⨯⨯=⨯⨯, 解得,r=40cm .22. (2021•江苏省无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为 .【分析】圆锥的底面圆半径为r ,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r ,依题意,得2πr =,解得r =. 故答案为:. 23. (2021•山东省济宁市)如图,△ABC 中,∠ABC =90°,AB =2,AC =4,点O 为BC 的中点,以O 为圆心,以OB 为半径作半圆,交AC 于点D ,则图中阴影部分的面积是 ﹣ .【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△COD的面积和扇形BOD的面积,从而可以解答本题.【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.24.(2021•呼和浩特市)已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为__________.(用含π的代数式表示),圆心角为__________度.12 ,21625.(2021•齐齐哈尔市)一个圆锥的底面圆半径为6cm,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为_____cm.【答案】9.【解析】【详解】试题分析:求得圆锥的底面周长,利用弧长公式即可求得圆锥的母线长:∵圆锥的底面周长为:2π×6=12π,∴圆锥侧面展开图的弧长为12π.设圆锥的母线长为R,∴24012180Rππ⨯=,解得R=9cm.考点:圆锥的计算.26.(2021•内蒙古通辽市)如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB=60°,若点M,N分别是AB,BC的中点,则图中阴影部分面积的最大值是﹣.【分析】连接OA、OB、OM,根据圆周角定理得到∠AOB=120°,求出OM=1,OA=2,再根据三角形中位线性质得到MN∥AC,MN=AC,然后根据三角形相似得到=()2=,故当△ABC的面积最大时,△MBN的面积最大,由C、O、M在一条直线时,△ABC的面积最大,求得△ABC的最大值,进而即可求得△MBN的面积最大值,利用扇形的面积和三角形的面积求得弓形的面积,进而即可求得阴影部分的最大值.【解答】解:连接OA、OB、OM,如图,∵∠ACB=60°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵AM=BM=AB=,∴OM⊥AB,∴tan30°=,∴OM=×=1,∴OA=2OM=2,∵点M、N分别是AB、BC的中点,∴MN∥AC,MN=AC,∴△MBN∽△ABC,∴=()2=,∴当△ABC的面积最大时,△MBN的面积最大,∵C、O、M在一条直线时,△ABC的面积最大,∴△ABC的面积最大值为:××(2+1)=3,∴△MBN的面积最大值为:,∵S弓形=S扇形OAB﹣S△AOB=﹣=﹣,∴此时,S阴影=﹣+=﹣,故答案为:﹣.三、解答题1.(2021•湖北省黄冈市)如图,在Rt△ABC中,∠ACB=90°,AC分别相切于点E,F,BO平分∠ABC(1)求证:AB是⊙O的切线;(2)若BE=AC=3,⊙O的半径是1,求图中阴影部分的面积.【分析】(1)有切点则连圆心,证明垂直关系;无切点则作垂线,证明等于半径;(2)将不规则图形转化为规则图形间的换算.【解答】(1)证明:连接OE,OF,∵BO是∠ABC的平分线,∴OD═OE,OE是圆的一条半径,∴AB是⊙O的切线,故:AB是⊙O的切线.(2)∵BC、AC与圆分别相切于点E,∴OE⊥BC,OF⊥AC,∴四边形OECF是正方形,∴OE═OF═EC═FC═1,∴BC═BE+EC═4,又AC═3,∴S阴影═(S△ABC﹣S正方形OECF﹣优弧所对的S扇形EOF)═×()═﹣.故图中阴影部分的面积是:﹣.2.(2021•湖南省邵阳市)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)【分析】(1)设∠BAC=n°.根据弧EF的两种求法,构建方程,可得结论.(2)根据S阴=•BC•AD﹣S扇形AEF求解即可.【解答】解:(1)设∠BAC=n°.由题意得π•DE=,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣=(100﹣25π)cm2.3.(2021•江西省)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.【分析】(1)先判断出∠CBE=∠D,再用等角的余角相等,即可得出结论;(2)①先判断出OC∥AB,再判断出BC∥OA,进而得出四边形ABCO是平行四边形,即可得出结论;②先求出AC,BC,再用面积的和,即可得出结论.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∠D=90°﹣∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∴CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.4.(2021•湖北省随州市)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)①如图1,P是边长为a的正ABC内任意一点,点O为ABC的中心,设点P到ABC各边距离分别为1h,2h,3h,连接AP,BP,CP,由等面积法,易知()123123ABC OAB h h h S a S ++==△△,可得123h h h ++=_____;(结果用含a 的式子表示) ②如图2,P 是边长为a 的正五边形ABCDE 内任意一点,设点P 到五边形ABCDE 各边距离分别为1h ,2h ,3h ,4h ,5h ,参照①的探索过程,试用含a 的式子表示12345h h h h h ++++的值.(参考数据:8tan 3611≈°,11tan 548≈°)(3)①如图3,已知O 的半径为2,点A 为O 外一点,4OA =,AB 切O 于点B ,弦//BC OA ,连接AC ,则图中阴影部分的面积为______;(结果保留π)②如图4,现有六边形花坛ABCDEF ,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形ABCDG ,其中点G 在AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点G 的位置,并说明理由. (1)125,1;(2)①32a;②5516a ;(3)①23π;②见解析. 【分析】(1)根据等积法解得直角三角形斜边上的高的长,及利用内切圆的性质解题即可; (2)①先求得边长为a 的正ABC 的面积,再根据()123123ABC OAB h h h S a S ++==△△解题即可;②设点O 为正五边形ABCDE 的中心,连接OA ,OB ,过O 作OQ AB ⊥于Q ,先由正切定义,解得OQ 的长,由①中结论知,5OAB ABCDE S S =五边形△,继而得到()123451115tan 54222a h h h h h a a ++++=⨯⨯°,据此解题; (3)①由切线性质解得30OAB ∠=︒,再由平行线性质及等腰三角形性质解得60COB ∠=︒,根据平行线间的距离相等,及同底等高或等底同高的两个三角形面积相等的性质,可知图中阴影部分的面积等于扇形OBC 的面积,最后根据扇形面积公式解题;②连接DF ,过点E 作//EG DF 交AF 的延长线于G 点,根据DGF ABCDEF ABCDF ABCDG S S S S =+=六边形五边形五边形△,据此解题.【详解】解:(1)直角三角形的面积为:13462⨯⨯=,5=, 设直角三角形斜边上的高为h ,则1562h ⨯⋅= 125h ∴=设直角三角形内切圆的半径为r ,则11(345)3422++=⨯⨯ 1r ∴=,故答案为:125,1;(2)①边长为a 的正ABC ,面积为:212OAB a S =⋅=△()12322431ABC OAB h h h S S a a =++==△△123h h h =∴++2a ,故答案为:2a ; ②类比①中方法可知()1234512ABCDE a h h h h h S ++++=五边形, 设点O 为正五边形ABCDE 的中心,连接OA ,OB ,由①得5OAB ABCDE S S =五边形△,过O 作OQ AB ⊥于Q ,()1180521085EAB ∠=⨯⨯-=°°, 故54OAQ ∠=°,1tan 54tan 542OQ AQ a =⨯=°°,故()123451115tan 54222a h h h h h a a ++++=⨯⨯°,从而得到: 12345555tan 54216h h h h h a a ++++=≈°. (3)①AB 是O 的切线,OB AB ∴⊥90OBA ∴∠=︒2,4OB OA30OAB ∴∠=︒ 60AOB ∴∠=︒//BC OA60AOB OBC ∴∠=∠=︒OC OB =60OBC OCB ∴∠=∠=︒60COB ∴∠=︒过点O 作OQ BC ⊥//BC OA ,OQ ∴是COB ABC 、的高,ABCOCBSS∴=26060423603603OBCr S S πππ⨯⨯∴====阴影部分扇形故答案为:23π; ②如图,连接DF ,过点E 作//EG DF 交AF 的延长线于G 点,则点G 即为所求,连接DG ,∵DEF ABCDEF ABCDF S S S =+六边形五边形△, ∵//EG DF , ∴DEF DGF S S =△△,∴DGF ABCDEF ABCDF ABCDG S S S S =+=六边形五边形五边形△.5. (2021•襄阳市) 如图,直线AB 经过O 上的点C ,直线BO 与O 交于点F 和点D ,OA 与O 交于点E ,与DC 交于点G ,OA OB =,CA CB =.(1)求证:AB 是O 的切线;(2)若//FC OA ,6CD =,求图中阴影部分面积.【答案】(1)见解析;(2)33 2π26.(2021•贵州省贵阳市)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.(1)EM与BE的数量关系是BE=EM;(2)求证:=;(3)若AM=,MB=1,求阴影部分图形的面积.【分析】(1)证得△BME是等腰直角三角形即可得到结论;(2)根据垂径定理得到∠EMB=90°,进而证得∠ABE=∠BEN=45°,得到=,根据题意得到=,进一步得到=;(3)先解直角三角形得到∠EAB=30°,从而得到∠EOB=60°,证得△EOB是等边三角形,则OE=BE=,然后证得△OEB≌△OCN,然后根据扇形的面积公式和三角形面积公式求得即可.【解答】解:(1)∵AC为⊙O的直径,点E是的中点,∴∠ABE=45°,∵AB⊥EN,∴△BME是等腰直角三角形,∴BE=EM,故答案为BE=EM;(2)连接EO,AC是⊙O的直径,E是的中点,∴∠AOE=90°,∴∠ABE=∠AOE=45°,∵EN⊥AB,垂足为点M,∴∠EMB=90°∴∠ABE=∠BEN=45°,∴=,∵点E是的中点,∴=,∴=,∴﹣=﹣,∴=;(3)连接AE,OB,ON,∵EN⊥AB,垂足为点M,∴∠AME=∠EMB=90°,∵BM=1,由(2)得∠ABE=∠BEN=45°,∴EM=BM=1,又∵BE=EM,∴BE=,∵在Rt△AEM中,EM=1,AM=,∴tan∠EAB==,∴∠EAB=30°,∵∠EAB=∠EOB,∴∠EOB=60°,又∵OE=OB,∴△EOB是等边三角形,∴OE=BE=,又∵=,∴BE=CN,∴△OEB≌△OCN(SSS),∴CN=BE=又∵S扇形OCN==,S△OCN=CN•CN=×=,∴S阴影=S扇形OCN﹣S△OCN=﹣.7.(2021•湖北省黄石市)如图,PA、PB是O的切线,A、B是切点,AC是O的直径,连接OP,交O于点D,交AB于点E.(1)求证://BC OP;(2)若E恰好是OD的中点,且四边形OAPB的面积是163,求阴影部分的面积;(3)若1sin3BAC∠=,且23AD=,求切线PA的长.【答案】(1)见解析;(2)823π-;(3)2【解析】。
中考数学复习《圆的证明与计算》经典题型及测试题(含答案)
中考数学复习《圆的证明与计算》经典题型及测试题(含答案)阅读与理解圆的相关知识的考查是中考数学中的一个重要内容,圆作为一个载体,常与三角形、四边形结合,考查切线的性质及判定、相似三角形的性质与判定、解直角三角形、求阴影面积等.解题时要先分析题干中的条件,然后从图象中挖掘隐含条件,最后再解题.类型一切线的判定判定一条直线是圆的切线,首先看圆的半径是否过直线与圆的交点,有半径则证垂直;没有半径,则连接圆心与切点,构造半径证垂直.例1 (2016·黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得⊥OCA=⊥CAD,即可得到OC⊥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【自主解答】(1)解:⊥AB是⊥O直径,C在⊥O上,⊥⊥ACB=90°,又⊥BC=3,AB=5,⊥由勾股定理得AC=4;(2)证明:⊥AC是⊥DAB的角平分线,⊥⊥DAC=⊥BAC,又⊥AD⊥DC,⊥⊥ADC=⊥ACB=90°,⊥⊥ADC⊥⊥ACB,⊥⊥DCA=⊥CBA,又⊥OA=OC,⊥⊥OAC=⊥OCA,⊥⊥OAC+⊥OBC=90°,⊥⊥OCA+⊥ACD=⊥OCD=90°,⊥DC是⊥O的切线.变式训练1.(2017·白银) 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.类型二切线的性质已知某条直线是圆的切线,当圆心与切点有线段连接时,直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时,则作辅助线连接圆心与切点,再利用切线的性质解题.例2 (2016·资阳) 如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=1时,求MN的长.【分析】(1)连接OD,由切线的性质可得∠CDB+∠ODB=90°,由AB是直径,可得∠ADB=90°,进而可得∠A+∠ABD=90°,进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,再根据勾股定理求得MN的长.【自主解答】(1)如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠BDC+∠ODB=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∴∠A=∠BDC.(2)∵CM平分∠ACD,∴∠DCM=∠ACM.∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM.即∠DMN=∠DNM.∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=变式训练2.(2017·长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影类型三圆与相似的综合圆与相似的综合主要体现在圆与相似三角形的综合,一般结合切线的判定与性质综合考查,求线段长或半径.一般的解题思路是利用切线的性质构造角相等,进而构造相似三角形,利用相似三角形对应边成比例求出所求线段或半径.例3 (2017·兰州) 如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论;(2)连接BF,根据相似三角形的判定和性质即可得到结论.【自主解答】解:(1)∵BC是⊙O的直径,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切线;(2)连接BF,∴∠FAC=∠AOD,∴△ACE∽△OCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.变式训练3.(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.(1)证明:如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°. ∴∠BDC=∠ADO.∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A.(2)解:∵CE⊥AE,∴∠E=90°,∴DB∥EC,∴∠DCE=∠BDC.∵∠BDC=∠A,∴∠A=∠DCE.∵∠E=∠E,∴△AEC∽△CED,∴∴CE2=DE·AE,即16=2(2+AD),∴AD=6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xxx(哈尔滨)1.将一个底面半径为5cm ,母线长为12cm 的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是 度.150(2010红河自治州)14. 已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为 120° . (2010红河自治州)23.(本小题满分14分)如图9,在直角坐标系xoy 中,O 是坐标原点,点A 在x 正半轴上,OA=312cm ,点B 在y 轴的正半轴上,OB=12cm ,动点P 从点O 开始沿OA 以32cm/s 的速度向点A 移动,动点Q 从点A 开始沿AB 以4cm/s 的速度向点B 移动,动点R 从点B 开始沿BO 以2cm/s 的速度向点O 移动.如果P 、Q 、R 分别从O 、A 、B 同时移动,移动时间为t (0<t <6)s. (1)求∠OAB 的度数.(2)以OB 为直径的⊙O ‘与AB 交于点M ,当t 为何值时,PM 与⊙O ‘相切? (3)写出△PQR 的面积S 随动点移动时间t 的函数关系式,并求s 的最小值及相应的t 值. (4)是否存在△APQ 为等腰三角形,若存在,求出相应的t 值,若不存在请说明理由.解:(1)在Rt △AOB 中: tan ∠OAB=3331212==OA OB ∴∠OAB=30°(2)如图10,连接O ‘P ,O ‘M. 当PM 与⊙O ‘相切时,有∠PM O ‘=∠PO O ‘=90°,△PM O ‘≌△PO O ‘由(1)知∠OBA=60°∵O ‘M= O ‘B∴△O ‘BM 是等边三角形∴∠B O ‘M=60° 可得∠O O ‘P=∠M O ‘P=60°∴OP= O O ‘·tan ∠O O ‘P =6×tan60°=36 又∵OP=32tx∴32t=36,t=3即:t=3时,PM 与⊙O ‘相切.(3)如图9,过点Q 作QE ⊥x 于点E ∵∠BAO=30°,AQ=4t ∴QE=21AQ=2t AE=AQ ·cos ∠OAB=4t ×t 3223= ∴OE=OA -AE=312-32t∴Q 点的坐标为(312-32t ,2t ) S △PQR = S △OAB -S △OPR -S △APQ -S △BRQ=)32312(2212)32312(21)212(32213121221t t t t t t -⋅-⋅---⋅⋅-⋅⋅ =372336362+-t t=318)3(362+-t (60<<t )当t=3时,S △PQR 最小=318 (4)分三种情况:如图11.○1当AP=AQ 1=4t 时, ∵OP+AP=312 ∴32t+4t=312∴t=2336+或化简为t=312-18 ○2当PQ 2=AQ 2=4t 时 过Q 2点作Q 2D ⊥x 轴于点D , ∴PA=2AD=2A Q 2·cosA=34t 即32t+34t =312∴t=2○3当PA=PQ 3时,过点P 作PH ⊥AB 于点H AH=PA ·cos30°=(312-32t )·23=18-3t AQ 3=2AH=36-6t 得36-6t=4t , ∴t=3.6综上所述,当t=2,t=3.6,t=312-18时,△APQ 是等腰三角形.(2010年镇江市)14.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于( A ) A .8πB .9πC .10πD .11π(2010遵义市)如图,已知正方形的边长为cm 2,以对角的两个顶点为圆心, cm 2长为半径画弧,则所得到的两条弧的长度之和为 ▲ cm (结果保留π).答案:π2(2010遵义市)26.(12分)如图,在△ABC 中,∠C=90,AC+BC=8,点O 是斜边AB 上一点,以O 为圆心的⊙O 分别与AC 、BC 相切于 点D 、E .(1)当AC =2时,求⊙O 的半径;(2)设AC =x ,⊙O 的半径为y ,求y 与x 的函数关系式. 26.(12分)(1)(5分) 解: 连接OD 、OE 、OC∵D 、E 为切点∴OD ⊥AC , OE ⊥BC , OD=OE∵BOC AOC ABC S S S ∆∆∆+=∴21AC ·BC=21AC ·OD+21BC ·OE ∵AC+BC=8, AC=2,∴BC=6∴21×2×6=21×2×OD+21×6×OE 而OD=OE ,∴OD=32,即⊙O 的半径为32(26题图)(2)(7分)解:连接OD 、OE 、OC∵D 、E 为切点∴OD ⊥AC , OE ⊥BC , OD=OE=y∵BOC AOC ABC S S S ∆∆∆+=∴21AC ·BC=21AC ·OD+21BC ·OE ∵AC+BC=8, AC=x ,∴BC=8-x∴21x (8-x )=21xy +21(8-x )y化简:xy y xy x x -+=-882即:x x y +-=281 (桂林2010)10.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( C ).A .1B .34C .12D .13(2010年兰州)9. 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为A .B .C .D .答案 C(2010年无锡)5.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是 ( ▲ )A .220cmB .220cm πC .210cm πD .25cm π答案 C(2010年兰州)18. 如图,扇形OAB ,∠AOB=90,⊙P 与OA 、OB 分别相切于点F 、E ,并且与弧AB 切于点C ,则扇形OAB 的面积与⊙P 的面积比是 .90cm 8cm 4cm 3cm 2cm 1︒16. (2010年金华)如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点, 以O 为圆心,以OE 为半径画弧EF .P 是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG,则BK ﹦ ▲ . 答案:31, 35.(每个2分)21.(2010年金华)(本题8分)如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ▲ ,CE 的长是 ▲ .解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A ∴∠1﹦∠2,∴ CF ﹦BF ﹒ …………………4分(2) ⊙O 的半径为5 , CE 的长是524﹒ ………4分(各2分) 14.(2010年长沙)已知扇形的面积为,半径等于6,则它的圆心角等于 度. 答案:12024.(2010年长沙)已知:AB 是⊙O 的弦,D 是的中点,过B 作AB 的垂线交AD 的延长线于C .(1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =EC ,求sin C .12πAB BE CD A O OADB EC 第24题图AODBFKE (第16题)GMCACBD(第21题图)EF O 12证明:连BD ∵∴∠A =∠ABD ∴AD =BD …………………2分 ∵∠A +∠C =90°,∠DBA +∠DBC =90°∴∠C =∠DBC ∴BD =DC∴AD =DC ………………………………………………………4分 (2)连接OD ∵DE 为⊙O 切线 ∴OD ⊥DE …………………………5分 ∵,OD 过圆心 ∴OD ⊥AB又∵AB ⊥BC ∴四边形FBED 为矩形∴DE ⊥BC ……………………6分 ∵BD 为Rt △ABC 斜边上的中线∴BD =DC ∴BE =EC =DE∴∠C =45° …………………………………………………7分 ∴sin ∠C =………………………………………………………………8分(2010湖北省荆门市)10.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,则P A +PB 的最小值为( ) (A)22 (B)2 (C)1 (D)2答案B5.(2010年济宁市)已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是A .1 cmB .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm答案:C9.(2010年济宁市)如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 A .6cmB .35cmC .8cmD .53cm 答案:B6.(2010湖北省咸宁市)如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为 A .35︒ B .40︒C .50︒D .80︒答案:BBD AD =BD AD =22第10题图BAMNOP 30︒(第9题)剪去7. (2010年郴州市)如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,则下列结论中不成立...的是 A.A D ∠=∠ B.CE DE = C.90ACB ∠= D.CE BD = 答案:D15. (2010年郴州市)一个圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是____2cm .(结果保留)答案:18 20.(2010年怀化市)如图6,已知直线AB 是⊙O 的切线,A 为切点, OB 交⊙O 于点C ,点D 在⊙O 上,且∠OBA=40°,则∠ADC= . 答案:2520.(2010年济宁市)如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC∠的平分线交AD 于点E ,连接BD ,CD .(1) 求证:BD CD =;(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.(1)证明:∵AD 为直径,AD BC ⊥,∴BD CD =.∴BD CD =. ························································ 3分(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ························ 4分理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =. ·························································· 6分 由(1)知:BD CD =.∴DB DE DC ==. ∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.EDOCB A第7题(第20题)25. (2010年怀化市) 如图8,AB 是⊙O 的直径,C 是⊙O 上一点,AB CD ⊥于D,且AB=8,DB=2.(1)求证:△ABC ∽△CBD;(2)求图中阴影部分的面积(结果精确到0.1,参考数据73.13,14.3≈≈π).25. (1)证明:∵AB 是⊙O 的直径, ∴∠ACB=90,又ABCD ⊥,∴∠CDB=90…………………………1分在△ABC 与△CBD 中,∠ACB=∠CDB=90,∠B=∠B, ∴△ABC ∽△CBD ……………………………3分 (2)解:∵△ABC ∽△CBD ∴.CBABDB CB = ∴AB DB CB ⋅=2∵AB=8,DB=2, ∴CB=4. 在Rt △ABC 中,,34166422=-=-=BC AB AC …………4分∴383442121=⨯⨯=⨯=∆AC CB S ABC …………………………5分 ∴3.1128.11)3(84212≈=-=-⨯=∆ππABC S S 阴影部分 20.(2010湖北省咸宁市)如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC , 将⊙ACE 沿AC 翻折得到⊙ACF ,直线FC 与直线AB 相交于点G . (1)直线FC 与⊙O 有何位置关系?并说明理由;(2)若2OB BG ==,求CD 的长. 20.解:(1)直线FC 与⊙O 相切.……1分理由如下:连接OC .⊙OA OC =, ⊙12∠=∠……2分 由翻折得,13∠=∠,90F AEC ∠=∠=︒. ⊙23∠=∠. ⊙OC ⊙AF . ⊙90OCG F ∠=∠=︒.⊙直线FC 与⊙O 相切.……4分(2)在Rt⊙OCG 中,1cos 22OC OC COG OG OB ∠===, ⊙60COG ∠=︒.……6分A C GO DE B (第20题) AF CG O DE B(第20题) 1 3 2 图8在Rt⊙OCE 中,3sin 6023CE OC =⋅︒=⨯=.……8分 ⊙直径AB 垂直于弦CD , ⊙223CD CE ==.(2010年成都)13.如图,在ABC ∆中,AB 为O 的直径,60,70B C ∠=∠=,则BOD ∠的度数是_____________度.答案:100(2010年成都)15.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________. 答案:3(2010年成都)17.已知:如图,AB 与O 相切于点C ,OA OB =,O 的直径为4,8AB =.(1)求OB 的长; (2)求sin A 的值.答案:17..解:(1)由已知,OC=2,BC=4。