高考数学压轴题小题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学压轴题小题一.选择题(共6小题)

1.(2018?新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()

A.﹣50 B.0 C.2 D.50

2.(2018?新课标Ⅱ)已知F

1,F

2

是椭圆C:=1(a>b>0)的左、右焦点,A是C

的左顶点,点P在过A且斜率为的直线上,△PF

1F

2

为等腰三角形,∠F

1

F

2

P=120°,则C

的离心率为()

A.B.C.D.

3.(2018?上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()

A.B. C. D.0

4.(2018?浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4?+3=0,则|﹣|的最小值是()

A.﹣1 B.+1 C.2 D.2﹣

5.(2018?浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的

点(不含端点).设SE与BC所成的角为θ

1,SE与平面ABCD所成的角为θ

2

,二面角S﹣

AB﹣C的平面角为θ

3

,则()

A.θ

1≤θ

2

≤θ

3

B.θ

3

≤θ

2

≤θ

1

C.θ

1

≤θ

3

≤θ

2

D.θ

2

≤θ

3

≤θ

1

6.(2018?浙江)函数y=2|x|sin2x的图象可能是()

A. B. C.

D.

7.(2018?江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.

8.(2018?江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.

9.(2018?天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.

10.(2018?北京)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N 的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.

11.(2018?上海)已知实数x

1、x

2

、y

1

、y

2

满足:x

1

2+y

1

2=1,x

2

2+y

2

2=1,x

1

x

2

+y

1

y

2

=,则

+的最大值为.

12.(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a= .

13.(2018?浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.14.(2018?浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大.

15.(2018?浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)

三.解答题(共2小题)

16.(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.

(1)若f(x)为偶函数,求a的值;

(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.

17.(2018?浙江)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).

(Ⅰ)求sin(α+π)的值;

(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.

2018年高考数学压轴题小题

参考答案与试题解析

一.选择题(共6小题)

1.(2018?新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()

A.﹣50 B.0 C.2 D.50

【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),

∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,

则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),

即函数f(x)是周期为4的周期函数,

∵f(1)=2,

∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,

f(4)=f(0)=0,

则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,

则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,

故选:C.

2.(2018?新课标Ⅱ)已知F

1,F

2

是椭圆C:=1(a>b>0)的左、右焦点,A是C

的左顶点,点P在过A且斜率为的直线上,△PF

1F

2

为等腰三角形,∠F

1

F

2

P=120°,则C

的离心率为()A.B.C.D.

【解答】解:由题意可知:A(﹣a,0),F

1(﹣c,0),F

2

(c,0),

直线AP的方程为:y=(x+a),

由∠F

1F

2

P=120°,|PF

2

|=|F

1

F

2

|=2c,则P(2c,c),

代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.

故选:D.

相关文档
最新文档