数字信号处理引论第四章习题解答

合集下载

数字信号处理-第4章习题

数字信号处理-第4章习题

习题四4.1 用窗函数法设计一线性相位FIR 高通滤波器,通带边界频率为0.6π,阻带边界频率为0.4π,要求阻带衰减不小于40dB ,窗函数从矩形窗、汉宁窗、海明窗和布莱克曼窗中选取,且要求滤波器的阶数最小。

求出该滤波器的单位脉冲响应h (n )的解析式。

解 求理想高通滤波器的边界频率n ω和过渡带宽ω∆:0.60.40.522c rn ωωππωπ++≈== 0.60.40.2c r ωωωπππ∆=-=-=选择窗函数和窗口长度。

阻带衰减不小于40dB ,因此选择汉宁窗。

根据过渡带宽求窗口长度N 和线性相位延迟常数α:6.20.231N Nππ=⇒= 1152N α-== 根据理想边界频率n ω和线性相位延迟常数α,求理想单位脉冲响应d ()h n :[][]()()d sin ()sin ()1()()d d 21n n n j n j n n n n n n h n e e n ωπωαωαπωαπαωαπαωωπωαπ----⎧---≠⎪⎪-⎡⎤=+=⎨⎢⎥⎣⎦⎪-=⎪⎩⎰⎰ 窗函数与理想单位脉冲响应相乘,即可得到线性相位FIR 高通滤波器的单位脉冲响应:[][]sin (15)sin (15)0.50.50.5cos ()15()15(15)0.515N n n n R n n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪ ⎪⎢⎥=-⎝⎭⎨⎣⎦⎪=⎩0,1,2,,30n =⋅⋅⋅6kHz ,阻带边界频率为2kHz 和8kHz ,采样频率为20kHz ,要求阻带衰减不小于50dB ,窗函数从矩形窗、汉宁窗、海明窗和布莱克曼窗中选取,且要求滤波器的阶数最小。

求出该滤波器的单位脉冲响应h (n )的解析式。

解 求理想带通滤波器的边界频率1ω、2ω和过渡带宽ω∆:12121212112212221120.4 , 20.620.2 , 20.80.3 , 0.7220.2c c c c s s r r r r s sc r c r r c c r f ff f f ff f ωππωππωππωππωωωωωπωπωωωωωπ========++≈=≈=∆=-=-= 选择窗函数和窗口长度。

数字信号处理教程课后习题及答案

数字信号处理教程课后习题及答案
试判断系统是否是线性的?是否是移不变的?
分析:已知边界条件,如果没有限定序列类型(例如因果序列、反因果序列等), 则递推求解必须向两个方向进行(n ≥ 0 及 n < 0)。
解 : (1) y1 (0) = 0 时, (a) 设 x1 (n) = δ (n) ,
按 y1 (n) = ay1 (n − 1) + x1 (n) i) 向 n > 0 处递推,
10
T [ax1(n)+ bx2 (n)] =
n

[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
当n ≤ −1时 当n > −1时
∑ y(n) = n a −m = a −n
m=−∞
1− a
∑ y(n) =
−1
a−m =

《数字信号处理》(2-7章)习题解答

《数字信号处理》(2-7章)习题解答

第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。

(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。

(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。

(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。

(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。

(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。

(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。

(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。

数字信号处理习题解答

数字信号处理习题解答

第一章2、已知线性移不变系统的输入为()x n ,系统的单位抽样相应为()h n ,试求系统的输出()y n 。

(2)3()(),x n R n = 4()()h n R n =解:此题考察线性移不变系统的输出为激励与单位抽样相应的卷积,即:()()*(){1,2,3,3,2,1}y n x n h n == 4、判断下列每个序列的周期性,若是周期性的,试确定其周期。

3()cos()78x n A n ππ=-解:03 ()cos()78314 N=2/2/7314,3x n A n k k k k ππππωπ=-==∴=是周期的,周期是。

6、试判断系统的线性和移不变性。

()2(2) ()y n x n =⎡⎤⎣⎦ 解:()2()y n x n =⎡⎤⎣⎦()[]()[]2111)(n x n x T n y ==()()[]()[]2222n x n x T n y ==()()()[]()[]212121n bx n ax n by n ay +=+()()[]()()[]()[]()[]()()()()[]()()n by n ay n bx n ax T n x n abx n bx n ax n bx n ax n bx n ax T 2121212221221212 +≠+++=+=+即()[]()[]()()[]()[]()系统是移不变的即∴-=--=--=-m n y m n x T m n x m n y m n x m n x T 228、以下序列是系统的单位抽样响应()h n ,试说明系统的因果性和稳定性。

(4)3()nu n - 解:因果性:当0n <时,()0h n ≠,∴是非因果的;稳定性:0123|()|3332n h n •••∞--=-∞=+++=∑,∴是稳定的。

11、有一理想抽样系统,抽样角频率为6s πΩ=,抽样后经理想低通滤波器()a H j Ω还原,其中1,3()20,3a H j ππ⎧Ω<⎪Ω=⎨⎪Ω≥⎩今有两个输入,12()cos 2,()cos5a a x t t x t t ππ==。

北京邮电大学数字信号处理第4章答案

北京邮电大学数字信号处理第4章答案

习题解答4.1 根据给定的模拟滤波器的幅度响应平方,确定模拟滤波器的系统函数 H(s)。

(1) 261|()|164H j Ω=+Ω(2) 2222216(25)|()|(49)(36)H j -ΩΩ=+Ω+Ω分析:在模拟滤波器设计中,由各种逼近方法确定了幅度响应,通过下列步骤求出滤波器的系统函数H(s)。

更进一步,通过脉冲响应不变法或双线性变换法,可以得到数字滤波器的传输函数 H(z)。

(1)考虑s j =Ω,将幅度响应表达式整理为s 为变量的表达式,求 ()()a a H s H s - 表达式的零极点;(2)为了系统稳定,选择左半平面的极点构成 H(s);(3)如果没有特殊要求,可以选择取 ()()a a H s H s -以虚轴为对称轴的对称零点的任意一半(应是共轭对)作为 H a (s) 的零点。

但如果要求是最小相位延时滤波器,则应取左半平面零点作为 H a (s) 的零点。

(4)对比()a H s 和()a H j Ω 的低频特性或高频特性,从而确定增益常数K 0。

解:(1)由于2)(Ωj H a 是非负有理函数,它在Ωj 轴上的零点是偶次的,所以满足幅度平方函数的条件,先求2321()()()164()22H s H s H j a a as s -=Ω=+-Ω=-其极点为0.50.250.4330.50.250.433j j --±±我们选出左半平面极点s=0.5和 0.250.433j -± 为)(s H a 的极点,并设增益常数为0K ,则得)(s H a 为:002()(0.5)(0.250.433)(0.250.433)(0.5)(0.50.25)K K H s a s s j s j s s s ==++-+++++ 按着()a H s 和()a H j Ω的低频特性或高频特性的对比可以确定增益常数。

在这里我们采用低频特性,即由00()|()|a s a H s H j =Ω==Ω的条件可得增益常数0K 为:018K =最后得到)(s H a 为:21()8(0.5)(0.50.25)H s a s s s =+++(2)由于2)(Ωj H a 是非负有理函数,它在Ωj 轴上的零点是偶次的,所以满足幅度平方函数的条件,得)36)(49()25(16222)()()(222s s s s j aH s a H s a H --+=-=ΩΩ=- 其极点为:6,7±=±=s s其零点为:5j s ±=(皆为二阶,位于虚轴上)j Ω虚轴上的零点或极点一定是二阶的,其中一半(应为共轭对)属于 H a (s)。

数字信号处理第4章答案 史林 赵树杰编著

数字信号处理第4章答案  史林 赵树杰编著

第四章练习题答案%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4.3 周期序~()x n 的共轭对称序列~()e x n 和共轭反对称序列~()o x n 分别表示为~~~*1()()()2e x n x n x n ⎡⎤=+-⎢⎥⎣⎦ ~~~*1()()()2o x n x n x n ⎡⎤=--⎢⎥⎣⎦试证明{}~~()R e ()e D FS x n X k ⎡⎤=⎢⎥⎣⎦{}~~()Im ()o D FSx n j X k ⎡⎤=⎢⎥⎣⎦证明:利用DFS 的共轭对称性 因为~~**()()x n X k -=所以{}~~~*~~*~~~*1()()()21()()21()()R e ()2e D F S x n D F S x n x n D F S x n D F S x n X k X k X k ⎧⎫⎡⎤⎡⎤=--⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎧⎫⎡⎤⎡⎤=--⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎛⎫=-= ⎪⎝⎭同理{}~~()Im ()o D FS x n j X k ⎡⎤=⎢⎥⎣⎦%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4.6 设序列()x n 的N 点离散傅里叶变换为[]()()(01)X k DFT x n k N =≤≤-。

现已知下列各()j X k 分别求其离散傅里叶逆变换()()j j x n IDFT X k ⎡⎤=⎣⎦。

(3)3()()N X k R k = (4)4,2(),20,j j N e k m N X k ek N m θθ-⎧=⎪⎪⎪==-⎨⎪⎪⎪⎩其他解:离散傅里叶逆变换定义 (3)[]121201()ID FT ()()11111111,00,N -knNk -kN j k N -knN N-k j kk NNx n X k X k W NW e W NN N Wek k ππ-=-===--===--=⎧=⎨≠⎩∑∑(4)[]()122j j j -j 1()ID FT ()()1e e e e 222cos 0,1,,1N -knNk nm N -m n N N x n X k X k W NN N N nm n N N ππθθπθ-===⎡⎤=+⎢⎥⎣⎦⎛⎫=+=- ⎪⎝⎭∑上式中的结果来于:()22j jeeN -m nmnNNππ-=%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4.9已知()x n 是长度为N 的有限长度序列,其N 点离散傅里叶变换为[]()()(01)X k DFT x n k N =≤≤-。

数字信号处理教程课后习题及答案

数字信号处理教程课后习题及答案

x(n
− m)sin
2π 9
+
π 7
即 T [x(n − m)] = y(n − m)
∴系统是移不变的
T [ax1(n) + bx2 (n)]
=
[ax1
(n)
+
bx2
(n
)]sin(
2π 9
+
π 7
)
即有 T [ax1(n)+ bx2 (n)]
= ay1(n) + by2 (n)
∴系统是线性系统
(1) T [ x(n)] = g(n)x(n) (2) (3) T [ x(n)] = x(n − n0 ) (4)
(c)
x (n )
=
e
j
(
n 6
−π )
分析:
序列为 x (n ) = A cos( ω 0n + ψ ) 或 x(n) = A sin( ω 0n +ψ ) 时,不一定是周期序列,
①当 2π / ω 0 = 整数,则周期为 2π / ω 0 ;
7
②当 2π = P ,(有理数 P、Q为互素的整数)则周期 为 Q ; ω0 Q
(3) y(n) = δ (n − 2) * 0.5n R3(n) = 0.5n−2 R3(n − 2) (4) x(n) = 2n u(−n −1) h(n) = 0.5n u(n)
当n ≥ 0 当n ≤ −1
∑ y(n) = −1 0.5n−m 2m = 1 ⋅ 2−n
m = −∞
3
y(n) = ∑n 0.5n−m 2m = 4 ⋅ 2n
∴所给系统在 y(0) = 0 条件下是线性系统。
6.试判断:

数字信号处理第4章习题解答教材

数字信号处理第4章习题解答教材


DFT [x2 (n)]

DFT {Im[ w(n )]}

1 j Wop (k )

1 2j
[W
((k )) N
W
* (( N

k )) N
]RN
(k)
解:由题意 X k DFT xn,Y k DFT y n 构造序列 Z k X k jY k 对Z k 作一次N点IFFT可得序列z n z(n) IDFT Z k
Re[w(n)] j Im[w(n)]
Wep (k) Wop (k)
由x1(n) Re[w(n)]得
X1(k) DFT[x1(n)] DFT{Re[w(n)]} Wep (k)

1 2
[W
((k
))
N
W *((N

k ))N
]RN
(k)
由x2 (n) Im[w(n)]得
X 2 (k )
(2) 按频率抽取的基-2FFT流图
同样共有L = 4级蝶形运算,每级N / 2 = 8个蝶形运算
基本蝶形是DIT 蝶形的转置
X m1(k )
X m1( j)
WNr
-1
X m (k ) Xm( j)
每个蝶形的两节点距离为2Lm ,即从第一级到 第四级两节点距离分别为8,4,2,1。
系数WNr的确定:r (k )2 2m1 即k的二进制左移m 1位补零
3. N=16 时,画出基 -2 按时间抽取法及按频率抽取法 的 FFT 流图(时间抽取采用输入倒位序,输出自然数 顺序,频率抽取采用输入自然顺序,输出倒位序)。
解: 自然序
倒位序
0 0000 0000 0 1 0001 1000 8 2 0010 0100 4 3 0011 1100 12 4 0100 0010 2 5 0101 1010 10 6 0110 0110 6 7 0111 1110 14

数字信号处理 答案 第四章

数字信号处理 答案 第四章

z −1
r sin θ
− r sin θ r cos θ
y ( n)
z −1
网络Ⅱ 解 网络Ⅰ:根据信号流程图写出差分方程
y (n) = 2r cos θ y (n − 1) − r 2 y (n − 2) + x(n)
由差分方程得系统函数
H1 ( z ) =
Y ( z) 1 = X ( z ) 1 − 2r cos θ z −1 + r 2 z −1 1 )(rz −1 − e jθ )
(4)并联型
x ( n)
z −1
1/4 10/3
-7/3
y ( n)
z −1
1/2 将系统函数写成部分分式形式
H ( z) =
−7 / 3 10 / 3 + 1 −1 1 1− z 1 − z −1 4 2
4.4 用直接Ⅰ型和直接Ⅱ型结构实现以下系统函数; (1)
H(z)=
−5 + 2 z −1 − 0.5 z −2 1 + 3z −1 + 3z −2 + z −3
3z 3 + 2 z 2 + 2 z + 5 (2) H(x)=0.8 3 z + 4 z 2 + 3z + 2
解 (1)根据系统函数写出差分方程
y (n) + 3 y (n − 1) + 3 y (n − 2) + y (n − 3) = −5 x(n) + 2 x(n − 1) − 0.5 x(n − 2)
可见网络Ⅰ和网络Ⅱ具有相同极点。 4.3 一个因果线性离散系统由下列差分方程描述:
3 1 1 y(n)- y(n-1)+ y(n-2)=x(n)+ x(n-1) 4 8 3

数字信号处理第四章附加习题及答案-new

数字信号处理第四章附加习题及答案-new

第四章附加题1. 请推导出三阶巴特沃思低通滤波器的系统函数,设1/c rad s Ω=。

解:幅度平方函数是:2261()()1A H j Ω=Ω=+Ω令: 22s Ω=- ,则有:61()()1a a H s H s s -=- 各极点满足121[]261,26k j k s ek π-+==所得出的6个 k s 为:15==j es 2321321jes j +-==π12-==πj e s 2321343jes j --==π2321354j es j -==π2321316j es j +==π15==j e s 2321321je s j +-==π12-==πj e s 2321343je s j --==π2321354j es j -==π2321316j es j +==π122))()(()(233210+++=---=s s s k s s s s s s k s H a 1221)(23+++==s s s s H a 代入s=0时, ,可得,故:1=)s (H a 10=k2. 设计一个满足下列指标的模拟Butterworth 低通滤波器,要求通带的截止频率6,p f kHz =,通带最大衰减3,p A dB =,阻带截止频率12,s f kHz =,阻带的最小衰减25s A dB =,求出滤波器的系统函数。

解: 2,2s s p p f f ππΩ=Ω= 0.10.1101lg 101N 2lg()s pA A sp⎛⎫- ⎪-⎝⎭≥ΩΩ=4.15取N=5,查表得H(p)为:221()(0.6181)( 1.6181)(1)H p p p p p p =+++++因为3,p A dB =所以c p Ω=Ω[]52222()()0.618 1.618cs p c c c c c c H s H p s s s s s =Ω=Ω=⎡⎤⎡⎤+Ω-Ω+Ω-Ω+Ω⎣⎦⎣⎦3. 设计一个模拟切比雪夫低通滤波器,要求通带的截止频率 f p =3kHz ,通带衰减要不大于0.2dB ,阻带截止频率 f s = 12kHz ,阻带衰减不小于 50dB 。

数字信号处理第四章习题

数字信号处理第四章习题

数字信号处理第四章习题第四章习题4.1 (a) By expanding the equation()()[]()==?--∞→∞→2200021T T Ft j T xx T xx dt e t x T E lim F P E lim F 00πΓ taking the expected value, and finally taking the limit as ∞→0T , show that the right-hand side converges to )(f xx Γ.(b) Prove that2102211)(1)(∑∑-=---+-==N n fn j fm j N N m xx en x N e m r ππ.4.2 For zero-mean, jointly Gaussian random variables, X 1, X 2, X 3, X 4, itis well known that)()()()()()()(3241423143214321X X E X X E X X E X X E X X E X X E X X X X E ++=. Use this result to derive the mean-square value of ()m r xx and the variance, given by()[][]()()()[]∑∞-∞=+-+-≈n xx xx xx xx m n m n n m N N m r γγγ*22varwhich is defined as[][][]22(()(var m r E m r E m r xx xx xx -=. 4.3 By use of the expression for the fourth joint moment for Gaussianrandom variables, show that(a)()()[]??--++++=2212122121421)(sin )(sin )(sin )(sin 1f f N N f f f f N N f f f P f P E x xx xx ππππσ (b)[]??--+++=2212122121421)(sin )(sin )(sin )(sin )()(cov f f NN f f f f N N f f f P f P x xx xx ππππσ(c)[]??+=242sin 2sin 1)(var f N fN f P x xx ππσ under the condition that the sequence ()n x is a zero-mean white Gaussian noise sequence with variance 2x σ.4.4 Generalize the results in Problem 4.3 to a zero-mean Gaussian noiseprocess with power density spectrum )(f xx Γ, as given by()[]()+Γ=222sin 2sin 1var f N fN f f P xx xx ππ (Hint: Assume that the colored Gaussian noise process is the output of a linear system excited by white Gaussian noise.)4.5 Show that the periodogram values at frequencies,1,1,0,/-==L k L k f k given by (4.1.35), can be computed by passing the sequence through a bank of L IIR filters, where each filter has an impulse resp onse )()(/2n u e n h N nk j k π-= and then computing the magnitude-squared value of the filter outputs at n=N. Note that each filter has a pole on the unit circle at the frequency f k .4.6 The Bartlett method is used to estimate the power spectrum of asignal x(n). We know that the power spectrum consists of a single peak with a 3 dB bandwidth of 0.01 cycle per sample, but we do not know the location of the peak.(a) Assuming that N is large, determine the value of M=N/K so thatthe spectral window is narrower than the peak.(b) Explain why it is not advantageous to increase M beyond thevalue obtained in part (a).4.7 The N-point DFT of a random sequence x(n) is ∑-=-=10/2)()(N n N nk j e n x k X π.Assume that E[x(n)]=0 and E[x(n)x(n+m)]=)(2m w δσ (in other words,x(n) is a white noise process).(a) Determine the variance of X(k).(b) Determine the autocorrelation of X(k).4.8 An AR(2) process is described by the difference equation)()2(81.0)(n n x n x ω+-=, where w(n) is a white noise process withvarian ce 2ωσ.(a) Determine the parameters of the MA(2), MA(4), and MA(8)models that provide a minimum mean-sequare error fit to thedata x(n).(b) Plot the true spectrum and those of the MA (q), q=2,4,8spectra and compare the results. Comment on how well the MA(q) models approximate the AR (2) process.4.9 An MA (2) process is described by the difference equation )2(81.0)()(-+=n n n x ωω, where w(n) is a white noise process withvariance 2ωσ.(a) Determine the parameters of the AR(2), AR(4), and AR(8)models that provide a minimum mean-square error fit to the data x(n).(b) Plot the true spectrum and those of the AR(p), p=2,4,8, andcompare the results. Comment on how well the AR(p) models appoximate the MA (2) process.4.10 The autocorrelation sequence for an AR process x(n) ismxx m ??? ??=41)(γ (a) Determine the difference equation for x(n)(b) Is your answer unique? If not, give any other possiblesolutions.4.11 Suppose that we represent an ARMA(p,q) process as a cascade ofan MA(q) followed by an AR(p) model. The input-output equation for the MA(q) model is ∑=-=qk k k n w b n v 0)()(, where w(n) is a whitenoise process. The input-output equation for the AR(p) model is∑==-+pk k n v k n x a n x 1)()()((a) By computing the autocorrelation of v(n), show thatq m d b b m mq k m w m k k w vv ≤≤==∑-=+0)(022σσγ(b) Show that 1)()(00=+=∑=a k m a m pk vx k vv γγ4.12 Suppose that the AR(2) process in Problem 4.8 is corrupted by anadditive white noise process v(n) with variance 2v σ. Thus, we havey(n)=x(n)+v(n)(a) Determine the difference equation for y(n) and thusdemonstrate that y(n) is an ARMA(2,2) process. Determine the coefficients of the ARMA process.(b) Generalize the result in part (a) to an AR(p) process∑=+--=pk k n w k n x a n x 1)()()( and )()()(n v n x n y +=.4.13 The harmonic decomposition problem considered by Pisarenko maybe expressed as the solution to the equationa a a Γa H w yy H 2σ=The solution for a may be obtained by minimizing the quadratic form a Γa yy H subject to th e constraint that a a H =1. The constraint can be incorporated into the performance index by means of a Lagrange multiplier. Thus the performance index becomes()a a a Γa H yy H 1-+=λζ.By minimizing ζ with respect to a , show that this formulation is equivalent to the Pisarenko eigenvalue problem given in (4.4.9), with the Lagrange multiplier playing the role of the eigenvalue. Thus,show that the minimum of ζ is the minimum eigenvalue 2w σ.4.14 The autocorrelation of a sequence consisting of a sinusoid withrandom phase in noise is)(2cos )(21m m f P m w xx δσπγ+=where 1f is the frequency of the sinusoidal, P its power, and 2w σthe variance of the noise. Suppose that we attempt to fit an AR(2) model to the data.(a) Determine the optimum coefficients of the AR(2) model as afunction of 2w σ and 1f .(b) Determine the reflection coefficients 1K and 2K correspondingto the AR(2) model parameters.(c) Determine the limiting values of the AR(2) parameters and (1K ,2K )as 02→w σ.4.15 This problem involves the use of cross-correlation to detect a signalin noise and estimate the time delay in the signal. A signal x(n) consists of a pulsed sinusoid corrupted by a stationary zero-mean white noise sequence. That is, 10),()()(0-≤≤+-=N n n w n n y n x ,where )(n w is the noise with variance 2w σ and the signal is -≤≤=otherwise M n n A n y ,010,cos )(0ω. The frequency 0ω is known, but the delay 0n , which is a positiveinteger, is unknown, and is to be determined by cross-correlating x(n) with y(n). Assume that 0n M N +>. Let ∑-=-=10)()()(N n xy n x m n y m rdenote the cross-correlation sequence between x(n) and y(n). In the absence of noise, this function exhibits a peak at delay 0n m =. Thus,0n is determined with no error. The presence of noise can lead toerrors in determining the unknown delay.(a) For 0n m =, determine ()[]0n r E xy . Also, determine thevariance ()[]0var n r xy , due to the presence of the noise. In bothcalculations, assume that the double-frequency term averages to zero. That is, 0/2ωπ>>M .(b) Determine the signal-to-noise ratio, defined as[]{}[])(var )(020n r n r E SNR xy xy = (c) What is the effect of the pulse duration M on the SNR?。

数字信号处理答案-史林赵树杰-科学出版社

数字信号处理答案-史林赵树杰-科学出版社
3.4设 是一有限长序列,已知
它的离散时间傅里叶变换为 。不具体计算 ,试直接确定下列表达式的值。
(3)
解:不计算 ,解法如下:
令n=0,则:
因此,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3.11证明:
(1)若序列 是实偶函数,则其离散时间傅里叶变换 是 的实偶函数。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3.16若序列 是因果序列,已知其离散时间傅里叶变换 的实部 为
求序列 及其离散时间傅里叶变换 。
解:此处的条件为: 是因果序列。因此此题的求解必然使用因果序列的对称性。
注意:此处并没有提及 为实序列,因此,此题需加如条件 为实序列。
2.5判断下列序列中,哪一个是周期序列,如果是周期序列,求出它的周期。
(1)
(2)
(5)
解:理论分析详见P18性质7)周期序列
题中设计到的是正弦信号,对于正弦信号 ,分析其周期性,则需判断:
1)为整数,则周期;2)为有理数,则周期;3)为无理数则非周期。
观察(1)、(2)、(5), 依次为: 、 、 ,从而可知(1)为非周期,(2)、(5)为周期序列。
(2)试确定采样信号频谱不混叠的最低采样频率,并画出此时 的频谱图形。
(3)画出由(3)中的序列 恢复 的框图(可用复理想低通滤波器)。
题1.7图 的频谱图形
解:采样间隔为 ,因此采样频率为 。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4.10已知 是长度为N的有限长序列,其N点离散傅里叶变换为 。现将序列 的每二点之间补进m-1个0值,得长度为mN的有限长序列 ,即

数字信号处理-俞一彪-孙兵-课后习题答案

数字信号处理-俞一彪-孙兵-课后习题答案

第一章習題參考解答1-1畫出下列序列の示意圖(1)(2)(3)(1)(2)(3)1-2已知序列x(n)の圖形如圖1.41,試畫出下列序列の示意圖。

圖1.41 信號x(n)の波形(1)(2)(3)(4)(5)(6)(修正:n=4處の值為0,不是3)(修正:應該再向右移4個采樣點)1-3判斷下列序列是否滿足周期性,若滿足求其基本周期(1)解:非周期序列;(2)解:為周期序列,基本周期N=5;(3)解:,,取為周期序列,基本周期。

(4)解:其中,為常數,取,,取則為周期序列,基本周期N=40。

1-4 判斷下列系統是否為線性の?是否為移不變の?(1)非線性移不變系統(2)非線性移變系統(修正:線性移變系統)(3)非線性移不變系統(4)線性移不變系統(5)線性移不變系統(修正:線性移變系統)1-5判斷下列系統是否為因果の?是否為穩定の?(1),其中因果非穩定系統(2)非因果穩定系統(3)非因果穩定系統(4)非因果非穩定系統(5)因果穩定系統1-6已知線性移不變系統の輸入為x(n),系統の單位脈沖響應為h(n),試求系統の輸出y(n)及其示意圖(1)(2)(3)解:(1)(2)(3)1-7若采樣信號m(t)の采樣頻率fs=1500Hz,下列信號經m(t)采樣後哪些信號不失真?(1)(2)(3)解:(1)采樣不失真(2)采樣不失真(3),采樣失真1-8已知,采樣信號の采樣周期為。

(1)の截止模擬角頻率是多少?(2)將進行A/D采樣後,の數字角頻率與の模擬角頻率の關系如何?(3)若,求の數字截止角頻率。

解:(1)(2)(3)1-9計算下列序列のZ變換,並標明收斂域。

(1)(2)(3)(4)(5)解:(1)(2)(3)(4),,收斂域不存在(5)1-10利用Z變換性質求下列序列のZ變換。

(1)(2)(3)(4)解:(1) ,(2) ,(3),(4),1-11利用Z變換性質求下列序列の卷積和。

(1)(2)(3)(4)(5)(6)解:(1),,,,(2) ,,,(3) , ,,(4),,(5),,,(6),,,1-12利用の自相關序列定義為,試用のZ變換來表示のZ變換。

数字信号处理-答案第四章

数字信号处理-答案第四章
m 0
y
l 1
m
( n) ,然后对它求一次 N 点
DFT , 即可计算 X ( z )在单位圆上的 N点抽样 (b)若:N M,可将x ( n)补零 到N点, 即 x ( n) x0 ( n ) 0 则:X (e
j 2 k N
0 n M 1 M n N 1
令 X 1 (k0 , n1 , n0 )
n2 0
x(n , n , n )W
2 1 0 1 ' 1
2
n2 k 0 3
,
k0 0,1,2
X 1' (k0 , n1 , n0 ) X 1 (k0 , n1 , n0 )W6n1k 0 X 2 (k0 , k1 , n0 )
n1 0
2 . 已知X (k ),Y (k )是两个N点实序列x(n), y(n)的DFT值, 今需要从 X (k ),Y (k )求x(n), y (n)值, 为了提高运算效率, 试用一个N点IFFT 运算一次完成。
解 : 依据题意 : x ( n ) X ( k ); y ( n ) Y ( k ) 取序列 Z ( k ) X ( k ) jY ( k ) 对Z ( k )作N点IFFT可得序列 z ( n ). 又根据DFT性质: IDFT [ X(k) jY(k) ] IDFT( [ X( k ) ] jIDFT [Y(k) ] x ( n) jy(n) 由原题可知: x(n),y(n) 都是实序列, 再根据 z(n) x ( n) jy(n) 可得:x(n) Re[ z(n) ] y(n) Im[z(n) ] 综上所述,构造序列 Z(k) X(k) jY(k)可用一次 N点IFFT完成计算x(n),y(n) 值的过程。

数字信号处理课后答案第3和4章

数字信号处理课后答案第3和4章
用DFT/FFT对序列进行频谱分析, 频谱分析范围为π; 用DFT/FFT对模拟信号进行频谱分析, 频谱分析范围为采 样频率的一半, 即0.5Fs。
用DFT/FFT对信号进行谱分析的误差表现在三个方面, 即混叠现象、 栅栏效应和截断效应。 截断效应包括泄漏和 谱间干扰。
第3章 离散傅里叶变换(DFT)及其快速算法
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
xN(n)=IDFT[X(k)]为x(n)的周期延拓序列(以N为延拓周期) 的主值序列。 以后这一结论可以直接引用。
[例3.4.2] 已知 x(n)=R8(n), X(ejω)=FT[x(n)]
对X(ejω)采样得到X(k),
X(k)X(ej)|2πk, k0,1, ,5 6
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
当然, 截取信号的长度要足够长。 但如果截取的长度 不够长, 而依靠在所截取的序列尾部加零点, 增加变换区 间长度, 也不会提高分辨率。 例如, 分析周期序列的频谱, 只观察了一个周期的1/4长度, 用这些数据进行DFT, 再通 过尾部增加零点, 加大DFT的变换区间N, 也不能分辨出是 周期序列, 更不能得到周期序列的精确频率。
令m=N-1-n, 则上式可写成
0
N1
X(k) x(m )W N k(n1) x(m )W N km
m N1
m 0
W N k(N 1 )X ( (k)N )R N (k)
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
当 k N 时(N为偶数), 2
因为
X N 2 W N N 2(N 1 )X N 2 NW N N 2(N 1 )X N 2

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

第 1 章
时域离散信号和时域离散系统
题2解图(一)
第 1 章
时域离散信号和时域离散系统
题2解图(二)
第 1 章
时域离散信号和时域离散系统
题2解图(三)
第 1 章
时域离散信号和时域离散系统
题2解图(四)
第 1 章
时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
n n0 k n n0
|x(k)|≤|2n0+1|M, 因
此系统是稳定的; 假设n0>0, 系统是非因果的, 因为输出
还和x(n)的将来值有关。
第 1 章
时域离散信号和时域离散系统
(4)假设n0>0, 系统是因果系统, 因为n时刻输出只和n时刻以后的输入 有关。 如果|x(n)|≤M, 则|y(n)|≤M, 因此系统是稳定的。 (5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果 |x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM, 因此系统是稳定的。 7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示, 要求画出y(n)输出的波形。 解: 解法(一)采用列表法。 y(n)=x(n)*h(n)= x(m)h(n-m)
δ(n-2)]
1 2
=2x(n)+x(n-1)+
x(n-2)
将x(n)的表示式代入上式, 得到
1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(n)+2δ(n-1)+δ(n-2) 2
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章

数字信号处理课后习题Ch4

数字信号处理课后习题Ch4

= ( n−2 α )π sin[( n − α ) wc ] sin[( n − α ) w0] 因为 h(n)=hd (n)W R (n)= hd(n) R N (n) 所以(1)当 N 为奇数时 h(n)= { (0 ≤ n ≤ N − 1) ; 0 , 其他 (2)当 N 为偶数时 h(n)的表达式与 N 为奇数时相同 (3)若采用汉明窗设计 h(n)= h d (n)W(n) = ( n−2 α )π sin[( n − α ) wc ] sin[( n − α ) w0] [0.54-0.46cos (
N ⎧ 2 1 ⎪ H (ω ) = b ( n ) c o s [ω ( n − )] ∑ ⎪ 2 n =1 ∴ ⎨ ⎪ N b (n ) = 2 h ( − 1 + n) ⎪ 2 ⎩
∴ (1)当 N 为奇数时
2
sinωc (n − α ) ⎧ RN (n), 0 ≤ n ≤ N − 1 ⎪2cosω0 (n-α ) π (n − α ) h( n) = ⎨ ⎪0, 其他 ⎩
(2)当 N 为偶数时 h(n)的表达式与 N 为奇数时的相同; (3)若用汉明窗设计
h( n) = hd (n)ω (n) = 2 cos ω0 ( n − α ) sin ωc ( n − α ) 2π n [0.54 − 0.46 cos( )]RN (n) π (n − α ) N −1
(1 ).h d ( n ) = =
1 2π

2π 0
H d (e

)e
jn ω

1 π + ω c − j ( ω − π ) α jn ω e e dω 2 π ∫π − ω c π +ωc 1 = e jπ α ∫ e j ( n −α )ω d ω π −ω c 2π 1 1 = e jπ α e j ( n − α ) ω 2π j ( n − α ) 1 e jπ α [e = 2π j ( n − α )

数字信号处理(第三版)教程及答案第4章

数字信号处理(第三版)教程及答案第4章

第 4 章 时域离散系统的网络结构及数字信号处理的实现
4.3 按照系统函数或者差分方程画系统流图
按照系统函数设计系统的实现方法主要依据的是系统函 数的特点和要求, 画出系统流图, 然后根据流图设计用硬 件或软件进行实现。 系统的网络结构有很多, 但最基本的是FIR和IIR网络结 构。 这两类结构各有特点。 FIR结构一般没有反馈回路, 单 位脉冲响应是有限长的, 系统稳定, 但相对IIR结构, FIR 结构的频率选择性不高, 换句话说, 要求频率选择性高时, 要求FIR有很高的阶数。
N / 2 −1
H ( z) =

n =0
h(n)[ z − n ± z − ( N − n −1) ]
N为偶数
第 4 章 时域离散系统的网络结构及数字信号处理的实现
H ( z) =
( N −1) / 2 −1

n=0
h(n)[ z − n
N −1 − − ( N − n −1) ±z ] + h( )z 2
第 4 章 时域离散系统的网络结构及数字信号处理的实现
N
Ak H ( z) = C + ∑ 1 − p k z −1 k =1
式中, pk是极点l, C是常整数, Ak是展开式中的系数。 一 般pk、 Ak都是复数。 为了用实数乘法, 将共轭成对的极点 放在一起, 形成一个二阶网络, 公式为
bk 0 + bk1 z H k ( z) = 1 + a k1 z −1 + a k 2 z − 2
−1
第 4 章 时域离散系统的网络结构及数字信号处理的实现
上式中的系数均是实数。 总的系统函数为
H ( z) = C + ∑ H k ( z)

数字信号处理习题答案第 章

数字信号处理习题答案第 章

11z1
11z1
H(z)
3
3
13z11z2 (11z1)1(1z1)
48
2
4
按照上式可以有两种级联型结构:

1 1 z1 H(z) 3
1
1 1 z1 1 1 z1
2
4
第 4 章 时域离散系统的网络结构及数字信号处理的实现
画出级联型结构如题1解图(二)(a)所示。 ②
H(z) 1
1 1 z1 3
第 4 章 时域离散系统的网络结构及数字信号处理的实现
教材第5章习题与上机题解答
1. 已知系统用下面差分方程描述:
y (n ) = 3 y (n 1 ) - 1 y (n 2 ) + x (n ) 1 x (n 1 )
4
8
3
试分别画出系统的直接型、 级联型和并联型结构。 式中 x(n)和y(n)分别表示系统的输入和输出信号。
第 4 章 时域离散系统的网络结构及数字信号处理的实现
画出级联型结构如题4解图(a)所示。 ②
H 1 ( z ) 1 1 1 .4 0 . z 5 z 1 1 1 z 4 2, H 2 ( z ) 1 0 .4 9 ( z 1 1 z 0 1 .) 8 z 2 1
画出级联型结构如题4解图(b)所示。 第一种级联型结构最好, 因为用的延时器少。
解: 分别画出(1)、 (2)的结构图如题10解图 (一)、 (二)所示。
(1) 属第一类N为偶数的线性相位滤波器, 幅度特性 关于ω=0, π, 2π偶对称, 相位特性为线性、 奇对称。
(2) 属第二类N为奇数的线性相位滤波器, 幅度特性 关于ω=0, π, 2π奇对称, 相位特性具有线性且有固定的π/2相 移。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档