模具的快速成型及快速制模技术

合集下载

快速成形技术的快速模具制造技术

快速成形技术的快速模具制造技术

快速成形技术的快速模具制造技术快速成形技术是一种快速制造技术,在许多制造领域中被广泛应用。

它的优势在于减少成本和提高生产效率。

快速成形技术的一个关键应用是快速模具制造技术。

在传统制造技术中,模具制造需要花费大量的时间和成本。

快速模具制造技术通过利用快速成形技术的优势来快速制造模具,从而带来更高的生产效率和低成本。

本文将介绍快速成形技术和快速模具制造技术,探讨它们在制造行业中的应用以及未来的发展方向。

一、快速成形技术概述快速成形技术(Rapid Prototyping)是一种以数字模型为基础,通过逐层堆积材料的方式制造复杂结构部件的技术。

它的本质是一种数字化制造技术,利用计算机辅助设计(CAD)、计算机辅助制造(CAM)和快速成形技术等先进技术,实现从数字模型到实体模型的过程。

快速成形技术产生的模型可以用于功能测试、样板制作、微型结构模型测量等领域。

它的一个重要应用是快速模具制造技术。

二、快速模具制造技术的现状快速模具制造技术是一种使用快速成形技术制造模具的技术。

传统的模具制造方法是通过切割、铣削、打孔、线切割等方式来加工模具。

这种方法耗时、成本高,并且生产周期长。

而快速模具制造技术是直接从数字模型制造模具,可以大大缩短制造周期和花费。

快速模具制造技术不仅节约了生产成本,而且使设计者更容易实现他们的设计概念,并快速完成新产品的开发。

目前,快速模具制造技术已经得到了广泛的应用。

主要应用领域包括航空航天、医疗器械、汽车、电子、塑料等行业。

简单来说,快速模具制造技术可以分为两类,分别是直接快速制造模具和间接快速制造模具。

1、直接快速制造模具直接快速制造模具是指从数字模型直接制造模具的技术。

它是实现模具快速制造的一种有效方法。

通过添加材料的方式,模具可以在一定时间内得到制造。

这种方法适用于塑料模具的制造,但在金属制品模具制造方面还没有发挥出全面的优势。

还需要进一步研究和改进。

2、间接快速制造模具间接快速制造模具是指通过制作快速模型制造铸型和翻转模等模具。

快速成型与快速模具制造技术及其应用课程作业

快速成型与快速模具制造技术及其应用课程作业
速成型技术的成型方法多达十余种,目前应用较多 的有立体光固化(SLA)、选择性激光烧结(SLS)、分层 实体制造(LOM)、熔积成型(FDM)等。这些工艺方法 都是在材料累加成型的原理基础上,结合材料的物理化 学特性和先进的工艺方法而形成的,它与其他学科的发 展密切相关。
1、立体光固化(SLA) 该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速
二、 STL数据文件及处理
快速成型制造设备目前能够 接受诸如STL,SLC,CLI, RPI,LEAF,SIF等多种数 据格式。其中由美国3D Systems公司开发的STL文 件格式可以被大多数快速成
型机所接受,因此被工业界
认为是目前快速成型数据的
准标准,几乎所有类型的快 速成型制造系统都采用STL 数据格式。
五、CT图像数据处理软Mimics
Mimics软件简介
Mimics软件是比利时Materialise公司面向医 学CT或MRI数据模型处理的运行在Windows 操作 系统环境下的高度集成的三维图像处理软件,该软 件能在几分钟内将CT或MRI数据转换成三维CAD或 快速成型所需的模型文件。其主要功能特点如下:
成型方法。
SLA技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫 描,被扫描区域的树脂薄层(约十分之几毫米)产生光聚合反应而固化,形 成零件的一个薄层。工作台下移一个层厚的距离,以便固化好的树脂表面再 敷上一层新的液态树脂,进行下一层的扫描加工,如此反复,直到整个原型 制造完毕。由于光聚合反应是基于光的作用而不是基于热的作用,故在工作 时只需功率
3、选择性激光烧结(SLS)
研究SLS的有DIM公司、EOS公司、北京隆源公司。该法采用C02激光器作 能源,目前使用的造型材料多为各种粉末材料。在工作台上均匀铺上一层很薄 的粉末,激光束在计算机控制下按照零件分层轮廓有选择性地进行烧结,一层 完成后再进行下一层烧结。全部烧结完后去掉多余的粉末,再进行打磨、烘干 等处理便获得零件。目前,成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷 粉进行粘接烧结的工艺还正在实验研究阶段。该技术具有原材料选择广泛、多 余材料易于清理、应用范围广等优点,适用于原型及功能零件的制造。在成形 过程中,激光工作参数以及粉末的特性和烧结气氛是影响烧结成形质量的重要 参数,原理如图4所示。

快速成型与模具的快速制造

快速成型与模具的快速制造
2 2快速 成型 基聚氨 脂模 制作 .
可 以分 为快速软 模 , 速过 渡 模 和 快 速批 量 生产 用 快
模。
3 1快 速软模 的制作 .
根据 快速成 型 的母 模 , 注 聚氨 酯 材 料 ( C — 浇 如 i
秦 小 琼
( 州 理 工 大学 机 电学 院 , 肃 兰 州 7 0 5 ) 兰 甘 30 0
摘 要 : 文主要 介 绍如何 根据 快速 成型 的母体 在铸造 、 本 拉伸 、 塑加 工 中快速 制做模 具 的方法 , 注 和

些 快速制 作 的模 具 在 实践 中的应 用。
关 键词 : 速成 型 ; 速模 具 ; 工 方法及 应 用 快 快 加
种模 具 技术最 首 要 的带有 先进性 的要求 是其 快速
性, 即从 设计 到 进 入 市 场 的 时 间尽 可 能短 。随 着快 速 成 型技 术 的发展 与应 用使 得模具 的快 速制 作在一 定 范 围变 成现 实 。所谓 快速 模具技 术是 由快 速原形 技 术 驱 动 的 本 质 上 是 基 于离 散/ 积 成 型 的技 术 。 堆
速模 具 ; 然而 堆积 金 属 的难 易决 定 了 直接 快 速 模 具 技术 在近 期 内无法 在 模具 领 域 中 占主导 地 位 , 目前 主要 还是 间接 快速 模具 占主要地位 。
此蜡 模经 传统 的失蜡铸 造工 艺制作 金属模 。用这 种
工艺 制作 不仅工 艺简单 而且 压型成本 。还 可 以制作
突出, 通常是 根据 铸 件 的形 状 及 尺寸 进行 设 计 用金 属经切 削加 工制 成 , 期 长 成本 高 。如果 采 用快 速 周 成型技 术 做母 模 , 过快 速 软 模 或快 速 过渡 模 等 得 通

探究基于快速成型技术的快速模具制造

探究基于快速成型技术的快速模具制造

探究基于快速成型技术的快速模具制造发布时间:2021-09-07T07:15:37.369Z 来源:《时代建筑》2021年9期5月上作者:郭庆彬[导读] 随着我国社会主义市场经济的不断发展,我国的市场竞争也在不断的加剧,我国的企业要想在激烈的市场经济中站稳脚跟,进一步发展,就只能响应市场的需求,提升为消费者服务的水平,提升企业的综合竞争实力。

而我国的工业发展过程中,工业产品的生产正逐渐向着高质量、小批量、低成本、多品种的方向发展。

而这样的市场需求对于产品的生产也越来越苛刻。

市场需求要求企业的产品生产模式不断升级,只有在工业生产中做到更快更多更精细,才能真正满足消费者和市场的需求,推动企业发展。

深圳市和胜金属技术有限公司 2201221971052****1 郭庆彬深圳 518000摘要:随着我国社会主义市场经济的不断发展,我国的市场竞争也在不断的加剧,我国的企业要想在激烈的市场经济中站稳脚跟,进一步发展,就只能响应市场的需求,提升为消费者服务的水平,提升企业的综合竞争实力。

而我国的工业发展过程中,工业产品的生产正逐渐向着高质量、小批量、低成本、多品种的方向发展。

而这样的市场需求对于产品的生产也越来越苛刻。

市场需求要求企业的产品生产模式不断升级,只有在工业生产中做到更快更多更精细,才能真正满足消费者和市场的需求,推动企业发展。

快速成型技术作为最适合当前市场生产的关键技术,它的应用对工业企业的发展有着至关重要的意义。

而基于快速成型技术的快速模具制造能够更好地提升产品制造的水平和效率,推动企业的进步与发展,提升企业的整体实力。

通过对快速模具制造技术在具体应用中的探讨,找出快速模具制造技术应用过程中的具体问题,提出针对性的解决方案,提升企业生产效率。

关键词:快速成型技术;快速模具制造;企业技术应用;市场需求1.基于快速成型技术的快速模具制造的意义基于科学技术快速发展的快速成型技术在很多领域都得到了广泛的应用,快速成型技术将精密机械、数控、激光技术、计算机辅助设计等有机地融为一体,具有高度的柔韧性及快速性,由于快速成型技术自身的优势能够快速地提升模具制造速度,大大缩短产品的开发时间及模具的制造时间,所以受到了业界的广泛认可,该种制造技术已经成为了当前重要的研究课题及制造行业的核心技术。

快速成型与快速制模复习题

快速成型与快速制模复习题

快速成型与快速制模复习题1、快速成型制造工艺的全过程包括哪三个阶段?简述每个阶段的内容。

答:(1)前处理。

三维模型的构造、三维模型的近似处理、模型成形方向的选择和三维模型的切片处理。

(2)分层叠加成形。

截面轮廓的制作与截面轮廓的叠合(3)后处理。

工件的剥离、后固化、修补、打磨、抛光和表面强化。

2、光固化成型工艺过程原理图,请回答光固化成型工艺定义及过程答:定义:SLA以光敏树脂为原料,通过计算机控制紫外激光使其凝固成型。

原理:液槽中盛满液态光敏树脂,激光器发出的紫外激光束在控制系统的控制下按零件的各分层截面信息在光敏树脂表面进行逐点扫描,使被扫描区域的树脂薄层产生光聚合反应而固化,形成零件的一个薄层。

一层固化完毕后,工作台下移一个层厚的距离,在原先固化好的树脂表面再敷上一层新的液态树脂,刮板将粘度较大的树脂液面刮平,然后进行下一层的扫描加工,新固化的一层牢固地粘结在前一层上,重复直至整个零件制造完毕过程:前处理。

CAD三维造型,数据转换、摆放方位确定、施加支撑和切片分层原型制作。

光固化成型后处理。

剥离,去除废料和支撑结构4、选择性激光烧结过程原理图,请回答选择性激光烧结定义及过程定义:SLS利用粉末材料,在激光照射下烧结的原理,在计算机控制下层层堆积成形。

原理:铺粉辊将一层粉末材料平铺在已成形零件的上表面,并加热至恰好低于该粉末烧结点的某一温度。

控制系统控制激光束按照该层的截面轮廓在粉层上扫描,使粉末的温度升至熔化点,进行烧结并与下面已成形的部分实现粘接。

当一层截面烧结完后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,直至完成整个模型。

过程:前处理。

CAD造型,数据转换叠层加工。

粉层激光烧结叠加后处理。

渗蜡或渗树脂5、叠层实体制造过程原理图,请回答叠层实体制造定义及过程LOM原理:工作台上制作基底,工作台下降,送纸滚筒送进一个步距的纸材,工作台回升,热压滚筒滚压背面涂有热熔胶的纸材,将当前迭层与原来制作好的迭层或基底粘贴在一起,切片软件根据模型当前层面的轮廓控制激光器进行层面切割,逐层制作,当全部迭层制作完毕,再将多余废料去除。

快速模具制造技术

快速模具制造技术

快速模具制造技术概述快速模具制造技术是一种高效、灵活和经济的制造方法,用于制作注塑模具、压铸模具和挤压模具等。

这种技术通过利用先进的数控加工设备、3D打印技术和快速零件制造技术,在短时间内生产出高质量的模具。

本文将介绍快速模具制造技术的原理、优势和应用。

原理快速模具制造技术主要基于数控机床的加工精度和3D打印的快速原型制作能力。

在制造过程中,首先使用计算机辅助设计软件(CAD)设计模具的三维模型,然后将模型转化为数控机床可以识别的G代码。

数控机床根据G代码自动控制刀具的运动,将坯料加工成模具的形状。

3D打印技术可用于制作复杂形状的模块和零部件,以及快速制作模具的原型。

优势快速模具制造技术具有以下几个优势:时间和成本节约相比传统模具制造方法,快速模具制造技术能够大大减少制造周期和成本。

数控机床的高速加工和自动化控制使加工过程更加高效和精准,而3D打印技术可以减少原型制作的时间和成本。

灵活性和适应性快速模具制造技术可以根据不同的需求和设计变化进行快速调整。

由于使用了数控机床和3D打印技术,可以灵活地调整模具的形状和尺寸,满足不同产品的需求。

高质量和复杂性快速模具制造技术可以实现复杂形状和高精度模具的制造。

数控机床的高精度加工和3D打印技术的高分辨率保证了模具的质量和精度。

创新和设计自由度快速模具制造技术提供了更大的创新和设计自由度。

利用3D打印技术可以实现更多样化的模具形状和结构,带来更多的设计可能性。

应用快速模具制造技术已广泛应用于各种制造行业,包括汽车、电子、家电、医疗器械等。

以下是其应用的一些典型示例:注塑模具制造快速模具制造技术在注塑模具制造中得到了广泛应用。

通过快速模具制造技术,注塑模具的制造周期可以大大缩短,同时可以实现更复杂的注塑模具设计,提高生产效率和产品质量。

压铸模具制造压铸模具制造是另一个适合快速模具制造技术的应用领域。

通过使用快速模具制造技术,可以快速制造出高精度的压铸模具,提高压铸产品的生产效率和质量。

模具快速制造技术

模具快速制造技术

模具快速制造技术模具是工业制造中不可或缺的一环。

它是将原材料经过加工和成型,用来制造各类产品所必需的工具。

随着科技的不断进步,模具制造技术也在不断革新。

其中,模具的快速制造技术是当前最为热门和前沿的技术之一。

一、快速制造技术的概念和特点快速制造技术(Rapid Tooling)是相对于传统模具制造方法而言的一种新型模具制造技术。

它是以电脑辅助制造技术(CAD/CAM)为基础,将设计好的三维模型转化为实体模具的方法。

与传统模具制造方法不同的是,快速制造技术的模具制造时间更短,成本更低廉,且可以制造高精度、复杂度更高的模具。

二、快速制造技术的分类根据快速制造技术的基本原理和应用范围,可将快速制造技术分为以下几类:1. 真空吸塑快速制造技术:真空吸塑快速制造技术是利用一些特殊的硅胶、塑料材料制作模具,之后利用真空吸塑技术快速制作出各种小尺寸的零件模具。

这种技术可以用于制作一些复杂形状、大批量、高质量且设计要求高的低压模具。

2. 烧结金属粉末快速制造技术:烧结金属粉末快速制造技术是指利用烧结工艺将金属粉末制成具有一定强度的模具,然后进行加工成型。

这种技术可以制造出复杂形状、高强度的大型模具。

3. 3D打印快速制造技术:3D打印快速制造技术是指将设计好的三维模型通过3D打印技术逐层输出制作模具的方法。

这种技术制造时间短、成本低、且具有一定的精度和表面质量。

4. 清模快速制造技术:清模快速制造技术是指通过复制已有的模具,并改变模具结构,以适应新的设计要求和工艺流程的方法。

这种技术可以省去制作新模具的时间和成本。

三、快速制造技术的应用领域快速制造技术广泛应用于各个行业,例如汽车、电子、医疗器械、航空等领域。

在汽车制造领域,快速制造技术可以进行模具造型、检具制作、模具试验和检验等工作。

可以快速制造出汽车大灯、排气管、座椅等各类零部件的模具。

在电子行业,快速制造技术可以利用3D打印技术快速制作出手机、电脑等各类产品的外壳,提高产品开发的速度和灵活性。

专题论文-快速制模技术

专题论文-快速制模技术

专题快速制模技术模具是制造业中使用量大、影响面广的工具产品。

没有型腔模、压铸模、铸模、深拉模和冲压模,就无法生产出被广泛应用和具有竞争价格的塑料件、合金压铸件、钢板件和锻件。

在现代批量生产中,没有高水平的模具,就没有高质量的产品,它对企业提高生产效率、降低生产成本也有重要的作用。

据国外最新统计分析,金属零件粗加工的75%、精加工的50%和塑料零件的90%是用模具加工完成的。

因此,模具工业也被称为“皇冠工业”。

由于市场竞争的日益激烈,产品更新换代的速度不断加快,多品种小批量将成为制造业的重要生产方式,在这种情况下,制造业对产品原型的快速制造和模具的快速制造提出了强烈的要求。

高速加工技术的出现,为模具制造技术开辟了一条崭新的道路。

快速制模技术是一种快捷、方便、实用的模具制造技术。

特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产。

快速制模技术特点快速模具制造技术与传统的模具制造技术相比,具有如下特点:(1)制造方法简单,工艺范围广由于快速模具制造是基于材料逐层堆积的成形方法,工艺过程相对简单、方便和快捷,它不仅能适应各种生产类型特别是单件小批的模具生产,而且能适应各种复杂程度的模具制造;它既能制造塑料模具,也能制造金属模具。

模具的结构愈复杂,快速模具制造的优越性就更突出。

(2)模具材料可强韧化和复合化快速模具制造工艺能方便地利用在合金中添加元素或结晶核心,改变金属凝固过程或热处理等手段,可改善和提高模具材料的性能;或者在合金中添加其它材料,可制造复合材料模具。

(3)设计周期短,质量高由于RT的模具设计极少依赖人的因素,因而可有效地降低人为的设计缺陷。

设计师可利用RP制造的高精度模型,在设计阶段就可对产品的整体或局部进行装配和综合评价,并不断改进,大大地提高了产品的设计质量。

(4)便于远程的制造服务由于RT对信息技术的应用,缩短了用户和制造商之间的距离,利用互联网可进行远程设计和远程服务,能使有限的资源得到充分的发挥,用户的需求能得到最快的响应。

模具新技术新工艺概论

模具新技术新工艺概论

模具新技术新工艺概论一、前言随着制造业的发展,模具行业作为制造业的重要组成部分,也在不断地发展和创新。

模具技术和工艺的不断更新,不仅可以提高产品的质量和产能,还可以降低生产成本和提高企业竞争力。

本文将介绍一些模具行业中的新技术和新工艺。

二、快速成型技术快速成型技术是一种以数字化三维模型为基础,通过计算机控制激光束或喷嘴等装置进行材料加工,从而实现快速制造产品的技术。

这种技术可以大幅度缩短产品开发周期,降低生产成本,并且可以制造出复杂形状的零件。

在模具行业中,快速成型技术可以用于制造小批量、复杂结构的模具。

三、数控加工技术数控加工技术是一种利用计算机程序来控制机床进行自动化加工的技术。

与传统手工操作相比,数控加工技术具有高精度、高效率、可重复性好等优点。

在模具行业中,数控加工技术可以用于制造各种形状的模具零件,如模板、模架等。

此外,数控加工技术还可以用于制造各种形状的产品,如汽车零部件、航空零部件等。

四、电火花加工技术电火花加工技术是一种利用电火花放电进行材料切割的技术。

这种技术可以切割硬度较高的材料,如钢、铁等。

在模具行业中,电火花加工技术可以用于制造复杂结构的模具零件。

与传统机械加工相比,电火花加工可以实现更高精度和更小尺寸的切割。

五、激光焊接技术激光焊接技术是一种利用激光束进行材料焊接的技术。

这种技术可以实现高精度焊接,并且不会对周围材料产生太大影响。

在模具行业中,激光焊接技术可以用于修复或制造模具零件。

六、表面处理技术表面处理技术是一种对材料表面进行改性或涂覆处理的技术。

这种技术可以提高材料表面的硬度和耐腐蚀性,从而延长材料的使用寿命。

在模具行业中,表面处理技术可以用于提高模具零件的耐磨性和抗腐蚀性。

七、新型材料随着科技的不断发展,新型材料不断涌现。

这些新型材料具有更好的机械性能、耐磨性、耐高温等特点。

在模具行业中,新型材料可以用于制造更加耐用和高效的模具零件。

八、总结以上是一些模具行业中的新技术和新工艺。

快速制模1 软模讲解

快速制模1 软模讲解
? 软模技术广泛应用于结构复杂、式样变更频繁 的各种家电、汽车、建筑、艺术、医学、航空、 航天产品的制作。
? 真空注型技术在汽车零件、电子电器零件、各 种玩具制件及工艺美术制品等行业的应用,使 得样件试制、小批量生产等方面收到缩短研发 和制造周期、降低生产成本的效果。
软模的优点
在新产品试制或者单件、小批量生产时,具有以下优点:
硅胶模制作过程
将硅胶与固化剂进行混合搅拌,放到真空机内预排气。
硅胶模制作过程
? 把硅胶将围框内的母样全部淹没,并保证浇注上平面处型 腔也有足够的壁厚,尽量抽去混入硅胶模具中的空气。
硅胶模制作过程
? 当完全固化后,即将硅胶模具从浇注框中取出。沿浇口处将硅胶模切 开,形成两块半模,并取出母型。将两半模对合在一起即成为一副硅 胶模具。
? (1)软模技术具有运行费用低,材料价格低廉 ,成形效率高,原型制作 时间短的特点。
? (2)硅橡胶可以在常温下固化,且硅橡胶具有良好的成形复制性和脱 模性能,对凸凹部分浇铸成形后均可以直接取出。用硅橡胶制模,少则 十几个小时,多则几天便能完成,这可以大大缩短新产品的开发周期。
? (3)因在真空中进行注型,可复制出多个精度高且少有气泡的成型品, 30个制件成品大约10天即可完成。
零件制作过程
? 插上漏斗,将混合料在真空中浇入硅胶模中。
零件制作过程
? 在停止减压排气作业后,由室内大气压将树脂挤入型腔中。 然后等待其在室温下完全固化。若放在60℃温度下,则可 加速固化。
零件制作过程
? 从硅胶模中取出塑件后,首先去除浇口废料。然后对分 型面处的废边和去除浇口废料后的部位进行精加工。
快速成形与快速制模
快速制模—软模
Rapid Tooling — Soft Tooling

快速成型技术-第五章快速模具制造

快速成型技术-第五章快速模具制造
融覆法,叠蹭实体制造工艺法等制备陶瓷,金属模. 2.间接快速制模技术.通过快速成型技术制备母模
具,软模具等,再通过传统的机械加工法来生产模 具的方法.
快速制模方法
间接法是先制作一个母模,一般由快速成形系 统建立,再由这样的母模制作模具,主要有:
(1)用快速成形件作母模,与传统工艺结合制
2.安放原型:将原型固定在平板上,制作模框. 3.在原型表面贴粘土和石膏背衬 4.硅橡胶的浇注 5.固化 6.修理
硅橡胶模具的应用
主要生产一些浇注产品,能够缩短产品的制造时间, 降低成本,提高效率.
生产工艺过程: 清洗模具→喷离合剂→组合模具→树脂计算→脱
泡混合→真空浇注→硬化→取出
型框的尺寸影响硅橡胶的用量,所以必须要 计算好合适的尺寸.
硅橡胶模具制造过程
3.原形件的固定:利用清洁胶带纸将定型样件型框 边缘围上,要求固定牢固。同时要注意增加一些 排气空.
硅橡胶模具制造过程
4.计算所须硅橡胶的用量,混合并真空脱泡:硅橡胶 的用量必须根据所造制件的尺寸和型框尺寸以及 硅橡胶的比重准确计算.同时要加入适当的硬化剂, 搅拌均匀后真空脱炮,脱炮的时间根据达到的真空 度来确定.
硅橡胶的分类
快速模具用的硅橡胶主要有: 1.室温硫化硅橡胶(Room Temperature
Vulcanized rubber),可以承受316℃的高温。 2.热硫化硅橡胶(Heat-cured Vulcanized
rubber),可以承受538℃的高温。
快速软模材料及特点
(1)TE-1089硅橡胶,属于双组分室温硫化硅 橡胶,具有优异的柔韧性,极强的抗撕强度,及 耐高温、耐化学腐蚀性。
影响质量因素,特点. 4.粉末材料激光烧结:原理,装置组成及各装置作用,

快速成型与快速模具制造技术及其应用

快速成型与快速模具制造技术及其应用

1976年,P. L. DiMatteo进一步明确 地提出,这种堆积技术能够用来制 造用普通机加工设备难以加工的曲 面,如螺旋桨、三维凸轮和型腔模 具等。在具体实践中,通过铣床加 工成形沿高度标识的金属层片,然 后通过粘接成叠层状,采用螺栓和 带锥度的销钉进行连接加固,制作 了型腔模,如图所示。
由DiMatteo制作的型腔模叠层模型
第三节 快速成型技术的特点及优越性
❖ 快速成型技术的优越性
◎ 用户受益 用户在产品设计的最初阶段,也能见到产品样品甚至少量产品,这使得用户能及早、 深刻地认识产品,进行必要的测试,并及时提出意见,从而可以在尽可能短的时间 内,以最合理的价格得到性能最符合要求的产品。
第一章 概 论
1 快速成型技术的早期发展 2 快速成型技术的主要方法及分类 3 快速成型技术的特点及优越性 4 快速成型技术的发展趋势
1902年,Carlo Baese在他的美国专利(# 774549)中,提出了用光敏聚合 物制造塑料件的原理,这是现代第一种快速成形技术—“立体平板印 刷术”(StereoLithography)的初始设想。
1940年,Perera提出了在硬纸板上切割轮廓线,然后将这些纸板粘结 成三维地形图的方法。
第一章 概 论
1 快速成型技术的早期发展 2 快速成型技术的主要方法及分类 3 快速成型技术的特点及优越性 4 快速成型技术的发展趋势
第二节 快速成型技术的主要方法及分类
❖ 快速成型过程
快速成型离散和叠加过程
快速成型技术的制造方式是基 于离散堆积原理的累加式成型, 从成型原理上提出了一种全新 的思维模式,即将计算机上设 计的零件三维模型,通过特定 的数据格式存储转换并由专用 软件对其进行分层处理,得到 各层截面的二维轮廓信息,按 照这些轮廓信息自动生成加工 路径,在控制系统的控制下, 选择性地固化光敏树脂或烧结 粉状材料或切割一层层的成型 材料,形成各个截面轮廓薄片, 并逐步顺序叠加成三维实体, 然后进行实体的后处理,形成 原型或零件,如图所示。

快速成型技术的原理工艺过程及技术特点

快速成型技术的原理工艺过程及技术特点

快速成型技术的原理、工艺过程及技术特点:快速成型属于离散/堆积成型。

它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。

快速成型的工艺过程具体如下:l )产品三维模型的构建。

由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。

该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。

2 )三维模型的近似处理。

由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。

由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。

它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。

STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。

典型的CAD 软件都带有转换和输出 STL 格式文件的功能。

3 )三维模型的切片处理。

根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。

间隔一般取0.05mm~0.5mm,常用 0.1mm 。

间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。

快速成型和快速模具制造技术的应用

快速成型和快速模具制造技术的应用

在工业造型 、 机 械 制造 、 模具制造 、 医学 等 领 域 的应 用 , 并 对快 速 成 型 技 术 今 后 的 发 展 方 向 作 了 简要 阐 述 。
关键词 : 快 速 成 型 快速 模 具 制 造 技 术

随着新型材料 的开发 , R P 系统 所制 造 的 产 品零 件 原 型 具 有 较 好 的力 学 性 能 . 可 用 于传 热及 流体 力 学 试 验 。 而用 某 些 特 殊 光 固化 材 料 制 作 的模 型 还具 有 光 弹 特 性 ,可 用 于 零 件 受 载 荷 下 的应 力 应 变 分 析 。 如 美 国 推 出 的某 车型 开 发 中 .直 接 使 用 R P 制 作 的模 型进 行 车 内空 调 系
4 . 快 速 制 造 模 具
随 着 材 料 种 类 的 增 加 及 材 料 性 能 的不 断改 进 ,其 用 途 越 来 越 广泛 . 主 要 概 括 为 以下 几 方 面 。
1 . 使设 计 原 型样 品化
为提高产品设计质量 。 缩短试制周期 , 快 速 成 型 系 统 可 在 数小 时或 数天 内将设 计人 员 的图纸 或C A D模 型 制 造 成 看 得 见、 摸 得 着 的实 体 模 型 样 品 , 从而使设计者 、 制造者 、 销售 人 员 和 用 户 都 能 得 到 极 大 的好 处 。 ( 1 ) 从 设 计 者 受 益 的角 度 来 看 在 传统 的设 计 过 程 中 , 由 于设 计 者 自身 的 能 力 有 限 , 不 可 能 在 短 时 间 内 仅 凭 产 品 的 使 用 要 求 就 把 产 品各 方 面 的 问 题 都 考 虑 得 很 周 全并 使结 果优 化 。 虽 然 在 现代 制造 技术 领 域 中 , 提 出 了并 行 工 程 的 方 法 , 即 以小 组 协 同 工 作 为 基 础 , 通 过 网 络 共 享 数 据 等 信 息 资 源 。来 同 步 考 虑 产 品设 计 和制 造 的 有 关 上 下 游 问题 , 从而实现并行设计 , 但仍然存在着设计 、 制造周期长 、 效 率低 下 等 问题 。 采用快速成型技术 , 设 计 者 在 设 计 的 最 初 阶 段 就 能 拿 到 实 在 的 产 品 样 品 ,并 可 在 不 同 阶段 快 速 地修 改 重 做样品 . 甚至做 出试制用工模具 及少量 的产 品, 进行试 验 , 据 此 判 断 有关 上 下 游 的 各 种 问 题 ,从 而 为 设 计 者 创 造 一 个 优 良 的设 计 环境 。 尽快得到优化结果 。因此 , 快 速 成 型技 术是 真 正 实现并行设计的强有力手段。 ( 2 ) 从 制 造 者 受 益 的角 度 看

模具设计与制造的技术创新

模具设计与制造的技术创新

模具设计与制造的技术创新模具设计与制造是现代工业生产中至关重要的一环。

模具的设计与制造水平直接关系到产品质量、生产效率和经济效益。

随着科技的进步和市场需求的不断变化,模具设计与制造也在不断创新与完善。

本文将从材料、技术和制造流程等方面,探讨模具设计与制造的技术创新。

一、材料创新模具的材料选择直接影响到模具的使用寿命和产品质量。

传统的模具材料主要是钢材,其优点是强度高、耐磨性好,但存在密度大、加工难度大、成本高等问题。

近年来,随着金属材料与复合材料的结合,模具材料得到了更多的选择。

1. 铝合金模具材料:铝合金模具材料具有密度低、导热性好的特点,可实现快速传热和节能效果。

同时,铝合金还具有较好的加工性能,易于切削和成型。

而且,铝合金模具材料的成本相对较低,适用于中小型模具的制造。

2. 聚合物模具材料:聚合物模具材料是一种非金属材料,具有密度低、成本低、加工性好、自重轻等优点。

同时,聚合物材料还具有良好的耐磨性、抗撞击性和耐寒性。

适用于小型和中型模具的制造,尤其是对产品高度精密要求的模具。

3. 纳米材料模具:纳米材料模具具有高强度、高韧性和高硬度的特点,能提高模具的耐磨性和寿命。

纳米材料模具的应用有助于提高产品质量和制造效率,但目前其成本还较高,限制了其大规模应用。

二、技术创新模具设计与制造的技术创新对于提高生产效率、降低生产成本和提高产品质量都具有重要意义。

以下是一些技术创新的例子:1. CAD/CAE/CAM技术:计算机辅助设计(CAD)、计算机辅助工程(CAE)和计算机辅助制造(CAM)技术的应用,使得模具设计与制造过程实现了数字化、网络化和智能化。

CAD技术可以提高模具设计的精确度和效率,CAE技术可以模拟和优化模具设计,CAM技术可以实现自动化制造和加工。

2. 快速成型技术:快速成型技术是一种通过激光熔化或熔接增材制造方式快速制造模具的方法。

这种技术可以大幅度缩短模具制造周期,降低制造成本,适用于小批量、多变形和复杂结构的模具。

基于快速成形技术的快速模具制造技术(doc 10页)

基于快速成形技术的快速模具制造技术(doc 10页)

基于快速成形技术的快速模具制造技术(doc 10页)2.用快速成形件作母模,复制软模具(Soft tooling)用快速成形件作母模,可浇注蜡、硅橡胶、环氧树脂、聚氨脂等软材料,构成软模具,或先浇注硅橡胶、环氧树脂模(即蜡模的压型),再浇注蜡模。

其中,蜡模可用于熔模铸造,而硅橡胶模、环氧树脂模等可用作试制用注塑模或低熔点合金铸造模。

3.用快速成形件作母模,复制硬模具(Iron tooling)用快速成形件作母模,或据其复制的软模具,可浇注(或涂覆)石膏、陶瓷、金属基合成材料、金属,构成硬模具(如各种铸造模、注塑模、蜡模的压型、拉伸模),从而批量生产塑料件或金属件。

这种模具有良好的机械加工性能,可进行局部切削加工,以便获得更高的精度,或镶入嵌块、冷却系统、浇注系统等。

用金属基合成材料浇注成的蜡模的压型,其模具寿命可达1000~1 0000件。

4. 用快速成形系统制作电脉冲机床用电极用快速成型件作母体,通过喷镀或涂覆金属、粉末冶金、精密铸造、浇注石墨粉或特殊研磨,可制作金属电极或石墨电极。

三、基于RP的快速模具制造的应用1. 利用硅橡胶模(Silicon Rubber Mold)制作佛头、线圈硅橡胶有很好的弹性和复制性能,用它来复制模具可不考虑拔模斜度,基本不会影响尺寸精度,而且这种材料有很好的切割性能,用薄片就可容易地将其切开且切面间非常贴合,因此用它来复制模具时可以先不分上下模,整体浇注出软模后,再沿预定的分模面将其切开,取出母模,即可得到上下两个软模。

(1)试验用设备和材料所用的设备:Stratasys的Titan快速成形机、HVC-1真空注型机和恒温箱。

所用的材料:日产KE-1310ST透明硅橡胶、日产CAT-1310固化剂(浇注时,KE-1310ST与CAT-1310以100:10混合)和PX215真空注型硬制聚氨脂树脂(异氰酸脂,多元醇1∶1混合)。

(2)制模工艺路线使用 UG、PRO-E、Solid Edge 等软件进行三维实体造型,以STL 文件格式保存;将文件输入快速成形机作出制件原型,处理后作为硅橡胶母模;组合模框后将硅橡胶和固化剂的混合物浇注于框中,通过真空脱泡、固化后剖切取出母样即得硅胶模;最后在真空注型机中浇注塑料样件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)可迅速制造出自由曲面和更为复杂的零件,不用担心常规加工不能加工的区域;
2)由于它是非接触加工,因此,加;
3)可实现无人值守的完全自动化;
4)加工效率高,能快速制作出产品的实体模型和模具。
图6.1.4是传统加工方式和快速成形制造的工艺流程的对比。
为了综合以上方法的优点,现代CAD系统常采用CSG、B—rep和参量表达法的组合表达法。
(4)单元表达法(Cell Representation)
单元表达法起源于分析(如有限元分析)软件,在这些软件中,要求将表面离散成单元。典型的单元有三角形、正方形或多边形。在快速成型技术中采用的三角形近似(将三维模型转化成STL格式文件),就是一种单元表达法在三维表面的应用形式。
a)传统加工b)快速成形加工
图6.1.4传统加工与快速成形的工艺流程
6.1.3
由于快速成型要求在加工前,计算机上要有三维的数字化模型,可供切片处理。因此对于快速成形的CAD系统都要求有较强的三维处理能力。三维模型的处理能力主要在两个方面上的应用:三位实体造型(Solid Modeling)和表面造型(Surface Modeling)功能,后者对构造复杂的自由曲面有重要作用。快速成型行业中常用的有如下软件:
1-收纸辊;2-升降工作台;3-加工平面;4-定位装置(切割头);
5-激光器;6热压辊;7-计算机;8-箔材带;9-展开辊

随着生产技术的进步,新材料和先进设备的出现,使市场竞争日趋激烈。各个生产厂家为缩短产品的研发、生产周期,降低生产成本和风险,使得快速成型及快速制模技术在生产中逐步得到了应用。
快速制模技术包括传统的低熔点合金模、电铸模具的制造技术和以快速成型技术(Rapid Prototrping,RP)为基础的快速制模技术。这里介绍后种快速制模技术。
扫描器件有的采用直线单元,适合于大件的加工。也可采用振镜扫描方式。这种方法适合成形大、中型零件,翘曲变形小,成形时间较短,但尺寸精度不高,材料浪费大,且清除废料困难。该方法选用的原材料目前种类较少,尽管可选用若干种类的材料,如涂覆纸、涂覆陶瓷箔、金属箔、塑料箔以及其他合成材料,但目前常用的只是纸,其他材料还在研制开发中。
6.2快速成形加工的方法
6.2.1
此工艺方法也称为液态光敏树脂选择性固化。是一种最早出现的RPT,它的原理如图6.2.1所示。液槽中盛满液态光敏树脂3,它在激光束的照射下快速固化。成形开始时,可升降工作台6使其处于液面下一个很厚的地方。聚焦后的紫外激光束在计算机的控制下按截面轮廓进行扫描,使扫描区域的液态树脂固化,形成该层面的固化层,从而得到该截面轮廓的薄片。然后工作台下降一层的高度,其上覆盖另一层液态树脂,再进行第二层的扫描固化,与此同时新固化的一层牢固的粘结在前一层上,如此重复到整个产品完成,一般截面层厚度在0.076~0.038mm的范围。工件从料槽中取走后还需进行后固化,在工作台和工件取下后,将多余的树脂用溶剂清洗后,工件放入专门的后固化装置,经过一段时间的曝光处理后,工件才完全固化,而该时间的长短视材料、工件的大小和形状的复杂程度而定,再进行相应的打光、电镀、喷涂、着色等工艺措施。
(2)STEP(Standard for The Exchange of Product )
这是一种近年来逐步国际标准化的标准,现在已为绝大多数软件供应商所采用。
(3)STL(Stereo Lithography Interface Specification)
它是目前快速成形中最常见的一种文件格式,也为大多数CAD供应商所采用。就像CAE软件中的网格划分,它是将CAD模型离散成若干小三角形的平面组合。该方法对几何体的描述依赖于三角形的划分,通常对于细部特征需要较密的三角形,因而对于微小的细部特征可能描述不到或不清楚,现代快速成形制造中,越来越多的专家学者试图用其他文件甚至专用软件来描述CAD的实物模型,以便于模型前处理:如模型拓扑优化、模型转换、模型的分割合并及模型的切片处理等。
图6.1.2为快速成型制造技术所涉及的主要工艺和设计内容
模型的原件 采集数据电云 产品逆向工程
薄片/层资料
输入
CAD模型(曲面、实体) IGES、STL、CLI等模型文件
形态分类:薄片、颗粒、线、粉末、液体
材料
按材质分类:纸、树脂、尼龙 、塑料、陶瓷
设计
应用 工程与分析 应用行业:航空、航天、汽车、医疗、消费产品
2.快速成型技术中常用的文件格式
(1) IGES/IGS (International Graphics Exchange Standard)
它使最老的一种标准,几乎为所有CAD软件供应商所采用的国际标准数据转换格式。但是,在IGES的发展过程中,出现了下属的分支,而且各个供应商对IGES的标准理解不同,往往会出现各个CAD系统的IGES 文件标准的差异(如IGES128、IGES126等等)。
(3)参量表达法(Parametric Representation)
对于自由曲面,难于用传统的几何基元来进行描述,可用参量表达法。这些方法借助参量化样条、贝塞尔(Bezier)曲线和B样条来描述自由曲面,较好的一种是非均匀有理B样条(NURBS)法,它能表达复杂的自由曲面,允许局部修改曲率,能准确地描述几何基元。
4.快速成型的发展阶段
按照快速成型的发展的自动化程度,将其发展划分为三个阶段。
1)手工原型
长达若干年的传统工作与技能积累
原型被当作需要技能的工艺(依据传统,并且需要手工操作)
着重于原型的材料
采用的是“自然的”原型技术
2)虚拟原型
时间上从20世纪70年代中期
原型的复杂程度有所增加
虚拟原型能被用以施加外力,并被复制,可用于精密仪器测试一些特性
3)快速原型(快速成型)
时间上从20世纪80年代中期
特点是依赖于CAD技术的发展
能在短时间内制造出具有强度的原形件
能有助于提升产品的改型、制造、装配等等
6.1.2
与传统的加工方式相比,快速成形在加工周期和成本上都有着无可比拟的优势,它突破了毛坯→切削加工→成品的传统加工模式,不用刀具制造零件,基本上无废料。因此有以下几个优点:
软件名称开发公司
Pro/Engineer PTC
AutocadAutodesk
Unigraphics EDS
Catia IBM
1.三维模型的表达方法
随着计算机的辅助设计(CAD)技术的发展,出现了许多三维模型的表达方法,其中常见的有以下几种:
(1)构造型立体几何表达法(Constructive Solid Geometry,简称CSG法)
加工与制造
单激光光束
光硬化 双激光光束
方法 光罩曝光
剪切与粘结
熔接于固合
黏着
图6.1.2快速成型技术的主要内容
2.快速成型技术的基本原理
快速成型(RP)一般来讲是属于堆积成形,通过离散的区域得到堆积的约束、路径及方法,通过材料叠加堆积而形成三维实体模型。快速成型技术(RPT)将CAD、CAM、CNC、伺服反馈技术、光电子技术、新材料等技术集于一体,依据CAD系统构建的三维模型,进行分层切片处理,得到各层切面的轮廓。得到的轮廓再作为原始加工数据,激光束按照相应的轮廓切割一层一层的粉末材料(或固化的一层一层液态树脂,或一层一层的纸料)。也可以是喷头按照轮廓喷射一层一层的粘结剂或热熔材料(如塑料),从而形成各个切面并逐步累加得到三维模型的产品。它将复杂的三维加工简化成若干二维平面加工的组合。相对于传统产品的加工方式,省了许多工序,给周期和加工成本以很大影响。图6.1.3是成形原理图。
SLA是最早投入商业应用的快速成形技术,相对于其他成形方式成熟,能制造精度较高的工件,一般情况下可控制在0.1mm的范围内。
1-激光发生器;2-成形零;3-光敏树脂;4-液体面;5-刮平器;6-升降台
图6.2.1光固化立体成形工艺原理
这种方法适合成形小件,能直接得到塑料产品,表面粗糙度质量较好,并且由于紫外激光波长短(例如He-Cd激光器,λ=325mm),可以得到很小的聚焦光斑,从而得到较高的尺寸精度。缺点是:
快速成型技术问世不到十年,已实现了相当大的市场,发展非常迅速。人们对材料逐层添加法这种新的制造技术已逐步适应。制造业利用这种现代化制造手段与传统制造技术的接轨的工作也进展顺利。有效地结合数控加工、铸造、金属冷喷涂、硅胶模等制造手段,使快速成型技术已成为现代模型、模具和零件制造的强有力手段。在航空航天、汽车摩托车、家电、医疗器械等领域得到了广泛应用。
1)需要设计支撑结构,才能确保在成型过程中制件的每一个结构部分都能可靠定位;
2)成形中有物相变化,翘曲变形较大,也可以通过支撑结构加以改善;
3)原材料有污染,可能使皮肤过敏。
6.2.2
叠层实体制造也称薄形材料选择性切割,是近几年才发展起来的一种快速成型技术。展开装置将涂有热熔胶的箔材带(如涂覆纸、涂覆陶瓷箔、金属箔、塑料箔)8,经热压辊6加热后,一段段送至工作台上方。激光切割系统,根据三维模型提取的每一个横截面的轮廓,在计算机的控制下,用CO2激光束对工作台上的箔材沿轮廓线切割成所制制件的内外轮廓,制件轮廓以外的区域被切割成小方块,成为废料。在该层切割完成后,工作台下降相当于一个纸厚的高度,然后新的一层纸再平铺在刚成形的面上,通过热压装置将其与已切割的型面粘合在一起,激光束再一次进行新的轮廓切割,以此逐步得到各层截面,并粘结在一起,形成三维产品。其工艺过程原理如图6.2.2所示。该工艺材料的厚度一般0.07~0.15㎜之间,由于激光束只需扫描面轮廓,成形速度较快,制件完成后用聚氨酯喷涂即可。
构造型立体几何表达法用布尔(Boole)运算法则(并、交、减),将一些简单的三维几何基元(如立方体、圆柱体、环、椎体)予以组合,变化成复杂的三维模型实体。
(2)边界表达法(Boundary Representation,简称B—rep)
边界表达法根据顶点、边和面构成的表面来精确的描述三维模型实体。此方法的优点是:能快速的绘制立体或线框模型。缺点是:它的数据是以表格形式出现的,空间占用量大;修改设计不如CSG法简单。
相关文档
最新文档